Open Access

Transmit Diversity at the Cell Border Using Smart Base Stations

EURASIP Journal on Wireless Communications and Networking20072007:060654

DOI: 10.1155/2007/60654

Received: 27 October 2006

Accepted: 22 October 2007

Published: 10 December 2007

Abstract

We address the problems at the most critical area in a cellular multicarrier code division multiple access (MC-CDMA) network, namely, the cell border. At a mobile terminal the diversity can be increased by using transmit diversity techniques such as cyclic delay diversity (CDD) and space-time coding like Alamouti. We transfer these transmit diversity techniques to a cellular environment. Therefore, the performance is enhanced at the cell border, intercellular interference is avoided, and soft handover procedures are simplified all together. By this, macrodiversity concepts are exchanged by transmit diversity concepts. These concepts also shift parts of the complexity from the mobile terminal to smart base stations.

[12345678910111213141516171819202122232425]

Authors’ Affiliations

(1)
German Aerospace Center (DLR), Institute of Communications and Navigation

References

  1. IST-2003-507581 WINNER Project https://www.ist-winner.org
  2. Plass S: On intercell interference and its cancellation in cellular multicarrier CDMA systems. EURASIP Journal on Wireless Communications and Networking 2008, 2008: 11 pages.View ArticleGoogle Scholar
  3. Wong D, Lim TJ: Soft handoffs in CDMA mobile systems. IEEE Personal Communications 1997,4(6):6-17. 10.1109/98.637378View ArticleGoogle Scholar
  4. Schinnenburg M, Forkel I, Haverkamp B: Realization and optimization of soft and softer handover in UMTS networks. Proceedings of European Personal Mobile Communications Conference (EPMCC '03), April 2003, Glasgow, UK 603-607.Google Scholar
  5. Wittneben A: A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation. Proceedings of IEEE International Conference on Communications (ICC '93), May 1993, Geneva, Switzerland 1630-1634.View ArticleGoogle Scholar
  6. Dammann A, Kaiser S: Performance of low complex antenna diversity techniques for mobile OFDM systems. Proceedings of International Workshop on Multi-Carrier Spread Spectrum (MC-SS '01), September 2001, Oberpfaffenhofen, Germany 53-64.Google Scholar
  7. Tarokh V, Jafarkhani H, Calderbank AR: Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory 1999,45(5):1456-1467. 10.1109/18.771146MATHMathSciNetView ArticleGoogle Scholar
  8. Inoue M, Fujii T, Nakagawa M: Space time transmit site diversity for OFDM multi base station system. Proceedings of the 4th EEE International Workshop on Mobile and Wireless Communication Networks (MWCN '02), September 2002, Stockholm, Sweden 30-34.View ArticleGoogle Scholar
  9. Weinstein SB, Ebert PM: Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications 1971,19(5):628-634. 10.1109/TCOM.1971.1090705View ArticleGoogle Scholar
  10. Wang Z, Giannakis GB: Wireless multicarrier communications: where Fourier meets Shannon. IEEE Signal Processing Magazine 2000,17(3):29-48. 10.1109/79.841722View ArticleGoogle Scholar
  11. Sternad M, Svensson T, Klang G: The WINNER B3G system MAC concept. Proceedings of IEEE Vehicular Technology Conference (VTC '06), September 2006, Montreal, Canada 3037-3041.Google Scholar
  12. Fazel K, Papke L: On the performance of concolutionally-coded CDMA/OFDM for mobile communications systems. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '93), September 1993, Yokohama, Japan 468-472.Google Scholar
  13. Yee N, Linnartz J-P, Fettweis G: Multi-carrier CDMA for indoor wireless radio networks. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '93), September 1993, Yokohama, Japan 109-113.Google Scholar
  14. Fazel K, Kaiser S: Multi-Carrier and Spread Spectrum Systems. John Wiley & Sons, San Francisco, Calif, USA; 2003.View ArticleGoogle Scholar
  15. Viterbi A: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 1967,13(2):260-269.MATHView ArticleGoogle Scholar
  16. Dammann A, Kaiser S: Transmit/receive-antenna diversity techniques for OFDM systems. European Transactions on Telecommunications 2002,13(5):531-538. 10.1002/ett.4460130514View ArticleGoogle Scholar
  17. Auer G: Channel estimation for OFDM with cyclic delay diversity. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications (PIMRC '04), September 2004, Barcelona, Spain 3: 1792-1796.Google Scholar
  18. Bauch G: Differential modulation and cyclic delay diversity in orthogonal frequency-division multiplex. IEEE Transactions on Communications 2006,54(5):798-801.View ArticleGoogle Scholar
  19. Stüber GL: Principles of Mobile Communication. Kluwer Academic Publishers, Norwell, Mass, USA; 2001.Google Scholar
  20. Alamouti SM: A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications 1998,16(8):1451-1458. 10.1109/49.730453View ArticleGoogle Scholar
  21. Tse D, Viswanath P: Fundamentals of Wireless Communication. Cambridge University Press, New York, NY, USA; 2005.MATHView ArticleGoogle Scholar
  22. Plass S, Doukopoulos XG, Legouable R: On MC-CDMA link-level inter-cell interference. Proceedings of the 65th IEEE Vehicular Technology Conference (VTC '07), April 2007, Dublin, Ireland 2656-2660.Google Scholar
  23. Schulze H:A comparison between Alamouti transmit diversity and (cyclic) delay diversity for a system. Proceedings of International OFDM Workshop, August 2006, Hamburg, GermanyGoogle Scholar
  24. IST-2003-507581 WINNER : D2.10: final report on identified RI key technologies, system concept, and their assessment. 2005.Google Scholar
  25. Bauch G, Malik JS: Cyclic delay diversity with bit-interleaved coded modulation in orthogonal frequency division multiple access. IEEE Transactions on Wireless Communications 2006,5(8):2092-2100.View ArticleGoogle Scholar

Copyright

© Simon Plass et al. 2007

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.