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1. INTRODUCTION

The interest in multiple-input multiple-output (MIMO) an-
tenna systems has exploded over the last years because of
their potential of achieving remarkably high spectral effi-
ciency. However, their practical application has been limited
by the increased manufacture cost and energy consumption
of the RF chains (performing the frequency transition be-
tween microwave and baseband) and analog-to-digital con-
verters, the number of which is proportional to the number
of antenna elements.

This high degree of hardware complexity has motivated
the introduction of antenna selection schemes, which judi-
ciously choose a subset from all the available antenna ele-
ments for processing and thus decrease the number of nec-
essary RF chains. Both analytical [1–11] and stochastic [12]
algorithms for antenna selection have been proposed. How-
ever, when a limited number of frequency converters are
available, antenna selection schemes suffer from severe per-
formance degradations in most fading channels.

In order to alleviate the performance degradations of
conventional antenna selection, antenna subarray formation
(ASF) has been recently introduced [13]. With this method,
each RF chain is not allocated to a single antenna element,
but instead to a combined and complex-weighted response of
a subarray of antenna elements. Even though additional RF

switches (for selecting the antenna elements that participate
in each subarray), variable RF phase shifters, or/and variable
gain-linear amplifiers (performing the complex-weighting)
are required with respect to antenna selection schemes,
the proposed method achieves decreased receiver hard-
ware complexity, since less frequency converters and analog-
to-digital converters are required with respect to the full
system.

Antenna subarray formation actually performs a linear
transformation in the RF domain in order to reduce the
number of necessary RF chains while taking advantage of
the responses of all antenna elements. Since it is a linear pre-
processing technique that can be generally applied jointly to
both receiver and transmitter, antenna subarray formation
can be viewed as a special case of linear precoder-decoder
joint designs [14–19]. Indeed, the fundamental mathemat-
ical models for both techniques are exactly the same; how-
ever, in conventional linear precoding-decoding schemes,
preprocessing is performed in the baseband by digital sig-
nal processors that are not subject to the practical con-
straints and hardware nonidealities imposed by the RF com-
ponents (namely the number of available RF chains, variable
phase shifters, or/and variable gain-linear amplifiers) and
thus no restrictions on the structure of the preprocessing ma-
trices are required. Instead of decoupling the MIMO chan-
nel into independent subchannels (eigenmodes), ASF aims
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at constructing subchannels (namely, subarrays) that are as
mutually independent as possible and deliver the largest
receive power gain, under the aforementioned constraints.
Note that an RF preprocessing technique for reducing hard-
ware costs has also been introduced in [20], but without
grouping antenna elements into subarrays.

Initially, antenna subarray formation was introduced
with the restriction that each antenna element participates
in one subarray only. For this special case of ASF, the prob-
lem of selecting the elements and the weights for the subar-
ray formation has been addressed in [13], where an evolu-
tionary optimization technique is used. In [21], we have in-
troduced an analytical algorithm based on a Frobenius norm
criterion. Recognizing that cost-effective analog amplifiers in
RF with satisfactory noise figure are practically unavailable,
we have also suggested a phase-shift-only design of the tech-
nique [22]. Taking into consideration that the performance
of ASF may be adversely affected by hardware nonidealities,
such as insertion loss, calibration, and phase-shifting errors
(which are not an issue in conventional precoder-decoder
schemes), we have presented simulation results in [23] that
indicate the robustness of ASF to such nonidealities.

In this paper, we elaborate on the capacity performance
of ASF and the Frobenius-norm-based algorithm. In partic-
ular, we derive a theoretical upper bound on the ergodic ca-
pacity of the technique for Rayleigh i.i.d. channels. Moreover,
we demonstrate the performance of the technique and the al-
gorithm through extensive computer simulations and appli-
cation to measured channels.

The rest of the paper is organized as follows: Section 2 ex-
plains the proposed technique and its mathematical formu-
lation in more detail, provides capacity calculations for the
resulted system and introduces some special ASF schemes. In
Section 3, tight theoretical upper bounds on the ergodic ca-
pacity of the technique are derived. Section 4 presents an an-
alytical algorithm for ASF and its extensions for several ASF
schemes. The capacity performance of the technique and the
proposed algorithm is demonstrated in Section 5 through ex-
tensive computer simulations. Finally, the paper is concluded
with a summary of results.

2. THE ANTENNA SUBARRAY
FORMATION TECHNIQUE

In this section, we first present the antenna subarray for-
mation technique and its mathematical formulation. After-
wards, we provide capacity calculations for the resulted sys-
tem. Finally, some special schemes of ASF are introduced,
which are dependent on the number of phase shifters or/and
variable gain-linear amplifiers available at the receiver.

2.1. MIMO systemmodel

Consider a flat fading, spatial multiplexing MIMO system
with MT elements at the transmitter and MR > MT elements
at the receiver. Unless otherwise stated, the MR×MT channel
transfer matrix H is assumed to be perfectly known to the
receiver, but unknown to the transmitter.

In spatial multiplexing systems, independent data streams
are transmitted simultaneously by each antenna. The
received vector for MR receive elements is given by

y = Hs + n, (1)

where n is the zero-mean circularly symmetric complex
Gaussian noise vector with covariance matrix Rn = N0IMR

and s is the transmitted vector. Assuming that the total trans-
mitter power is P, the covariance matrix for the transmitted
vector is constrained as

tr
{
E
[

ssH]} = P, (2)

and the intended average signal-to-noise ratio per antenna at
the receiver is

ρ = P

N0
. (3)

2.2. General mathematical formulation of
antenna subarray formation

Antenna Subarray Formation can be applied with any num-
ber of RF chains available at the receiver. However, without
loss of generality, we assume that the receiver is equipped
with exactly MT RF chains. This assumption is frequently
made in antenna selection literature and is justified by the
well-known fact that, when the number of receiving RF
chains becomes larger than the number of transmit anten-
nas, the number of parallel spatial data pipes that can be
opened is constrained by the number of transmit antennas.
Thus, the receiver RF chains in excess cannot be exploited to
increase the throughput, but can only offer increased diver-
sity order [24]. This assumption is meaningful when the full
system channel matrix is of full column rank.

The process of subarray formation, complex weighting
and combining at the receiver is linear and thus can be ade-
quately described by the transformation matrix A. In partic-
ular, the received vector after antenna subarray formation ỹ is
found by left multiplying the received vector for MR antenna
elements with AH, that is,

ỹ = AHy. (4)

Thus, the response of the jth subarray ỹ j (i.e., the jth
entry of ỹ) is

ỹ j = αH
j y =

MR∑

i=1

a∗i j yi, (5)

where α j denotes the jth column of A. Clearly, the response
of the jth subarray ỹ j is a linear combination of the responses
of the MR receiving antenna elements and the conjugated en-
tries of α j are the corresponding complex weights. Thus, (4)
is an adequate mathematical formulation of the subarray for-
mation process, provided that we furthermore enforce the
following restriction on the entries of A:

ai j = 0, if i �∈ S j , (6)
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Figure 1: System model of receive antenna subarray formation.

with S j denoting the set of receive antenna element indices
that participate in the jth subarray.

Throughout this paper we assume that the transforma-
tion matrix A is adapted to the instantaneous channel state.
Thus, we should have written A(H), denoting the depen-
dence on the full system channel matrix H. However, to fa-
cilitate notation, we just write A which henceforth implies
A(H).

By substituting (1) into (4), the received vector after sub-
array formation becomes

ỹ = AHHs + AHn. (7)

Apparently, the combined effect of the propagation chan-
nel and the receive antenna subarrays on the transmitted sig-
nal is described by the effective channel matrix

H̃ = AHH. (8)

The effective noise component in (7) is

ñ = AHn, (9)

which is zero-mean circularly symmetric complex Gaussian
vector (ZMCSCGV) [25] with covariance matrix:

Rññ = E
[

ññH] = N0AHA. (10)

The block model of the resulted system is displayed in
Figure 1.

2.3. Capacity of receive antenna subarray formation

Depending on the time-variation of the channel, there are
different quantities that characterize the capacity of the
resulted system. In this paragraph we apply well-known
information-theoretic results for MIMO systems to RASF
systems and elaborate the capacity of the proposed technique
when different assumptions for channel-time variation are
made.

2.3.1. Deterministic capacity

Deterministic capacity is a meaningful quantity when the
static channel model is adopted, which implies that the chan-
nel matrix, despite being random, once chosen it is held fixed

for the whole transmission. In this case, the Shannon capac-
ity of RASF is given in terms of mutual information between
the transmitter vector s and the received vector after subarray
formation ỹ as

CRASF = max
p(s)

tr(Rs)=P

I
(

s; ỹ
) = max

p(s)

[
H
(

ỹ |H
)−H

(
ỹ | s, H

)]
,

(11)

where H(x) is the entropy of x, p(s) denotes the distribution
of s and tr(Rs) = P is the power constraint on the transmit-
ter. Recognizing that the transmitted symbols are indepen-
dent from noise, assuming that s is ZMCSCGV [25, 26] and
taking into account that ñ∼NC(0,N0AHA), we find that

CRASF = max
p(s)

tr(Rs)=P

I
(

s; ỹ
)

= log2 det
(
πeRỹ
)− log2det

(
πeN0AHA

)
,

(12)

where Rỹ = E[ỹỹH] = AHHRsHHA + N0AHA is the covari-
ance matrix of ỹ. After some mathematical manipulations,
(12) becomes

CRASF= max
Rs

tr(Rs)=P
log2 det

[
IMT +

1
N0

RsHHA
(

AHA
)−1

AHH
]
. (13)

Since the transmitter does not know the channel and tak-
ing into account the power constraint, it is reasonable to as-
sume that

Rs = P

MT
IMT . (14)

Thus, the Shannon capacity of receive antenna subarray
formation with equal power allocation at the transmitter is

CRASF = log2 det
[

IMT +
ρ

MT
HHA
(

AHA
)−1

AHH
]
. (15)

The capacity of the resulted system is upper bounded by
the capacity of the full system, that is

CRASF ≤ CFS = log2 det
(

IMR +
ρ

MT
HHH
)
. (16)

Proof of this result is given in Appendix A.

2.3.2. Ergodic capacity

In time-varying channels with no delay constraints, ergodic
capacity is a meaningful quantity, defined as the probabilistic
average of the static channel capacity over the distribution of
the channel matrix H. The ergodic capacity for RASF is given
by

CRASF = EH

[
log2 det

(
IMT +

ρ

MT
HHA
(

AHA
)−1

AHH
)]

.

(17)
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Figure 2: Receiver structures for several receive antenna subarray formation (ASF) schemes: (a) strictly-structured ASF (SS-ASF), (b)
relaxed-structured ASF (RS-ASF) and (c) reduced hardware complexity ASF (RHC-ASF).

2.3.3. Outage capacity

Outage capacity is a meaningful quantity in slowly varying
channels. Assuming a fixed transmission rate R, there is an
associated probability Pout (bounded away from zero) that
the received data will not be received correctly, or equiva-
lently that mutual information will be less than transmission
rate R. Outage capacity for RASF is therefore defined as

CRASF = R : Pr
{

log2 det
(

IMT +
ρ

MT
HHA
(

AHA
)−1

AHH
)
<R
}

= Pout.
(18)

2.4. Receive antenna subarray formation schemes

In general, no more constraints on the transformation ma-
trix A are required. However, depending on the number of
available phase shifters or/and variable gain-linear amplifiers
(which determine the number of its nonzero entries), fur-
ther restrictions on matrix A may be necessary. Motivated
by these practical considerations, we have introduced several
variations of antenna subarray formation [22], namely, the
following.

(1) Strictly-Structured ASF (SS-ASF), in which each an-
tenna element is allowed to participate in one subar-
ray only. Thus, each row of the transformation matrix
A may contain only one nonzero element, whereas no
restriction is enforced on the columns of A. With this
scheme, exactly MR phase shifters and variable gain-
linear amplifiers are required at the receiver.

(2) Relaxed-Structured ASF (RS-ASF), where no restric-
tions on matrix A are imposed, except for the num-
ber of its nonzero entries, which is a fixed system de-
sign parameter that determines the number of phase
shifters and variable gain-linear amplifiers available to
the receiver.

(3) ReducedHardware Complexity ASF (RHC-ASF), which
is a phase-shift-only design of the technique. While
cost-effective variable gain-linear amplifiers with sat-
isfactory noise figure are not practically available, the
economic design and manufacture of variable phase-
shifters for the microwave frequency is feasible due to
the rapid advances in MMIC technology. Therefore,
this scheme reduces even further the hardware com-
plexity of the receiver with negligible capacity loss, as
it will be demonstrated in Section 5.

An efficient algorithm for determining the transforma-
tion matrix A for all the aforementioned schemes will be pre-
sented in detail in Section 4. Figure 2 presents the receiver ar-
chitecture for each of the ASF schemes.

3. AN UPPER BOUNDON THE ERGODIC
CAPACITY OF ANTENNA SUBARRAY FORMATION
FOR I.I.D. RAYLEIGH CHANNELS

In this section, we derive an upper bound on the ergodic ca-
pacity of the technique for i.i.d. Rayleigh fading channels, the
tightness of which will be verified by extensive computer sim-
ulations in Section 5.
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A well-known upper bound on the (deterministic) capac-
ity of the full system is given by

CFS ≤
MT∑

i=1

log2

(
1 +

ρ

MT
γi

)
, (19)

where γi are independent chi-squared variates with 2MR de-
grees of freedom. The equality holds in the “very artificial
case” when the transmitted signal vector components “are
conveyed over MT “channels” that are uncoupled and each
channel has a separate set of MR receive antennas” [27].
In other words, when the full MIMO system is consisted
of MT separable and independent parallel SIMO systems,
each performing maximum ratio combining (MRC) at the
receiver.

In our case, we consider as well that the resulted system
is consisted of MT separable and independent parallel SIMO
systems. We suppose that the jth SIMO system is formed by
the jth transmit antenna element and the jth receive subar-
ray; thus, for each subarray, only one signal component is re-
ceived and processed without any interference from the oth-
ers. Of course, this scheme is practically infeasible; however,
it must lead to an upper bound of the resulted system capac-
ity.

A subarray corresponds to an independent SIMO system
and is actually formed by choosing a subset of antenna el-
ements, the responses of which are linearly combined and
fed to an RF chain. Thus, generalized selection combining
(i.e., combining the responses of a subset of antenna ele-
ments) is performed in each SIMO system. The maximum
SNR (which also achieves maximum capacity) in this case
is obtained with the hybrid selection maximum ratio com-
bining scheme (HS/MRC). Furthermore, in this section, we
assume that each subarray is formed using a predefined and
fixed number of antenna elements (let it be k j antenna ele-
ments for the jth subarray). Therefore, a capacity bound for
antenna subarray formation can be obtained by

Cbound =
MT∑

j=1

log2

(
1 + ξ j

)
. (20)

Assuming that there are no delay constraints, the channel
is ergodic and therefore it is meaningful to derive an upper
bound on ergodic capacity as

Cbound =
MT∑

j=1

E
[

log2

(
1 + ξ j

)]
. (21)

The expectation in (21) can be found [28] by

c j
∧= E
[

log2

(
1 + ξ j

)]
=
∫ ∞

0
log2(1 + ξ)·pξ j (ξ)dξ. (22)

Since ξ j is actually the postprocessing SNR of HS/MRC
when k j out of MR elements are chosen, its probability den-
sity function is [29]

pξ j (ξ) =
(
MR

kj

)[(
MT

ρ

)kj ξkj−1e−(MT/ρ)ξ
(
kj − 1

)
!

+
MT

ρ

MR−kj∑

l=1

(−1)kj+l−1

(
MR − kj

l

)

×
(
kj
l

)kj−1

e−(MT/ρ)ξ

×
(

e−(MTl/ρkj )ξ−
kj−2∑

m=0

1
m!

(
− l·MT

ρ·kj
ξ
)m)]

.

(23)

Substituting (23) into (22) and defining the integral

In(x)
∧=
∫ ∞

0
tn−1 ln(1 + t)e−xtdt x > 0; n = 1, 2, . . . ,

(24)

we get

c j= 1
ln 2

(
MR

kj

)[(
MT

ρ

)kj Ikj

(
MT/ρ

)

(
kj − 1

)
!

+
MT

ρ

MR−kj∑

l=1

(−1)kj+l−1

(
MR−kj

l

)(
kj
l

)kj−1

×
[

I1

(
MT

ρ

{
1 +

l

k j

})
−

kj−2∑

m=0

1
m!

×
(
− l·MT

ρ·kj

)m
Im+1
(
MT/ρ

)
]]

,

(25)

which, in fact, is the average channel capacity achieved when
employing HS/MRC in a SIMO system with MR receiving an-
tenna elements and k j branches.

The integral In(x) can be evaluated by [30]

In(x) = (n− 1)!·ex·
n∑

q=1

Γ(−n + q, x)
xq

, (26)

which for n = 1 reduces to

I1(x) = ex
E1(x)
x

. (27)

Note that E1(x) is the exponential integral of first-order
function defined by

E1(x) =
∫ ∞

x

e−t

t
dt (28)

and Γ(α, x) is the complementary incomplete gamma func-
tion (or Prym’s function) defined as

Γ(α, x) =
∫ ∞

x
tα−1e−tdt. (29)
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For q positive integer, Γ(−q, x) can be calculated by

Γ(−q, x) = (−1)n

n!

[

E1(x)− e−x
q−1∑

m=0

(−1)m
m!
xm+1

]

. (30)

Thus, the ergodic capacity bound for receive antenna
subarray formation can be analytically obtained by

Cbound = 1
ln 2

MT∑

j=1

(
MR

kj

)

×
[(

MT

ρ

)kj Ikj

(
MT/ρ

)

(
kj − 1

)
!

+
MT

ρ

MR−kj∑

l=1

(−1)kj+l−1

×
(
MR − kj

l

)(
kj
l

)kj−1

×
[

I1

(
MT

ρ

{
1 +

l

k j

})
−

kj−2∑

m=0

1
m!

×
(
− l·MT

ρ·kj

)m
Im+1
(
MT/ρ

)
]]

.

(31)

A simpler expression than (25) can be derived by rec-
ognizing that log2(·) is a concave function and applying
Jensen’s inequality to (21),

c j=E
[

log2

(
1 + ξ j

)]
≤ log2

(
1 + E
[
ξ j
])
. (32)

It is known for HS/MRC [29] that

E
[
ξ j
] = ρ

MT
kj

(

1 +
MR∑

l=kj+1

1
l

)

. (33)

Thus, (21) becomes

Cbound ≤
MT∑

j=1

log 2

[

1 +
ρ

MT
kj

(

1 +
MR∑

l=kj+1

1
l

)]

, (34)

which has a much simpler form than (31) while being almost
as tight as computer simulations have demonstrated.

Before concluding this section, we note that analyzing the
resulted system into parallel SIMO systems each perform-
ing HS/MRC results into capacity bounds of RS-ASF, since
HS/MRC requires both phase shifters and variable gain am-
plifiers. Capacity bounds for RHC-ASF could be derived in
a similar manner by considering MT parallel SIMO systems
each performing HS/EGC. Since HS/MRC delivers the best
performance amongst all hybrid selection schemes, the up-
per bound on the ergodic capacity of RS-ASF is also an upper
bound on the ergodic capacity of any ASF scheme, including
RHC-ASF.

4. ALGORITHM FOR ANTENNA
SUBARRAY FORMATION

In this section, we present a novel, analytical algorithm for
receive antenna subarray formation, based on a Frobenius

norm criterion. We first develop the algorithm for SS-ASF
and then provide extensions for RS-ASF and RHC-ASF. The
capacity performance of the algorithms will be demonstrated
in Section 5.

4.1. Starting point for the algorithm

The starting point for determining the transformation ma-
trix A will be an optimal solution to the unconstrained prob-
lem of maximizing the deterministic capacity in (15). As
shown in Appendix A, (15) can be maximized when Ao= U,
where the columns of U are the MT dominant left singular
vectors of the full channel matrix H. Therefore, the entries of
the transformation matrix A will be

ai j =
{
ui j if i ∈ S j

0 otherwise,
(35)

with ui j being the (i, j) entry of matrix U. Alternatively,

A = S	U, (36)

where 	 denotes the Hadamard (elementwise) matrix prod-
uct and the entries of S are

si j =
{

1 i ∈ S j

0 otherwise.
(37)

4.2. Frobenius norm based algorithm for SS-ASF

We first develop an algorithm for SS-ASF and afterwards ex-
tend it for other receive ASF schemes. Due to the additional
constraints of SS-ASF, the capacity of the resulted system is
given by

CRASF = log2 det
(

IMT +
ρ

MT
HHAAHH

)

= log2 det
(

IMT +
ρ

MT
H̃HH̃
)
.

(38)

In order to retain the capacity calculations to the in-
tended system SNR measured at the output of every receiver
antenna element, A is now subject to the following normal-
ization:

AHA = IMT . (39)

Intuitively, the desired transformation matrix A should
be such that the distance between the two subspaces defined
by H̃opt = UHH (i.e., the effective channel matrix obtained
from the optimal solution to the unconstrained problem)
and H̃ = AHH is minimized. As a result, we employ the fol-
lowing minimum distance distortion metric:

ε(A) =
∥
∥∥H̃opt − H̃

∥
∥∥

2

F
=
∥
∥∥(U− A)HH

∥
∥∥

2

F
. (40)

Defining E
∧= U−A and F

∧= EHH, (40) can be written as

ε(A) = ‖F‖2
F =

N∑

j=1

(MT∑

i=1

∣
∣ f ji
∣
∣2
)

=
MT∑

j=1

∥
∥f j
∥
∥2

, (41)
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Table 1: Frobenius-norm-based algorithm for RASF.

Algorithm steps
Complexity(K , MR, MT , and H are given)

(In case of SS-ASF, K :=MR)

Obtain the SVD of full system channel matrix H. H = UΣVH O
(
12MTM

2
R + 9M3

R

)

Compute the decision metrics gi j that will
determine if the ith antenna element will
participate in the jth subarray.

For i: = 1 to MR

O
(
M2

TMR

)For j: = 1 to MT

gi j := U(i, j)·‖H(i, :)‖2

end

end

Initialize with every ai j = 0 and all S j empty.
S j := ∅ (∀ j =1, . . . ,MT)

S j : set of indices of antenna elements that partic-
ipate in the jth subarray.

A := 0MR×MT ; n: = 0

Repeat the following until matrix A is filled with
K nonzero elements:

While n < K

O
(
KMRMT

)(i) let
(
i0,j0
)

be the indices of the largest gi j
element over 1 ≤ i ≤ MR and 1 ≤ j ≤ MT ,
provided that ai j = 0;

(
i0, j0
) = arg max

(i, j)
ai j=0

(
gi j
)

Sj0 := Sj0 ∪ {i0}
for SS-ASF only, i �∈

⋃

j

S j ; A
(
i0, j0
)

:= U
(
i0, j0
)

(ii) set ai0 j0 = ui0 j0 , that is, the i0th antenna
element participates in the j0th subarray;

n: = n + 1

end

for SS-ASF only, normalize A so that
For SS-ASF only:

AHA = IMT .

For j = 1:MT

A(:, j) := A(:, j)/‖A(:, j)‖
end

where f j denotes the jth row of F, being equal to f j = eH
j H,

and e j is the jth column of matrix E.
Recognizing that the ith row of matrix F can be written as

a linear combination of the rows hi of the full system channel
matrix H and taking into account that

ei j
∧= ui j − ai j =

{
ui j i �∈ S j

0 i ∈ S j ,
(42)

the distortion metric becomes

ε(A)=
MT∑

j=1

∥
∥
∥
∥∥

∑

i∈Sj

e∗i jhi

∥
∥
∥
∥∥

2

=
MT∑

j=1

∥
∥
∥
∥∥

∑

i �∈Sj

u∗i jhi

∥
∥
∥
∥∥

2

≤
MT∑

j=1

∑

i �∈Sj

∣
∣ui j
∣
∣2∥∥hi

∥
∥2

,

(43)

where the upper bound on the right-hand side follows from
the triangular inequality. As a result, the objective is to mini-
mize the upper bound on the distortion metric in (43).

Since the selection of the elements of the transformation
matrix A is based on matrix U, it is trivial to conclude that
minimizing the upper bound in (43) is equivalent to maxi-
mizing

p̃ =
MT∑

j=1

∑

i∈Sj

∣
∣ui j
∣
∣2∥∥hi

∥
∥2

, (44)

which upper-bounds the power of the effective channel ma-

trix ‖H̃‖2
F. Indeed, after mathematical manipulations similar

to those in (41)–(43), it follows that

∥
∥H̃
∥
∥2

F =
MT∑

j=1

∥
∥
∥∥
∥

∑

i∈Sj

u∗i jhi

∥
∥
∥∥
∥

2

≤
MT∑

j=1

∑

i∈Sj

∣
∣ui j
∣
∣2∥∥hi

∥
∥2 = p̃, (45)

where h̃ j denotes the jth row of H̃ and α j is the jth column of
matrix A. Consequently, minimizing an upper bound on the
minimum distance distortion metric is equivalent to maxi-
mizing an upper bound on the power of the effective channel
matrix. The latter may not be the optimal way to maximize
capacity in spatial multiplexing systems, but it should result
into an increased capacity performance, since it is known
that [24]

CSS-ASF ≥ log2 det
(

1 +
ρ

MT

∥
∥H̃
∥
∥2

F

)
. (46)

The proposed algorithm appoints the receiver antenna el-
ements to the appropriate subarray, so that the metric (44)
is maximized. Finally, A is normalized as in (39). Table 1
presents the algorithm steps in more detail.
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4.3. Extension of the algorithm for RS-ASF

The capacity of RS-ASF given by (15) is lower bounded by
the capacity formula (38) for SS-ASF, that is,

CRS-ASF ≥ log2 det
(

IMT +
ρ

MT
HHAAHH

)
. (47)

Proof of this result and indications for the tightness of
the bound are provided in Appendix B.

Thus, in the case of RS-ASF we also use the Frobenius
norm based algorithm initially developed for SS-ASF. The al-
gorithm terminates when the transformation matrix A con-
tains exactly K nonzero elements, where K < MRMT is a sys-
tem design parameter that determines the number of vari-
able gain-linear amplifiers and phase shifters available to the
receiver.

The computational complexity of the proposed algo-
rithm (see Table 1) is dominated by the initial cost of the sin-
gular value decomposition, that is, O(M3

R) when MR � MT ,
whereas the complexity of Gorokhov et al. algorithm [4] and
of the alternative implementation proposed in [5] for an-
tenna selection is O(M2

TM
2
R) and O(M2

TMR), respectively.

4.4. Extention of the algorithm for RHC-ASF

The transformation matrix
�
A for RHC-ASF (a phase-shift-

only design of antenna subarray formation) can be obtained
from the transformation matrix A for RS-ASF by applying
the following formula to its entries:

�
ai j=
⎧
⎨

⎩
exp
(− j | ai j

)
if i ∈ S j

0 otherwise.
(48)

Intuitively, RHC-ASF follows the notion of equal gain
combining. A similar procedure for obtaining a phase-shift-
only RF preprocessing technique has been followed in [20].

5. SIMULATION RESULTS

In this section, we present extensive computer simulation re-
sults that demonstrate the capacity performance of receive
ASF technique, the tightness of the ergodic capacity bounds
derived in Section 3, and the performance of the proposed
algorithm.

5.1. Upper bound on ergodic capacity for ASF

We first deal with the ergodic capacity bounds of ASF for
Rayleigh i.i.d. channels derived in Section 3, namely, (31)
and (34). Henceforth, we refer to (34) as “simpler theoretical
capacity bound,” in order to distinguish it from (31). We con-
sider a flat-fading Rayleigh i.i.d. MIMO channel with MR = 8
receiving and MT = 2 transmitting antenna elements and as-
sume that the receiver is equipped with N = MT = 2 RF
chains.

Figure 3 presents the ergodic capacity bounds of RS-ASF
over a wide range of SNRs when K = 8 variable gain-linear
amplifiers and phase shifters are available at the receiver and
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Theoretical capacity bound of ASF (34)
Theoretical capacity bound of full system (34)
Simpler theoretical capacity bound for ASF (37)

Full system (8× 2)

Antenna selection

ASF

Figure 3: Ergodic capacity bounds for ASF and capacity of exhaus-
tive search ASF when MR = 8, MT = 2, and K = 8 variable gain-
linear amplifiers and phase shifters are available at the receiver (4
antenna elements in each subarray). Results are compared to an er-
godic capacity bound and exact ergodic capacity of the full system.

exactly k
∧= K/N = 4 receiving antenna elements partici-

pate in each subarray. For purposes of reference, the ergodic
capacity of the exhaustive search solution of RS-ASF is also
shown. The exhaustive search solution is obtained by consid-

ering all the
(MR

k

)N
possible combinations of subarray for-

mation, that is, all possible combinations for the structure of
matrix S as defined in (37), assuming that A is obtained as in
(36). Apparently, both capacity bounds are very tight to the
exhaustive search solution.

When each subarray contains MR antenna elements, the
capacity bound of the MIMO system is found by analyzing it
intoMT parallel SIMO systems. Each of these parallel systems
reduces to a MRC diversity system and therefore the ergodic
capacity bound of the full system will be obtained by (31).
This observation is verified in Figure 3.

5.2. Frobenius-norm-based algorithm

In this paragraph we demonstrate the capacity performance
of the Frobenius-norm-based algorithm for various schemes
of receive ASF in terms of outage capacity (when the slowly-
varying block fading channel model is adopted) and ergodic
capacity (when the channel is assumed ergodic). The pro-
posed algorithm is applied to both Rayleigh i.i.d. and mea-
sured MIMO channels.

5.2.1. Rayleigh i.i.d. channels

We consider Rayleigh i.i.d. MIMO channels with MT = 2
elements at the transmitter and assume that the receiver is
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Figure 4: Empirical complementary cdf of the capacity of the
resulted system when the Frobenius-norm-based algorithm for
strictly structured receive antenna subarray formation (SS-ASF) is
applied to a 8×2 Rayleigh i.i.d. channel with SNR = 15 dB. The per-
formance of the algorithm is compared with the exhaustive search
solution for SS-ASF, the full system (8 × 2), and Gorokhov et al.
decremental algorithm for antenna selection.

equipped with MT = 8 elements, N = MT = 2 RF chains,
and K = 8 phase shifters or/and variable gain-linear ampli-
fiers.

Figure 4 presents the complementary cdf of the capacity
of the resulted system for SS-ASF when the SNR is at 15 dB.
Clearly, SS-ASF outperforms Gorokhov et al. algorithm for
antenna selection [4], which is quasi optimal in terms of ca-
pacity performance. Moreover, the performance of the pro-
posed algorithm is very close to the exhaustive search solu-
tion. Thus, the SS-ASF technique delivers a significant capac-
ity increase with respect to conventional antenna selection
schemes. The same results are verified in Figure 5, where the
ergodic capacity of the resulted system over a wide range of
SNRs is plotted.

5.2.2. Measured channel

In order to examine the performance in realistic conditions,
we have applied the proposed algorithm to measured MIMO
channel transfer matrices. Measurements were conducted us-
ing a vector channel sounder operating at the center fre-
quency of 5.2 GHz with 120 MHz measurement bandwidth
in short-range outdoor environments with LOS propagation
conditions. A more detailed description of the measurement
setup can be found in [31]. The transmitter has MT = 4
equally spaced antenna elements and the receiver is equipped
with MR = 16 receiving elements and N = MT = 4 RF
chains. The interelement distance for both the transmitting
and receiving antenna arrays is d = 0, 4λ.
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Figure 5: Performance evaluation of strictly structured ASF (SS-
ASF) applied to an 8× 2 MIMO Rayleigh i.i.d. channel, in terms of
ergodic capacity. The performance of the algorithm is compared to
the exhaustive search solution for receive ASF, the full system (8×2),
and Gorokhov et al. decremental algorithm for antenna selection.

Figure 6 displays the complementary cdf of the capacity
of the resulted system when the Frobenius-norm-based al-
gorithm is applied to several schemes of receive ASF and for
various values of K (i.e., the number of phase shifters or/and
variable gain-linear amplifiers). Clearly, all ASF schemes out-
perform conventional antenna selection.

Solid black lines correspond to RS-ASF (or SS-ASF for
K =MR = 16) and dashed black lines to RHC-ASF. Compar-
ing the solid with the dashed lines for the same value of K , it
is evident that RHC-ASF delivers capacity performance very
close to RS-ASF. Therefore, the expensive variable gain-linear
amplifiers can be abolished from the design of ASF with neg-
ligible capacity loss.

For K = 48, the capacity performance of RS-ASF and
RHC-ASF is very close to the full system, despite the fact that
in ASF the receiver is equipped with only N = MT = 4 RF
chains (whereas the full system hasMR = 16 RF chains). Even
when K = 32, the capacity loss with respect to the full sys-
tem is still quite low (10% outage capacity loss of RHC-ASF
is less than 1.5 bps/Hz at 15 dB). Similar results are observed
for a wide range of signal-to-noise ratios (Figure 7). Conse-
quently, the proposed algorithm can deliver near-optimal ca-
pacity performance with respect to the full system while re-
ducing drastically the number of necessary RF chains.

6. CONCLUSIONS

In this paper, we have developed a tight theoretical up-
per bound on the ergodic capacity of antenna subarray
formation and have presented an analytical algorithm for
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Figure 6: Empirical complementary cdf of the capacity of the re-
sulted system when the Frobenius-norm-based algorithm for sev-
eral schemes of receive antenna subarray formation (ASF) is ap-
plied to a 16 × 4 measured channel with SNR = 15 dB. In particu-
lar, the RASF schemes studied are strictly structured ASF (SS-ASF),
relaxed-structured ASF (RS-ASF), and reduced hardware complex-
ity ASF (RHC-ASF). K denotes the number of phase shifters or/and
variable gain-linear amplifiers available to the receiver. The perfor-
mance of the algorithm is compared to the full system (16× 4) and
Gorokhov et al. decremental algorithm for antenna selection.
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Figure 7: Performance evaluation of Frobenius-norm-based algo-
rithm for several schemes of receive antenna subarray formation
(RASF) applied to a 16×4 MIMO measured channel, in terms of er-
godic capacity. In particular, the RASF schemes studied are strictly
structured ASF (SS-ASF), relaxed-structured ASF (RS-ASF) (solid
lines), and reduced hardware complexity ASF (RHC-ASF) (dotted
lines). K denotes the number of phase shifters or/and variable gain-
linear amplifiers available to the receiver. The performance of the
algorithm is compared to the full system (16× 4) and Gorokhov et
al. decremental algorithm for antenna selection.

adaptively grouping receive array elements to subarrays. Ap-
plication in Rayleigh i.i.d. and measured channels demon-
strates significant capacity performance, which can become
near optimal with respect to the full system, depending on

the number of available phase shifters or/and variable gain-
linear amplifiers. Furthermore, it has been shown that a
phase-shift-only design of the technique is feasible with neg-
ligible performance penalty. Thus, it has been established
that antenna subarray formation is a promising RF prepro-
cessing technique that reduces hardware costs while achiev-
ing incredible performance enhancement with respect to
conventional antenna selection schemes.

APPENDICES

A.

Let A = UAΣAVH
A be a singular value decomposition [32] of

matrix A. We get

A
(

AHA
)−1

AH = UAΣAVH
A

(
VAΣ

2
AVH

A

)−1
VAΣAUH

A

= UAΣAVH
A VAΣ

-2
A VH

A VAΣAUH
A

= UAUH
A .

(A.1)

Thus, the capacity formula in (15) becomes

CRASF = log2 det
(

IMT +
ρ

MT
HHUAUH

A H
)
. (A.2)

Applying the known formula for determinants [32]

det (I + AB) = det (I + BA) (A.3)

to (A.2), we get

CRASF = log2 det
(

IMT +
ρ

MT
UH

A HHHUA

)
(A.4)

which can be written as

CRASF=
MT∑

m=1

log2

(
1 +

ρ

MT
λm
(

UH
A HHHUA

))
, (A.5)

where λm(X) denotes the mth eigenvalue of square matrix X
in descending order. Poincare separation theorem [32] states
that

λm
(

UH
A HHHUA

) ≤ λm
(

HHH) (A.6)

with equality occurring when the columns of UA are the MT

dominant left singular vectors of H. Thus,

CRASF ≤
MT∑

k=1

log2

(
1 +

ρ

MT
λk
(

HHH
))

= log2 det
(

IMR +
ρ

MT
HHH
)
= CFS,

(A.7)
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where equality occurs when

UA =
[

u1 u2 · · · uMT

]
(A.8)

and uk is the kth dominant singular vector of H. Therefore,
an optimal solution to the unconstrained (i.e., without the
subarray formation constraints in (6) capacity maximization
problem is

Ao =
[

u1 u2 · · · uMT

]
Q, (A.9)

where Q = ΣAVH
A is a matrix with orthogonal rows and

columns.

B.

Let A = UAΣAVH
A be a singular value decomposition of the

transformation matrix A. Exploiting Hadarmard’s inequal-
ity for determinants [32] and after some trivial mathematical
manipulations, it follows that

det
(
Σ2

A

) = det
(

VAΣ
2
AVH

A

) = det
(

AHA
) ≤

MT∏

k=1

[
AHA
]
kk

=
MT∏

k=1

aH
k ak =

MT∏

k=1

∥
∥ak
∥
∥2 ≤ 1,

(B.1)

where ak denotes the kth column of the transforma-
tion matrix A. The last inequality in (B.1) follows from
‖ak‖ ≤ ‖uk‖ = 1, with uk being the kth left singular vector
of the full system channel matrix, and it is justified by the
fact that the entries of matrix A are obtained as in (35).

In the high SNR regime, after substituting for
A = UA

∑
AVH

A and taking into account (B.1), it is valid
to write

det
(

IMT +
ρ

MT
HHAAHH

)
≈det
(

ρ

MT
HHUAΣ

2
AUH

A H
)

=det
(
Σ2

A

)
det
(

ρ

MT
HHUAUH

A H
)

≤det
(

ρ

MT
HHUAUH

A H
)
.

(B.2)

Recognizing that the right-hand side of (B.2) is an ap-
proximation of (A.2), that is, the capacity of the RASF sys-
tem, in the high SNR regime, the validity of the bound in
(47) is proven.

Note that the same approximation for the capacity of
MIMO systems at high SNR has been widely used (see, e.g.,
[24]). Simulation results in Figure 8 demonstrate that the
bound is quite tight.
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Figure 8: Comparison between capacity bound (47) for relaxed
structured ASF and true capacity (15) of the resulted system in
terms of empirical complementary cdf, when applied to a 16 × 4
MIMO Rayleigh i.i.d. channel with SNR = 15 dB. Proof of this
bound can be found in Appendix B.
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