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1117 Budapest, Hungary

2Department of Mathematics, Katholieke Universiteit Leuven, Celestijnenlaan 200B, 3001 Leuven (Heverlee), Belgium

Received 12 December 2006; Revised 14 March 2007; Accepted 29 April 2007

Recommended by George K. Karagiannidis

Novel channel equalizer algorithms are introduced for wireless communication systems to combat channel distortions resulting
from multipath propagation. The novel algorithms are based on newly derived bounds on the probability of error (PE) and guar-
antee better performance than the traditional zero forcing (ZF) or minimum mean square error (MMSE) algorithms. The new
equalization methods require channel state information which is obtained by a fast adaptive channel identification algorithm. As
a result, the combined convergence time needed for channel identification and PE minimization still remains smaller than the
convergence time of traditional adaptive algorithms, yielding real-time equalization. The performance of the new algorithms is
tested by extensive simulations on standard mobile channels.

Copyright © 2007 Janos Levendovszky et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.

1. INTRODUCTION

Since radio spectrum became scarce and expensive, one of
the major concerns of wireless communication is to max-
imize spectral efficiency (SE). This implies that broadband
services are implemented over narrowband radio channels
which makes them susceptible to selective fading due to
multipath propagation which may yield severe performance
degradation [1]. As a result, efficient channel equalization
techniques prove to be instrumental to combat intersymbol
interference (ISI) in order to avoid large scale drops in system
performance.

The effect of interferences is especially crucial in mo-
bile communication systems which have two evolutionary
paths: (i) 3G systems are launched based on WCDMA [2];
and (ii) the current 2G systems (GSM and IS-136) are up-
dated to provide broadband services [1]. The latter strategy
introduces a novel common physical layer “enhanced data
rates for GSM evolution” (EDGE) for both TDMA schemes.
EDGE improves spectral efficiency by applying 8PSK mod-
ulation format instead of binary Gaussian minimum-shift
keying (GMSK). For the sake of seamless GSM-EDGE trans-
fer, most of the system parameters remain unchanged (e.g.,
symbol time and symbol duration). However, in the case of
8PSKmodulation themaximum likelihood sequence estima-

tor (involving the Viterbi algorithm) can no longer be imple-
mented on the current DSP technology due to its complexity
[2]. As a result, fast channel equalizer algorithms have to be
developed which are simple enough to run on the currently
available hardware architectures even in the case of multilevel
PSK modulation schemes.

This paper aims at developing small complexity channel
equalizer algorithms by directly minimizing the PE instead
of minimizing the mean square error (MSE) or the peak dis-
tortion (PD) [3]. Unfortunately, the direct minimization of
PE with respect to the equalizer coefficients is of exponen-
tial complexity. Thus, we develop new bounds on which ba-
sis the equalizer coefficients can be optimized by fast algo-
rithms. For the sake of simplicity, the novel algorithms pre-
sented in the paper are treated assuming a two-state modula-
tion scheme (however the analysis can be easily extended to
many-state schemes by introducing complex variables).

The first attempt to derive an equalizer based on the
minimum PE strategy can be found in the work of Shimbo
and Celebiler [4]. The optimal equalizer coefficients were
only sought by exhaustive search, thus real-time adaptiv-
ity was not guaranteed. In recent years, some new results
have been developed for minimum PE equalization. In [5]
a low-complexity adaptive algorithm is proposed for 2 or 4-
state modulation systems but the convergence is rather slow,
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while in [6, 7] near minimum PE equalization is carried out
by radial basis function neural networks which considerably
increases the equalizer complexity. Minimum BER equaliza-
tion for decision feedback equalizers can be found in [8, 9].
On the other hand, very complex equalizer schemes have
been proposed for DS-CDMA systems in [10–12].

Recently other equalization strategies have also been de-
veloped, such as iterative (turbo) equalization algorithms
which jointly optimize the equalization and the detection
yielding similar performance than the maximum likelihood
sequence estimation. For some recent results see [13–16].
Other solutions are based on the negentropy minimization
principle [17] or the nearest neighbor classifier [18] but they
yield complex algorithms.

The results are given in the following structure.

(i) In Section 2, the communication model will be out-
lined.

(ii) In Section 3, PE is expressed as a function of the equal-
izer coefficients and a gradient-based algorithm is in-
troduced for minimization. Then new bounds are de-
rived on PE to develop new equalizer algorithms with
low complexity.

(iii) In Section 4, the performance and convergence prop-
erties of the new equalizer algorithms are analyzed nu-
merically.

2. THEMODEL

To describe single-user communication over fading channel,
we use the so-called equivalent discrete time white noise filter
model (for further details see [3]).

The corresponding quantities are defined as follows:

(i) yk ∈ {−1, 1} denotes the transmitted information bit
at time instant k being a sequence of identically dis-
tributed independent Bernoulli random variables with
P(yk = 1) = P(yk = −1) = 0.5;

(ii) the discrete impulse response of the channel is denoted
by hk, k = 0, . . . ,M, whereM denotes the span of ISI;

(iii) the noise is denoted by νk and is assumed to be a sta-
tionary zero mean white Gaussian random sequence
with constant spectral density N0;

(iv) the received sequence is denoted by xk, which is lin-
early distorted and noisy version of the transmitted se-
quence given as

xk =
M∑

j=0
hj yk− j + νk, (1)

and with the assumption of BPSK modulation and co-
herent demodulation, xk is real;

(i) the equalizer is a linear FIR filter, the output of which
is denoted by ỹk

ỹk =
J∑

i=0
wixk−i, (2)

wherewi, i = 0, . . . , J , denote the free parameters of the
equalizer which are subject to further optimization;

(ii) the decision is carried out by threshold detection in a
symbol-by-symbol fashion:

ŷk = sgn
{
ỹk
} = sgn

{ J∑

i=0
wixk−i

}
; (3)

(iii) the overall channel impulse response function is deter-
mined by the cascade of the channel and the equalizer

qk =
L∑

i=0
hiwk−i, k = 0, . . . ,L, (4)

where L = M + J denotes the support of the overall
impulse response.

Traditional equalization algorithms aimed at minimizing the
PD defined as

wopt : min
w

L∑

i=1

∣∣qi
∣∣ (5)

or MSE defined as

wopt : min
w

E

[(
yk −

J∑

j=0
wjxk− j

)2]
. (6)

The corresponding adaptive equalizer algorithm that
minimizes the PD is called zero-forcing:

wl(k + 1) = wl(k)− γ

(
yk −

J∑

j=0
wjxk− j

)
yk−l (7)

and that which minimizes the MSE (often referred to as
LMS) is

wl(k + 1) = wl(k)− γ

(
yk −

J∑

j=0
wjxk− j

)
xk−l, (8)

where γ is a sufficiently small step-size which governs the
convergence. Both approaches involved linear stochastic ap-
proximation schemes but they fell short of efficient estima-
tion as the goal functions did not have direct relationship
with PE.

3. NOVEL CHANNEL EQUALIZATIONMETHODS

In this section, we express PE as a function of the equalizer
coefficientsw andwe also demonstrate that equalization with
respect to direct PE minimization is of exponential complex-
ity. In order to circumvent this difficulty, we develop new
bounds on PE and the equalization coefficients can be op-
timized by minimizing these bounds in real time.
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3.1. Weight optimization subject tominimizing the PE

Since our approach to equalization is based on minimizing
the probability of error, first we express PE as a function of
the equalizer coefficients as given in [4]:

PE(w) = 1
2L

∑

y∈Y
Φ

(−q0 +
∑L

l=1 ql yl
σ

)

= 1
2L

∑

y∈Y
Φ

(∑L
l=0 ql yl
σ

)
,

(9)

where Φ(·) denotes the standard normal cumulative distri-
bution function (cdf) defined as Φ(x) = (1/

√
2π)

∫ x
−∞ exp(−

t2/2)dt, σ2 = N0
∑J

j=0w
2
j , and Y = {y = (y0, y1, . . . , yL) |

y0 = −1; yi ∈ {−1, 1}, i = 1, . . . ,L}. Substituting (4) into
(9), we obtain

PE(w) = 1
2L

∑

y∈Y
Φ

(∑J
n=0wn

∑M+n
l=n hl−nyl√

N0
∑J

n=0w2
n

)
. (10)

To find the optimal weights of the equalizer which minimize
this error probability, we have to solve the following equa-
tion:

wopt : gradw PE(w) = 0, (11)

where the ith component of the gradient is

∂PE(w)
∂wi

= 1

2L
√
2πN0

(∑J
n=0w2

n

)3
∑

y∈Y
exp

(−(∑J
n=0wn

∑M+n
l=n hl−nyl

)2

2N0
∑J

n=0w2
n

)

·
[( J∑

n=0
w2
n

)
·
(M+i∑

l=i
hl−i yl

)
−wi

( J∑

n=0
wn

M+n∑

l=n
hl−nyl

)]
.

(12)

The weights can be minimized by gradient descent,
which yields the following equalization algorithm:

wi(k + 1) = wi(k)− γ
∂PE

(
w(k)

)

∂wi
. (13)

Herew(k) is the value of the weight vector at the kth iteration
and γ is a sufficiently small step-size.

In the forthcoming discussion, this procedure is termed
as true gradient search (TGS). Unfortunately, performing
TGS is computationally prohibitive because of the summa-
tion over an exponentially growing number of vectors in ex-
pression (12). This summation must be calculated in each
step of algorithm (13). Thus, TGS can only be applied in
practice if the support of the overall impulse response de-
fined in (4) is very limited. Otherwise, near-optimal algo-
rithms must be sought which lend themselves to real-time
implementations. To ease this complexity, new bounds are
derived on PE.

3.2. New bounds on PE

In this section, we derive new upperbounds on PE which can
be used for channel equalization. For the sake of performance
analysis, lower bounds are also derived which can help to
evaluate the accuracy of the bounds.

To develop these upperbounds, first we introduce the
concept of “diagonal dominancy” (or “eye-openness”) which
is often used in the literature related to digital communica-
tion theory [3, 4].

Definition 1. A sequence {ak} is called an “eye-opened” if
|a0| >

∑
k, k �=0 |ak|.

It should be noted that if a sequence ak is “eye-opened,”
then the associated Toeplitz matrix A, defined by Aij = ai− j ,
is diagonally dominant (i.e., |Aii| >

∑
j, j �=i |Aij|).

Definition 2. The peak distortion (PD) of a linear filter with
impulse response function ak is defined as

PD =
∑

k, k �=0

∣∣ak
∣∣. (14)

In the forthcoming discussion, the PD is related to the
overall impulse response function qk of the communication
system given in (4), which is calculated as follows:

PD(w) =
∑

k, k �=0

∣∣qk
∣∣ =

∑

k, k �=0

∣∣∣∣∣

J∑

j=0
wjhk− j

∣∣∣∣∣. (15)

The appearance of w in (15) in the notation for PD is due to
the dependence of PD on the weights of the equalizer. Note
that if qk is eye-opened, then PD(w) < |q0|.

Theorem 1. The following bounds on PE(w) can be derived,
where the inequalities provided with a star hold under the as-
sumption of the “eye-openness” of the overall channel response
function qk (when |q0| >

∑L
k=1 |qk|):

Φ

( −q0√
N0
∑J

n=0w2
n

)
∗≤ PE(w) ≤ Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
,

(16a)

1
2L+1

[
Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
+Φ

(−q0 − PD(w)√
N0
∑J

n=0w2
n

)]

+
(
1− 1

2L

)
Φ

( −q0√
N0
∑J

n=0w2
n

)
∗≤ PE(w)

∗≤1
2

[
Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
+Φ

(−q0 − PD(w)√
N0
∑J

n=0w2
n

)]
,

(16b)

Φ
(−h0√

N0

) ∗≤ PE(w). (16c)

The proof of this theorem can be found in Appendix A.
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It should be noted that the upperbound in (16b) is tighter
than the upperbound in (16a) due to the relation

Φ

(−q0 − PD(w)√
N0
∑J

n=0w2
n

)
≤ Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
(17)

which implies

1
2

[
Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
+Φ

(−q0 − PD(w)√
N0
∑J

n=0w2
n

)]

≤ Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
.

(18)

One must not forget, however, that upperbound (16b)
is obtained under a stronger condition (eye-openness) than
upperbound (16a), thus the latter one can be used in more
general circumstances.

Unfortunately, due to the nondifferentiability of PD(w) it
is still difficult to minimize the newly obtained bounds with
respect to the weight vector. By using the Cauchy-Schwartz
inequality to upperbound PD(w), differentiable bounds can
be derived on PE(w).

Theorem 2. The following additional bounds on PE(w) can be
derived, where the inequality (19b) (provided with a star) holds
under the assumption of “eye-openness” of the overall channel
response function:

PE(w) ≤ Φ
(
G(w)

)
,

where G(w) =
−q0 +

√
L
∑L

l=1
(∑M

j=0wjhl− j
)2

√
N0
∑J

n=0w2
n

,
(19a)

PE(w)
∗≤ Q(w)

where Q(w)= 1
2

⎡
⎢⎢⎣Φ

⎛
⎜⎜⎝
−q0 +

√
L
∑L

l=1
(∑M

j=0wjhl− j
)2

√
N0
∑J

n=0w2
n

⎞
⎟⎟⎠

+Φ

⎛
⎜⎜⎝
−q0−

√
L
∑L

l=1
(∑M

j=0wjhl− j
)2

√
N0
∑J

n=0w2
n

⎞
⎟⎟⎠

⎤
⎥⎥⎦.

(19b)

Note that bounds (16a) and (16b) are tighter than (19b)
and (19a) (due to the application of the Cauchy-Schwartz in-
equality in the latter ones). On the other hand, the advantage
of (19b) and (19a) is that both G(w) and Q(w) are differen-
tiable functions with respect to the weights, which can give
rise to gradient-based equalization algorithms.

The proof of this theorem can be found in Appendix B.

3.3. Channel equalization byminimizing
the bounds on PE

Channel equalization is performed by recursively minimiz-
ing the new bounds with respect to weights. Since upper-
bounds (16a) and (16b) are nondifferentiable with respect to

the weights (because of the absolute values occurring in the
corresponding formulas due to PD(w)), the bounds derived
in Theorem 2 are used for equalization. The new equalizer
algorithms are obtained by minimizing bounds (19a) and
(19b) by gradient search.

Bound-based equalization algorithm related to bound
(19a) (BBEAd)

wi(k + 1) = wi(k)− γ
∂G(w)
∂wi

, (20)

where γ is a sufficiently small step-size and

∂G(w)
∂wi

=
−δi0h0+2

√
L

(∑M
k=0 h

2
k−δi0h0

)
wi+

∑M
l=0 hl

∑J
j=0, j �=i wjhi+l− j

√∑M
l=1
(∑J

n=0wnhl−n
)2

√
N0
∑J

n=0w2
n

− 2wi
−w0h0 +

√
L
√∑L

l=1
(∑J

n=0wnhl−n
)2

√
N0
(∑J

n=0w2
n

)3/2 .

(21)

This procedure is obtained from minimizing G(w) by
gradient search where G(w) is defined in Theorem 2. Since
Φ(·) is monotone, it is enough to minimize G(w).

Bound-based equalization algorithm related to bound
(19b) (BBEAe)

wi(k + 1) = wi(k)− γ
∂Q(w)
∂wi

, (22)

where γ is a sufficiently small step-size and

∂Q(w)
∂wi

= 1
2
√
2π

exp

⎛
⎜⎜⎝
−q0 +

√
L
(∑L

l=1
∑J

j=0wjhl− j
)2

√
N0
∑J

n=0w2
n

⎞
⎟⎟⎠

·
⎧
⎪⎨
⎪⎩

−δi0h0√
N0
∑J

n=0w2
n

+

2
√
L

(∑M
k=0 h

2
k − δi0h0

)
wi +

∑M
l=0 hl

∑J
j=0, j �=i wjhi+l− j

√∑M
l=1
(∑J

n=0wnhl−n
)2

√
N0
∑J

n=0w2
n

−2wi
−w0h0 +

√
L
√∑L

l=1
(∑J

n=0wnhl−n
)2

√
N0
(∑J

n=0w2
n

)3/2

⎫
⎪⎬
⎪⎭
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+
1

2
√
2π

exp

⎛
⎜⎜⎝
−q0 −

√
L
(∑L

l=1
∑J

j=0wjhl− j
)2

√
N0
∑J

n=0w2
n

⎞
⎟⎟⎠

·
⎧
⎪⎨
⎪⎩

−δi0h0√
N0
∑J

n=0w2
n

−
2
√
L

(∑M
k=0 h

2
k − δi0h0

)
wi +

∑M
l=0 hl

∑J
j=0, j �=i wjhi+l− j

√∑M
l=1
(∑J

n=0wnhl−n
)2

√
N0
∑J

n=0w2
n

−2wi
−w0h0 −

√
L
√∑L

l=1
(∑J

n=0wnhl−n
)2

√
N0
(∑J

n=0w2
n

)3/2

⎫
⎪⎬
⎪⎭
.

(23)

One must note that the advantage of minimizing bounds
(19a) and (19b) is that in the gradients of G(w) and Q(w)
there is no summation over an exponentially growing set. In
this way a much faster equalization can be obtained by ap-
plying algorithm (20) or (22) than (13).

3.4. Obtaining channel-state information

In order to run the proposed algorithms, channel-state in-
formation is needed (the channel impulse response function
hk appears in expressions (13) and (20)). There are plenty
of real-time adaptive channel identification algorithms [1]
which provide fast and simple channel-state information. In
this paper, we identify the channel with an adaptive FIR filter,
the coefficients of which are updated as follows:

gn(k + 1) = gn(k)− Δ

(
xk −

M∑

i=0
gi yk−i

)
yk−n, (24)

where symbols yk come from a sufficiently large training se-
quence: τK = (yk, xk), k = 1, 2, . . . ,K , where yk denotes
the transmitted sequence (known at the receiver side prior
to start of the real communication), while xk is the ob-
served input at the receiver. Algorithm (24) minimizes the
MSE between the unknown channel impulse response func-
tion hi, i = 1, . . . ,M, and the FIR filter coefficients gi, i =
0, 1, 2, . . . ,M. Here xk denotes the received sequence at the
output of the channel. In stable state, algorithm (24) pro-
vides weights for which gi = hi in mean square if the degree
of the FIR filter is larger than the channel impulse response
(overmodeling).

It is noteworthy that the adaptive channel identifier (24)
converges rather fast to the true channel-state because of the
narrow eigenvalue-spectrum of the underlying matrices (for
further details see [3]). Hence, the combination of identifica-
tion and equalization can provide real-time solutions for low
PE reception of digital information.

4. NUMERICAL RESULTS

In this section, a detailed performance analysis is given to
evaluate the PE achieved by the different equalization meth-
ods and comparing their convergence speed and algorithmic
complexities.

4.1. Channel characteristics and channel-state
information

The simulations were made in the case of four different
channel models representing multipath propagation in dif-
ferent practical scenarios. The corresponding channel char-
acteristics are given by their impulse response as follows:
h(1) = [1; 0.6;−0.3]T , h(2) = [1; 0.3;−0.2; 0.3;−0.1; 0.1]T ,
h(3) = [1; 0.6;−0.45]T , and h(4) = [1.2; 1.1;−0.2]T .

Onemust note that h(3) and h(4) are non-minimumphase
channels. In this case, PE can be decreased by introducing a
delay D into the equalization in the following way: (i) in-
stead of (3) the decision is carried out by ŷk−D = sgn{ ỹk} =
sgn{∑J

i=0wixk−i}, (ii) and bound (19a) (see Theorem 2)
must be modified by substituting

G(w) =
−qD +

√
L
∑L

l=0; l �=D
(∑M

j=0wjhl− j
)2

√
N0
∑J

n=0w2
n

. (25)

In order to achieve the best performance, one should choose
D = 0 in the case of minimumphase channels, or D = J in
the case of non-minimumphase channels.

As far as the channel-state information is concerned, we
investigated two scenarios:

(i) at first the exact channel-state information (the im-
pulse response of the channel) was assumed to be
known at the receiver side. Therefore the equalizer al-
gorithms were run by using the corresponding h vec-
tor;

(ii) secondly, no channel-state information was assumed
to be available at the receiver side, thus channel equal-
ization was preceded by an adaptive channel identifier
algorithm given in (24).

4.2. The PE versus SNR

In this section, we numerically investigate PE with respect
to SNR. The performance was analyzed by having 2 up to
8 equalizer coefficients. In the case of the TGS, BBEAd, and
BBEAe algorithms, the weight vector of the equalizer was
normalized by setting wTw = 1, since PE is invariant to
the normalization. The step-size of the gradient descent algo-
rithms was not changed during the optimization and it falls
into the interval of 10−4 · · · 10−1 for TGS, 5 · 10−5 · · · 10−2
for BBEAd and BBEAe, and 0.01 · · · 0.2 for AMBER in the
case of different channels and different SNRs, respectively.
For the sake of comparison, the exact PE was calculated by
formula (9) using the exact channel-state information.

The PE-SNR curves are plotted for the different chan-
nels by Figures 1, 2, 3, and 4, respectively. In the case of
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Figure 1: PE versus SNR performance of the different methods in
the case of channel h(1) and 3 equalizer coefficients.
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Figure 2: PE versus SNR performance of the different methods in
the case of channel h(2) and 6 equalizer coefficients.

non-minimumphase channels (Figures 3 and 4) the new
methods far outperform the classical ones, while in the case
of minimumphase channels the benefit is not so large. The
best results were obtained by the TGS method which yields
a 1–6 dB gain in SNR related to the traditional solutions.
Furthermore, Figure 3 depicts such an example when tra-
ditional algorithms cannot provide better performance even
though with increasing SNR, while the new methods are ca-

10−4
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10−2

10−1

P
E

0 5 10 15 20 25 30 35

SNR (dB)

TGS

BBEAd

AMBER

LMS

Figure 3: PE versus SNR performance of the different methods in
the case of channel h(3), 3 equalizer coefficients and D = 2.
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Figure 4: PE versus SNR performance of the different methods in
the case of channel h(4), 3 equalizer coefficients and D = 2.

pable to further decrease PE. The BBEAd algorithm gets very
close to the performance of TGS, but it runs much faster
(due to the newly derived bounds on PE). It is noteworthy
that TGS needs exponential complexity in each step to cal-
culate the gradient of PE by the exact summation according
to formula (10). Therefore, TGS can only be applied in prac-
tice if the support of the overall impulse response (channel
impulse response convolved with the equalizer impulse re-
sponse, defined in (4)) is very limited. This, in turn, puts
severe limitations on the number of equalizer coefficients
when using TGS. This argument also prompts the use of
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Figure 5: The ratio PLMS
E /PEmin versus the number of equalizer co-

efficients for channel h(3).

the new algorithms where the complexity is not exponen-
tial with respect to the support of the overall impulse re-
sponse. The performance of BBEAe is very close to BBEAd
for minimumphase channels, which is explained by the fact
that among the two terms in bound (19b) one term domi-
nates the other, in the case of small noise. As a result, bound
(19b) converges to bound (19a). When the noise is large,
then all algorithms will yield similar performance, which are
demonstrated by Figures 1–4. Furthermore BBEAe does not
converge in the case of non-minimumphase ones. For the
sake of comparison we also plotted the PE-SNR curve of the
AMBER algorithm (for details see [5]), which exhibits almost
the same performance, as TGS. On the other hand, the tra-
ditional equalizer methods (ZF and LMS) yield significantly
worse performance than the new bounds. It is noteworthy,
however, that in the case of minimumphase channels the per-
formance of the LMS method can come close to the mini-
mum PE solution.

In Figures 5 and 6, the PLMS
E /PEmin ratio is depicted with

respect to the number of equalizer coefficients in the case of
different SNR values, for two different channels. One can see
that, on the one hand (in the case of h(3)), the difference be-
tween the performance increases in favor of the minimum
PE solution as the number of equalizer coefficients grow. On
the other hand, in the case of h(4), the performance of LMS
and the minimum PE solution converges to each other as the
number of equalizer coefficients grow. Hence, the gain ob-
tained by increasing the number of equalizer coefficients de-
pends on the type of channel to be equalized.

4.3. Convergence time and numerical complexity

In this section, the convergence properties of the obtained
algorithms are analyzed in comparison with their numerical
complexity.
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Figure 6: The ratio PLMS
E /PEmin versus the number of equalizer co-
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The numerical complexity is measured by the number of
additions and multiplications required for a single update of
the equalizer coefficients. The complexity of different algo-
rithms are depicted by Figure 7 in the case of 5 channel co-
efficients. Note that TGS needs exponential number of sum-
mations, while the other methods are much simpler provid-
ing real-time equalization.

The convergence properties of the different algorithms
in the case of SNR = 30 dB are compared in Figure 8, where
the convergence time is averaged over channel characteristics
h(1), h(2), h(3), and shown in the case of two and six equalizer
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Figure 9: PE versus the number of iterations in the case of channel
h(3) and 30 dB SNR (10 runs are averaged); symbol “I” in the legend
refers to the case of applying a plugged-in channel identifier.

coefficients. The convergence time is measured by the num-
ber of iterations from the initial state to the one, where the
relative changes of PE will not exceed 5%. All the equal-
izer algorithms were started from the same initial state of
(w = [1, 0, . . . , 0]T) and the step-sizes of the algorithms were
optimized empirically. In the case of Figures 9 and 10, we set
γ = 0.1 for TGS and TGSI, γ = 0.002 for BBEAd, γ = 0.01
for LMS, and γ = 0.2 for AMBER, respectively. In the case
of AMBER, we set the learning threshold to τ = 0.5 pro-
viding increased convergence speed (for further details see
[5]).

Fast convergence can still be maintained in the case of
unknown channel-state, when an adaptive channel identifi-
cation precedes the equalization algorithms. We started the
identification and the equalizer algorithms at the same time
instant and all updates of the equalizer were calculated ap-
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Channel h2 J = 3 SNR = 27

Figure 10: PE versus the number of iterations in the case of channel
h(4) and 27 dB SNR (10 runs are averaged); symbol “I” in the legend
refers to the case of applying a plugged-in channel identifier.

plying the actual estimation of the channel. We used the sim-
ple traditional channel identification algorithm given in (24).
The number of the channel coefficients was assumed to be
known. Convergence curves for channels h(3) and h(4) for a
given SNR with adaptive channel identification can be seen
in Figures 9 and 10.

Onemust note that the convergence time of the proposed
algorithms are about 10 times smaller than the traditional al-
gorithms or the AMBER algorithm (which alsominimizes PE
but its convergence is apparently much slower). This justifies
the use of this algorithms in real-time, high-data speed ap-
plications.

5. CONCLUSIONS

In this paper, novel channel equalizer algorithms have been
developed based on newly derived bounds on PE. Due to
the simplicity of the bounds, fast equalization algorithms
can be obtained, the performance of which are close to op-
timum. Since these bounds need channel state information,
the equalizer is preceded by an adaptive channel identifier.
The combined convergence of channel identification and the
new bound-based equalization is still much faster than other
algorithms (e.g., AMBER, ZF, or LMS). The new methods
yielded better performance than the traditional ZF and LMS
equalizer algorithms. The operational complexity of the new
bound-based algorithms is also low, requiring very simple
calculations similarly to AMBER, ZF, or LMS. These bene-
fits make the new algorithms suitable for real-time applica-
tions. In Table 1, the properties of the new and traditional
algorithms are compared.
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Table 1: Comparison of the new and traditional algorithms.

Algorithms
Performance
(PE)

Adaptivity Speed of convergence
Order of operational
complexity/iterations (J : length of
equalizer,M: length of channel)

TGS Excellent
Adaptivity is ensured by additional
channel identifier (short training
sequence is needed)

Fast (even with adaptive
channel identifier)

O(3MJ2 · 2M+J )

BBEAd, BBEAe Good
Adaptivity is ensured by additional
channel identifier (short training
sequence is needed)

Fast (even with adaptive
channel identifier)

O(J2 + 5MJ)

AMBER Excellent
Large training sequence
required adaptation

Slow O(2J2)

ZF, LMS Poor
Large training sequence
required adaptation

Slow O(2J2)

APPENDICES

A. PROOF OF THEOREM 1

First we prove the right-hand side inequality of (16a), which
can be deduced from (10). Since

J∑

n=0
wn

M+n∑

l=n
hl−nyl = −q0 +

J∑

n=1
wn

M+n∑

l=n
hl−nyl

= −q0 +
M+n∑

l=n

( J∑

n=1
wnhl−n

)
yl

≤ −q0 + PD(w),

(A.1)

each term behind the summation sign in (10) can be upper-
bounded by

Φ

⎛
⎝
∑J

n=0wn
∑M+n

l=n hl−nyl√
N0
∑J

n=0w2
n

⎞
⎠ ≤ Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
. (A.2)

Now the overall expression (10) can be upperbounded in the
following way:

PE(w) = 1
2L

∑

y∈Y
Φ

(∑J
n=0wn

∑M+n
l=n hl−nyl√

N0
∑J

n=0w2
n

)

≤ 1
2L

∑

y∈Y
Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)

= Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)

(A.3)

which proves the right-hand side of (16a).
The lowerbound of (16a) can be proven by recalling the

bit error probability given in the form of (9), which can be

rewritten as

PE(w)

= 1
2L

∑

y∈{−1,1}L

1
2

[
Φ
(−q0+

∑L
l=1 ql yl
σ

)
+Φ

(−q0−
∑L

l=1 ql yl
σ

)]
.

(A.4)

If qk is eye-opened, then, recalling (14) and the ensuing dis-
cussion, we obtain

−q0 +
L∑

l=1
ql yl < −q0 + PD(w) < 0,

−q0 − PD(w) < −q0 −
L∑

l=1
ql yl < 0.

(A.5)

Since the inequality

1
2

(
Φ(−a + ε) +Φ(−a− ε)) ≥ Φ(−a) (A.6)

is fulfilled for all a > ε > 0 for the Gaussian cdf, we can apply
this result, taking a = −q0/σ and ε = ∑L

l=1 ql yl/σ , to obtain
the following inequality:

1
2

[
Φ

(−q0 +
∑L

l=1 ql yl
σ

)
+Φ

(−q0 −
∑L

l=1 ql yl
σ

)]

≥ Φ

( −q0√
N0
∑J

n=0w2
n

)
.

(A.7)

Thus the bit error probability can be lowerbounded as

PE(w) ≥ 1
2L

∑

y∈{−1,1}L
Φ

( −q0√
N0
∑J

n=0w2
n

)

= Φ

( −q0√
N0
∑J

n=0w2
n

)
,

(A.8)

proving the left-hand side of (16a).
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The proof of the upperbound in (16b) is based on the
inequality

Φ(−a + ε) +Φ(−a− ε)
≤ Φ(−a + b) +Φ(−a− b), ∀a > b > ε > 0,

(A.9)

which can be easily verified from the properties of the Gaus-
sian cdf. Casting a = q0, ε =

∑L
l=1 ql yl, and b = PD(w),

and making use of the eye-openness again, we obtain from
representation (14) that

PE(w) = 1
2L+1

∑

y∈{−1,1}L

[
Φ

(−q0 +
∑L

l=1 ql yl
σ

)

+Φ

(−q0 −
∑L

l=1 ql yl
σ

)]

≤ 1
2L+1

∑

y∈{−1,1}L

[
Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n
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+Φ

(−q0 − PD(w)√
N0
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n=0w2
n

)]

= 1
2

[
Φ

(−q0 + PD(w)√
N0
∑J

n=0w2
n

)
+Φ

(−q0 − PD(w)√
N0
∑J

n=0w2
n

)]
.

(A.10)

For the lowerbound in (16b), we reshuffle the sum of the bit
error probability in expression (A.4) and apply the definition
of σ2 and PD(w), yielding

PE(w)= 1
2L+1

[
Φ

(−q0+PD(w)√
N0
∑J

n=0w2
n

)
+Φ

(−q0−PD(w)√
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)]

+
1
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[
Φ

(−q0 +
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σ

)]

= 1
2L+1

[
Φ
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)
+Φ
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+
1
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×
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(A.11)

Due to expression (A.7), this can be lowerbounded by

1
2L+1

[
Φ

(−q0 + PD(w)√
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∑J

n=0w2
n

)
+Φ
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1
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(A.12)

which completes the proof of the lowerbound in (16b).
To prove the lower bound (16c), we first observe that

since q0 = w0h0,

−q0√
N0
∑J

n=0w2
n

= −q0/w0√
N0
(
1 +

∑J
n=1

(
w2
n/w

2
0

)) ≥
−h0√
N0

.

(A.13)

Applying these formulas to the lowerbound of (16a), we have

PE(w) ≥ Φ

( −q0√
N0
∑J

n=0w2
n

)

= Φ

( −q0/w0√
N0
(
1 +

∑J
n=1

(
w2
n/w

2
0

))

)
≥ Φ

(−h0√
N0

)
,

(A.14)

which concludes the derivation of the lowerbound (16c).

B. PROOF OF THEOREM 2

The proof of inequalities (19a) and (19b) follows from the
application of the Cauchy-Schwarz inequality to PD(w) in
the bounds given by the right-hand side of (16a) and (16b),
respectively. Namely,

PD(w) =
L∑

l=1

∣∣ql
∣∣ =

∣∣∣∣∣

L∑

l=1
ql sgn

{
ql
}
∣∣∣∣∣ =

∣∣〈q, sgn{q}〉∣∣

≤ ∥∥ sgn{q}∥∥‖q‖ = √L
√√√√√

L∑

l=1
q2l

=
√√√√√L

L∑

l=1

( M∑

j=0
wjhl− j

)2

.

(B.1)

The quantity
√
L
∑L

l=1(
∑M

j=0wjhl− j)2 can now be substituted
for PD(w) in the upperbounds of (16a) and (16b), which
results in expressions (19a) and (19b), respectively.
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C. COMPARISON TO CLASSICAL
EQUALIZATION ALGORITHMS

For the sake of performance analysis, one may want to com-
pare the newly derived new bounds on PE with the classical
ones related to the PD and MSE [3], given as follows:

PE(w) ≤ Φ

( −q0√
N0w

2
0

+
PD(w)√
N0w

2
0

)
, (C.1a)

PE(w) ≤ E

[(
yk −

J∑

n=0
wnxk−n

)2]
, (C.1b)

where E[X] denotes the expected value of X . Inequality
(C.1a) can be easily derived from the upperbound in expres-
sion (16a), taking into account the monotonicity ofΦ(·) and

√√√√√N0

J∑

n=0
w2
n ≥

√
N0w

2
0, (C.2)

where w0 = 1/h0.
It is noteworthy that this bound depends on w through

PD(w) and this dependence is monotone. This fact can give
ground to reducing the minimization of bound (C.1a) to the
minimization of PD(w). It can be proven [3] that the opti-
mal weight vectorw( f ) which minimizes the function PD(w)
under the condition that w0 = 1/h0 is the solution of the fol-
lowing set of linear equations:

l∑

n=0
wnhl−n = δl0, l = 0, . . . ,N (C.3)

under the assumption of eye-openness.
The MMSE equalization algorithm can be derived from

the Chebyshev inequality

P
(∣∣yk − ỹk

∣∣ ≥ ε) ≤ E
[(
yk − ỹk

)2]

ε2
. (C.4)

The bit probability of a correct decision can be lower-
bounded as follows:

PC = P
(
yk = sgn

{
ỹk
}) ≥ P

(∣∣yk − ỹk
∣∣ < 1

)
, (C.5)

therefore

PE = 1− PC ≤ 1− P
(∣∣yk − ỹk

∣∣ < 1
) = P

(∣∣yk − ỹk
∣∣ ≥ 1

)

≤ E
[(
yk − ỹk

)2] = E

[(
yk −

J∑

n=0
wnvk−n

)2]
.

(C.6)

This gives rise to the following goal function:

w(g) : min
w

E

[(
yk −

J∑

n=0
wnxk−n

)2]
. (C.7)

The solution of this problem has been treated in numerous
papers (see, e.g., [3]) and is given by the following set of lin-
ear equations:

J∑

n=0
wn

(M−|i−n|∑

m=0
hmhm+|i−n| +N0δin

)
= h0δi0, ∀i = 0, . . . ,N.

(C.8)

One must note that these bounds yield the optimal equalizer
coefficients as a solution of a set of linear equations, whereas
the gradients of the newly derived bounds are nonlinear. As a
result, there is a tradeoff between the performance (sharpness
of the bound) and the complexity of the weight optimization.
Namely, low complexity weight optimization (which reduces
to solving a set of linear equations in the case of minimiz-
ing the PD or MSE) can result in poor performance. When,
however, more sophisticated bounds, which yield better per-
formance, are minimized, then a relatively time-consuming
gradient descentmust be performed. Finally, when one wants
to minimize the error probability itself, then the complex-
ity of the weight optimization algorithm becomes enormous,
which prevents its practical implementation.
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