Open Access

Error Control Coding in Low-Power Wireless Sensor Networks: When Is ECC Energy-Efficient?

  • Sheryl L. Howard1Email author,
  • Christian Schlegel,
  • Kris Iniewski1 and
  • Kris Iniewski1
EURASIP Journal on Wireless Communications and Networking20062006:074812

DOI: 10.1155/WCN/2006/74812

Received: 31 October 2005

Accepted: 21 March 2006

Published: 7 May 2006

Abstract

This paper examines error control coding (ECC) use in wireless sensor networks (WSNs) to determine the energy efficiency of specific ECC implementations in WSNs. ECC provides coding gain, resulting in transmitter energy savings, at the cost of added decoder power consumption. This paper derives an expression for the critical distance , the distance at which the decoder's energy consumption per bit equals the transmit energy savings per bit due to coding gain, compared to an uncoded system. Results for several decoder implementations, both analog and digital, are presented for in different environments over a wide frequency range. In free space, is very large at lower frequencies, suitable only for widely spaced outdoor sensors. In crowded environments and office buildings, drops significantly, to 3 m or greater at 10 GHz. Interference is not considered; it would lower . Analog decoders are shown to be the most energy-efficient decoders in this study.

[1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859]

Authors’ Affiliations

(1)
Department of Electrical & Computer Engineering, University of Alberta

References

  1. Roundy S, Otis B, Chee YH, Rabaey J, Wright P: A 1.9GHz RF transmit beacon using environmentally scavenged energy. Proceedings of IEEE International Symposium on Low Power Electronics and Devices (ISLPED '03), August 2003, Seoul, KoreaGoogle Scholar
  2. Lin T-H, Kaiser WJ, Pottie GJ: Integrated low-power communication system design for wireless sensor networks. IEEE Communications Magazine 2004,42(12):142-150.View ArticleGoogle Scholar
  3. Otis B, Chee YH, Rabaey J:A 400 -RX, 1.6mW-TX super-regenerative transceiver for wireless sensor networks. Proceedings of IEEE International Solid-State Circuits Conference (ISSCC '05), February 2005, San Francisco, Calif, USA 1: 396-397.Google Scholar
  4. Iniewski K, Siu C, Kilambi S, et al.: Ultra-low-power circuit and system design tradeoffs for smart sensor network applications. Proceedings of the International Conference on Information and Communication Technology (ICICT '05), December 2005, Cairo, Egypt invited paperGoogle Scholar
  5. Ekanayake V, Kelly IV C, Manohar R: An ultra-low-power processor for sensor networks. Proceedings of the 11th International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS-XI '04), October 2004, Boston, Mass, USAGoogle Scholar
  6. Ottman GK, Hofmann HF, Lesieutre GA: Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode. IEEE Transactions on Power Electronics 2003,18(2):696-703. 10.1109/TPEL.2003.809379View ArticleGoogle Scholar
  7. Roundy S, Steingart D, Fréchette L, Wright PK, Rabaey J: Power sources for wireless sensor networks. Proceedings of the 1st European Workshop on Wireless Sensor Networks (EWSN '04), January 2004, Berlin, Germany 1-17.View ArticleGoogle Scholar
  8. Ye W, Heidemann J, Estrin D: An energy-efficient MAC protocol for wireless sensor networks. Proceedings of 21st International Conference of IEEE Computer and Communications Societies (INFOCOM '02), June 2002, New York, NY, USA 3: 1567-1576.Google Scholar
  9. Sohrabi K, Pottie GJ: Performance of a novel self-organization protocol for wireless ad-hoc sensor networks. Proceedings of IEEE 50th Vehicular Technology Conference (VTC '99), September 1999, Amsterdam, The Netherlands 2: 1222-1226.Google Scholar
  10. Woo A, Culler D: A transmission control scheme for media access in sensor networks. Proceedings of ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM '01), July 2001, Rome, ItalyGoogle Scholar
  11. Bennett F, Clarke D, Evans JB, Hopper A, Jones A, Leask D: Piconet: embedded mobile networking. IEEE Personal Communications 1997,4(5):8-15. 10.1109/98.626977View ArticleGoogle Scholar
  12. Molnar A, Lu B, Lanzisera S, Cook BW, Pister KSJ: An ultra-low power 900 MHz RF transceiver for wireless sensor networks. Proceedings of the IEEE on Custom Integrated Circuits Conference (CICC '04), October 2004, Orlando, Fla, USA 401-404.Google Scholar
  13. Porret A-S, Melly T, Python D, Enz CC, Vittoz EA: An ultralow-power UHF transceiver integrated in a standard digital CMOS process: architecture and receiver. IEEE Journal of Solid-State Circuits 2001,36(3):452-466. 10.1109/4.910484View ArticleGoogle Scholar
  14. Melly T, Porret A-S, Enz CC, Vittoz EA: An ultralow-power UHF transceiver integrated in a standard digital CMOS process: transmitter. IEEE Journal of Solid-State Circuits 2001,36(3):467-472. 10.1109/4.910485View ArticleGoogle Scholar
  15. Lettieri P, Fragouli C, Srivastava MB: Low power error control for wireless links. Proceedings of the 3rd Annual ACM/IEEE International Conference on Mobile Computing and Networking (MOBICOM '97), September 1997, Budapest, Hungary 139-150.View ArticleGoogle Scholar
  16. Mukhopadhyay S, Panigrahi D, Dey S: Data aware, low cost error correction for wireless sensor networks. Proceedings of IEEE Wireless Communications and Networking Conference (WCNC '04), March 2004, Atlanta, Ga, USA 4: 2492-2497.Google Scholar
  17. Shih E, Cho S, Lee FS, Calhoun BH, Chandrakasan A: Design considerations for energy-efficient radios in wireless microsensor networks. Journal of VLSI Signal Processing Systems for Signal, Image, and Video Technology 2004,37(1):77-94.View ArticleGoogle Scholar
  18. Berrou C, Glavieux A, Thitimajshima P: Near Shannon limit error-correcting coding and decoding: turbo-codes. Proceedings of IEEE International Conference on Communications (ICC '93), May 1993, Geneva, Switzerland 2: 1064-1070.View ArticleGoogle Scholar
  19. Gallager RG: Low-density parity-check codes. IRE Transactions on Information Theory 1962,8(1):21-28. 10.1109/TIT.1962.1057683MathSciNetView ArticleMATHGoogle Scholar
  20. Kasnavi S, Kilambi S, Crowley B, Iniewski K, Kaminska B: Application of error control codes (ECC) in ultra-low-power RF transceivers. Proceedings of IEEE Dallas Circuits and Systems Workshop (DCAS '05), September 2005, Dallas, Tex, USAGoogle Scholar
  21. Sadeghi N, Howard SL, Kasnavi S, Iniewski K, Gaudet VC, Schlegel C: Analysis of error control code use in ultra-low-power wireless sensor networks. Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS '06), May 2006, Kos, Greece acceptedGoogle Scholar
  22. Schlegel C, Perez L: Trellis and Turbo Coding. IEEE/Wiley, Piscataway, NJ, USA; 2004.View ArticleGoogle Scholar
  23. Sklar B: Digital Communications: Fundamentals and Applications. Prentice Hall, Englewood Cliffs, NJ, USA; 1988.MATHGoogle Scholar
  24. Stutzman WL, Thiele GA: Antenna Theory and Design. 2nd edition. John Wiley & Sons, New York, NY, USA; 1998.Google Scholar
  25. Rappaport TS: Wireless Communications: Principles and Practice. Prentice Hall, Englewood Cliffs, NJ, USA; 1996.MATHGoogle Scholar
  26. Seidel SY, Rappaport TS: Path loss prediction in multifloored buildings at 914 MHz. IEE Electronics Letters 1991,27(15):1384-1387. 10.1049/el:19910870View ArticleGoogle Scholar
  27. Perez-Vega C, Garcia JL: A simple approach to a statistical path loss model for indoor communications. Proceedings of the 27th European Microwave Conference and Exhibition, September 1997, Jerusalem, Israel 617-623.Google Scholar
  28. Durgin GD, Rappaport TS, Xu H: Partition-based path loss analysis for in-home and residential areas at 5.85 GHz. Proceedings of IEEE Global Telecommunications Conference (GLOBECOM '98), November 1998, Sydney, NSW, Australia 2: 904-909.Google Scholar
  29. Green DB, Obaidat AS: An accurate line of sight propagation performance model for ad-hoc 802.11 wireless LAN (WLAN) devices. Proceedings of IEEE International Conference on Communications (ICC '02), April-May 2002, New York, NY, USA 5: 3424-3428.View ArticleGoogle Scholar
  30. Hansen J, Leuthold PE: The mean received power in ad hoc networks and its dependence on geometrical quantities. IEEE Transactions on Antennas and Propagation 2003,51(9):2413-2419. 10.1109/TAP.2003.816376View ArticleGoogle Scholar
  31. Devasirvatham DMJ, Banerjee C, Krain MJ, Rappaport DA: Multi-frequency radiowave propagation measurements in the portable radio environment. Proccedings of IEEE International Conference on Communications (ICC '90), April 1990, Atlanta, Ga, USA 4: 1334-1340.Google Scholar
  32. Harrold TJ, Nix AR, Beach MA: Propagation studies for mobile-to-mobile communications. Proceedings of IEEE 54th Vehicular Technology Conference (VTC '01), October 2001, Atlantic City, NJ, USA 3: 1251-1255.Google Scholar
  33. Hashemi H: The indoor radio propagation channel. Proceedings of the IEEE 1993,81(7):941-968.View ArticleGoogle Scholar
  34. Sydor J: True broadband for the countryside. IEE Communications Engineer 2004,2(2):32-36. 10.1049/ce:20040206View ArticleGoogle Scholar
  35. Aguiar A, Gross J: Wireless channel models. In Tech. Rep. TKN-03-007. Telecommunications Networks Group, Technische Universität Berlin, Berlin, Germany; April 2003.Google Scholar
  36. Hamming RW: Error detecting and error correcting codes. The Bell System Technical Journal 1950,29(2):147-160.MathSciNetView ArticleGoogle Scholar
  37. Reed IS, Solomon G: Polynomial codes over certain finite fields. SIAM Journal on Applied Mathematics 1960, 8: 300-304. 10.1137/0108018MathSciNetView ArticleMATHGoogle Scholar
  38. Bose RC, Ray-Chaudhuri DK: On a class of error correcting binary group codes. Information and Control 1960, 3: 68-79. 10.1016/S0019-9958(60)90287-4MathSciNetView ArticleMATHGoogle Scholar
  39. Hocquenghem A: Codes correcteurs d'erreurs. Chiffres 1959, 2: 147-156.MathSciNetMATHGoogle Scholar
  40. Viterbi AJ: Error bounds for convolutional codes and an asymptotically optimum decoding algorithm. IEEE Transactions on Information Theory 1967,13(2):260-269.View ArticleMATHGoogle Scholar
  41. Bahl LR, Cocke J, Jelinek F, Raviv J: Optimal decoding of linear codes for minimizing symbol error rate. IEEE Transactions on Information Theory 1974,20(2):284-287.MathSciNetView ArticleMATHGoogle Scholar
  42. Pearl J: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Mateo, Calif, USA; 1988.MATHGoogle Scholar
  43. Wiberg N: Codes and decoding on general graphs, thesis of Doctor of Philosophy. Linköping University, Linköping, Sweden; 1996.Google Scholar
  44. Fossorier MPC, Mihaljević M, Imai H: Reduced complexity iterative decoding of low-density parity check codes based on belief propagation. IEEE Transactions on Communications 1999,47(5):673-680. 10.1109/26.768759View ArticleGoogle Scholar
  45. Proakis JG: Digital Communications. 4th edition. McGraw-Hill, New York, NY, USA; 2001.MATHGoogle Scholar
  46. Vogrig D, Gerosa A, Neviani A, Graell I Amat A, Montorsi G, Benedetto S:A 0.35- m CMOS analog turbo decoder for the 40-bit rate 1/3 UMTS channel code. IEEE Journal of Solid-State Circuits 2005,40(3):753-761.View ArticleGoogle Scholar
  47. Winstead C: Analog Iterative Error Control Decoders, thesis of Doctor of Philosophy. Department of Electrical & Computer Engineering, University of Alberta, Alberta, Canada; 2004.Google Scholar
  48. Blanksby AJ, Howland CJ: A 690-mW 1-Gb/s 1024-b, rate-1/2 low-density parity-check code decoder. IEEE Journal of Solid-State Circuits 2002,37(3):404-412. 10.1109/4.987093View ArticleGoogle Scholar
  49. Rabaey J, Chandrakasan A, Nikolic B: Digital Integrated Circuits. 2nd edition. Prentice Hall, Englewood Cliffs, NJ, USA; 2003.Google Scholar
  50. Fill TS, Gulak PG: An assessment of VLSI and embedded software implementations for Reed-Solomon decoders. Proceedings of IEEE Workshop on Signal Processing Systems (SIPS '02), October 2002, San Diego, Calif, USA 99-102.View ArticleGoogle Scholar
  51. Winstead C, Nguyen N, Gaudet VC, Schlegel C: Low-voltage CMOS circuits for analog iterative decoders. IEEE Transactions on Circuits and Systems I: Regular Papers 2005.,52(4):Google Scholar
  52. Kawokgy M, Andre C, Salama T: Low-power asynchronous Viterbi decoder for wireless applications. Proceedings of the International Symposium on Low Power Electronics and Design (ISLPED '04), August 2004, Newport, Calif, USA 286-289.Google Scholar
  53. Lin C-C, Wu C-C, Lee C-Y: A low power and high speed Viterbi decoder chip for WLAN applications. Proceedings of the 29th European Solid-State Circuits Conference (ESSCIRC '03), September 2003, Lissabon, Portugal 723-726.Google Scholar
  54. Winstead C, Schlegel C, Gaudet VC: CMOS analog decoder for (256,121) block turbo code. submitted to EURASIP Journal on Wireless Communications and Networking, special issue: CMOS RF circuits for wireless applicationsGoogle Scholar
  55. Hemati S, Banihashemi AH, Plett C:An 80-Mb/s 0.18- m CMOS analog min-sum iterative decoder for a (32,8,10) LDPC code. Proceedings of the IEEE Custom Integrated Circuits Conference (CICC '05), September 2005, San Jose, Calif, USA 243-246.Google Scholar
  56. Lee T: The Design of CMOS Radio-Frequency Integrated Circuits. 2nd edition. Cambridge University Press, Cambridge, UK; 2004.Google Scholar
  57. Wireless LAN medium access control (MAC) and physical layer (PHY) specification LAN MAN Standards Committee, IEEE Computer Society, IEEE, New York, NY, USA, IEEE Std 802.11 - 1997 edition, 1997Google Scholar
  58. Aksin D, Gregori S, Maloberti F: High-efficiency power amplifier for wireless sensor networks. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '05), May 2005, Kobe, Japan 6: 5898-5901.View ArticleGoogle Scholar
  59. Chee YH, Rabaey J, Niknejad AM: A class A/B low power amplifier for wireless sensor networks. Proceedings of the IEEE International Symposium on Circuits and Systems (ISCAS '04), May 2004, Vancouver, BC, Canada 4: 409-412.Google Scholar

Copyright

© Sheryl L. Howard et al. 2006

This article is published under license to BioMed Central Ltd. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.