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Existing channel aware signal processing design for decentralized detection in wireless sensor networks typically assumes the clair-
voyant case, that is, global channel state information (CSI) is known at the design stage. In this paper, we consider the distributed
detection problem where only the channel fading statistics, instead of the instantaneous CSI, are available to the designer. We
investigate the design of local decision rules for the following two cases: (1) fusion center has access to the instantaneous CSI;
(2) fusion center does not have access to the instantaneous CSI. As expected, in both cases, the optimal local decision rules that
minimize the error probability at the fusion center amount to a likelihood ratio test (LRT). Numerical analysis reveals that the
detection performance appears to be more sensitive to the knowledge of CSI at the fusion center. The proposed design framework
that utilizes only partial channel knowledge will enable distributed design of a decentralized detection wireless sensor system.
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1. INTRODUCTION

While study of decentralized decision making can be traced
back to the early 1960s in the context of team decision prob-
lems (see, e.g., [1]), the effort significantly intensified since
the seminal work of [2]. Classical distributed detection [3–
7], however, typically assumes error-free transmission be-
tween the local sensors and the fusion center. This is overly
idealistic in the emerging systems with stringent resource
and delay constraints, such as the wireless sensor network
(WSN) with geographically dispersed lower-power low-cost
sensor nodes. Accounting for nonideal transmission chan-
nels, channel aware signal processing for distributed detec-
tion problem has been developed in [8–10]. The optimal lo-
cal decision rule was still shown to be a monotone likelihood
ratio partition of its observation space, provided the obser-
vations were conditionally independent across the sensors.
It was noted recently that such optimality is preserved for a
more general setting [11].

The work in [8–10] assumed a clairvoyant case, that is,
global information regarding the transmission channels be-
tween the local sensors and the fusion center is available
at the design stage. This approach is theoretically signifi-
cant as it provides the best achievable detection performance

to which any suboptimal approach needs to be compared.
However, its implementation requires the exact knowledge of
global channel state information (CSI) which may be costly
to acquire. In the case of fast fading channel, the sensor de-
cision rules need to be synchronously updated for different
channel states; this adds considerable overhead which may
not be affordable in resource constrained systems.

To make the channel aware design more practical, the re-
quirement of the global CSI in the distributed signaling de-
sign needs to be relaxed. In the present work, only partial
channel knowledge instead of the global CSI is assumed to
be available. In the context of WSN, a reasonable assumption
is the availability of channel fading statistics, which may re-
main stationary for a sufficiently long period of time. There-
fore, the updating rate of the decision rules is more realis-
tic. In this paper, we consider the distributed detection prob-
lem where the designer only has the channel fading statis-
tics instead of the instantaneous CSI. In this case, a sensi-
ble performance measure is to use the average error proba-
bility at the fusion center where the averaging is performed
with respect to the channel state. We restrict ourselves to bi-
nary local sensor outputs and derive the necessary conditions
for optimal local decision rules that minimize the average
error probability at the fusion center for the following two
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Figure 1: A block diagram for a wireless sensor network tasked for binary hypothesis testing with channel fading statistics.

cases: (1) CSIF: the fusion center has access to the instanta-
neous CSI. (2) NOCSIF: the fusion center does not have ac-
cess to the instantaneous CSI. We note here that for the CSIF
case, the design of sensor decision rules does not require CSI;
the CSI is only used in the fusion rule design, which is rea-
sonable due to the typical generous resource constraint at the
fusion center. Its computation, however, is very involved and
has to resort to exhaustive search. On the other hand, as to be
elaborated, the NOCSIF case can be reduced to the channel
aware design where one averages the channel transition prob-
ability with respect to the fading channel using the known
fading statistics.

We show that the sensor decision rules amount to lo-
cal LRTs for both cases. Compared with the existing channel
aware design based on CSI, the proposed approaches have an
important practical advantage: the sensor decision rules re-
main the same for different CSI, as long as the fading statis-
tics remain unchanged. This enables distributed design as no
global CSI is used in determining the local decision rules. We
also demonstrate through numerical examples that the pro-
posed schemes suffer small performance loss compared with
the CSI-based approach, as long as the CSI is available at the
fusion center, that is, used in the fusion rule design.

The paper is organized as follows. Section 2 describes the
system model and problem formulation. In Section 3, we es-
tablish, for both the CSIF and NOCSIF cases, the optimality
of LRTs at local sensors for minimum average error proba-
bility at the fusion center. Numerical examples are presented
in Section 4 to evaluate the performance of these two cases.
Finally, we conclude in Section 5.

2. STATEMENT OF THE PROBLEM

Consider the problem of testing two hypotheses, denoted by
H0 and H1, with respective prior probabilities π0 and π1. A
total number of K sensors are used to collect observations
Xk, for k = 1, . . . ,K . We assume throughout this paper that
the observations are conditionally independent, that is,

p
(
X1, . . . ,XK | Hi

) =
K∏

k=1
p
(
Xk | Hi

)
, i = 0, 1. (1)

Without this assumption, the distributed detection design
becomes much more complicated from an algorithmic view-
point [12]. The optimal design is not completely understood
even in the simplest case [13]. Upon observing Xk, each local

sensor makes a binary decision1

Uk = γk
(
Xk
)
, k = 1, . . . ,K. (2)

The decisions Uk are sent to a fusion center through parallel
transmission channels characterized by

p
(
Y1, . . . ,YK | U1, . . . ,UK , g1, . . . , gK

) =
K∏

k=1
p
(
Yk | Uk, gk

)
,

(3)

where g = {g1, . . . , gK} represents the CSI. Thus, from (3),
the channels are orthogonal to each other, which can be
achieved through, for example, partitioning time, frequency,
or combinations thereof. For the CSIF case, the fusion center
takes both the channel output y = {Y1, . . . ,YK} and the CSI,
g, and makes a final decision using the optimal fusion rule to
obtain U0 ∈ {H0,H1},

U0 = γ0(y, g). (4)

For the case of NOCSIF, the fusion output depends on the
channel output and the channel fading statistics,

U0 = γ0(y), (5)

where the dependence of fading channel statistics is implicit
in the above expression. An error happens if U0 differs from
the true hypothesis. Thus, the error probability at the fusion
center, conditioned on a given g, is

Pe0
(
γ0, . . . , γK | g

)
� Pr

(
U0 �= H | γ0, . . . , γK , g

)
, (6)

where H is the true hypothesis. Our goal is, therefore, to de-
sign the optimal mapping γk(·) for each sensor and the fu-
sion center that minimizes the average error probability, de-
fined as

min
γ0(·),...,γK (·)

∫

g
Pe0
(
γ0, . . . , γK | g

)
p(g)dg, (7)

where p(g) is the distribution of CSI. A simple diagram illus-
trating the model is given in Figure 1.

1 The extension to the case with multibit local decision is straightforward
by following the same spirit as in [10].
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We point out here that integrating the transmission
channels into the fusion rule design has been investigated be-
fore [14, 15]. The optimal fusion rule in the Bayesian sense
amounts to themaximum a posteriori probability (MAP) de-
cision, that is,

f
(
Y1, . . . ,YK | H1

)

f
(
Y1, . . . ,YK | H0

) >
<

H1

H0

π0
π1

. (8)

Given specified local sensor signaling schemes and the chan-
nel characterization, this MAP decision rule can be obtained
in a straightforward manner. As such, we will focus on the
local decision rule design without further elaborating on the
optimal fusion rule design.

3. DESIGN OF OPTIMAL LOCAL DECISION RULES

As in [9, 10], we adopt in the following a person-by-person
optimization (PBPO) approach, that is, we optimize the local
decision rule for the kth sensor given fixed decision rules at
all other sensors and a fixed fusion rule. As such, the condi-
tions obtained are necessary, but not sufficient, for optimal-
ity. Denote

u = [U1,U2, . . . ,UK
]
, x = [X1,X2, . . . ,XK

]
, (9)

the average error probability at the fusion center is

Pe0 =
∫

g

1∑

i=0
πiP
(
U0 = 1− i | Hi, g

)
p(g)dg

=
∫

g

1∑

i=0
πi

∫

y
P
(
U0 = 1− i | y, g)

∑

u
p(y | u, g)

×
∫

x
P(u | x)p(x | Hi

)
p(g)dx dy dg,

(10)

where, different from the CSI-based channel aware design,
the local decision rules do not depend on the instantaneous
CSI. Next, we will derive the optimal decision rules by fur-
ther expanding the error probability with respect to the kth
decision rule γk(·) for the two different cases.

3.1. The CSIF case

We first consider the case where the fusion center knows the
instantaneous CSI. Define, for k = 1, . . . ,K and i = 0, 1,

uk = [U1, . . . ,Uk−1,Uk+1, . . . ,UK
]
,

uki = [U1, . . . ,Uk−1,Uk = i,Uk+1, . . . ,UK
]
,

yk = [Y1, . . . ,Yk−1,Yk+1, . . . ,YK
]
.

(11)

We can expand the average error probability in (10) with re-
spect to the kth decision rule γk(·), and we get

Pe0 =
∫

Xk

P
(
Uk = 1 | Xk

)

× [π0p
(
Xk | H0

)
Ak − π1p

(
Xk | H1

)
Bk
]
dXk + C,

(12)

where

C =
∫

Xk

[ 1∑

i=0
πip
(
Xk | Hi

)

×
∫

y

∫

g
P
(
U0 = 1− i | y, g)

∑

uk
p
(
y | uk0, g)

× p(g)p
(
uk | Hi

)
dg dy

]
dXk

(13)

is a constant with regard to Uk, and

Ak=
∫

y

∫

g
P
(
U0=1 | y, g)

[∑

uk

(
p
(
y | uk1, g)−p

(
y | uk0, g))

× p(g)P
(
uk | H0

)]
dg dy,

(14)

Bk=
∫

y

∫

g
P
(
U0=0 | y, g)

[∑

uk

(
p
(
y | uk0, g)−p

(
y | uk1, g))

× p(g)P
(
uk | H1

)]
dg dy.

(15)

To minimize Pe0, one can see from (12) that the optimal de-
cision rule for the kth sensor is

P
(
Uk = 1 | Xk

) =
⎧
⎨

⎩
0, π0p

(
Xk | H0

)
Ak > π1p

(
Xk | H1

)
Bk,

1, otherwise.
(16)

Let us further take a look at Ak in (14). We can rewrite it as

Ak =
∫

yk

[
P
(
U0 = 1 | yk,Uk = 1

)

− P
(
U0 = 1 | yk,Uk = 0

)]
p
(
yk | H0

)
dyk.

(17)

Then, as shown in Appendix A, Ak > 0 as long as

L
(
Uk
)

� P
(
Uk | H1

)

P
(
Uk | H0

) (18)

is a monotone increasing function of Uk (monotone LR in-
dex assignment), that is,

L
(
Uk = 1

)
> L
(
Uk = 0

)
. (19)

Similarly, Bk > 0 if condition (19) is satisfied. This immedi-
ately leads to the following result.

Theorem 1. For the distributed detection problem with un-
known CSI only at local sensors, the optimal local decision rule
for the kth sensor amounts to the following LRT assuming con-
dition (19) is satisfied,

P
(
Uk = 1 | Xk

) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1,
p
(
Xk | H1

)

p
(
Xk | H0

) ≥ π0Ak

π1Bk
,

0,
p
(
Xk | H1

)

p
(
Xk | H0

) <
π0Ak

π1Bk
,

(20)

where Ak and Bk are defined in (14) and (15), respectively.
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An alternative derivation, along the line of [11], is given
in Appendix B.

Although the optimal local decision rule for each local
sensor is explicitly formulated in (20), it is not amenable to
direct numerical evaluation: in (14) and (15), the integrand
involves the fusion rule that is a highly nonlinear function of
the CSI g, making the integration formidable. The only pos-
sible way of finding the optimal local decision rules appears
to be an exhaustive search, whose complexity becomes pro-
hibitive when K is large.

This numerical challenge motivates an alternative ap-
proach: instead of minimizing the average error probability,
one can first marginalize the channel transition probability
followed by the application of standard channel aware design
[8–10]. That is, we first compute p(y | u) by marginalizing
out the channel g using the channel fading statistics:

p(y | u) =
∫

g
p(y | u, g)p(g)dg. (21)

With this marginalization, we can use the channel aware de-
sign approach [9] that tends to the “averaged” transmission
channel. The difference between this alternative approach
and that of minimizing (7) is in the way that the channel
fading statistics, p(g), is utilized. In using (7), the variable
to be averaged is Pe0(γ0, . . . , γK | g), which is a highly non-
linear function of the decision rules, whereas the alterna-
tive approach uses p(g) to obtain the marginalized channel
transition probability, thus enabling the direct application
of the channel aware approach. This difference can also be
explained using Figure 1. The alternative approach averages
each transmission channel over respective channel statistics
gi to obtain p(Yi | Ui), while the CSIF case averages all the
transmission channels and the fusion center (the part in the
dashed box in Figure 1) over channel statistics g to obtain

P
(
U0 | u

) =
∫

g

∫

y
P
(
U0 | y, g

)
p
(
y | u, g)p(g)dy dg. (22)

It turns out that this alternative approach is a direct conse-
quence of the NOCSIF, as elaborated below.

3.2. The NOCSIF case

Here we consider the case where the fusion center does not
know the instantaneous CSI. Therefore, we have

P
(
U0 = 1− i | y, g) = P

(
U0 = 1− i | y). (23)

As the fusion rule no longer depends on g, the average error
probability in (10) can be rewritten as

Pe0 =
1∑

i=0
πi

∫

y

∑

u
P
(
U0 = 1− i | y)

(∫

g
p
(
y | u, g)p(g)dg

)

×
∫

x
P
(
u | x)p(x | Hi

)
dx dy,

(24)

where integration with respect to g is carried out first. Notice
that the term (

∫
g p(y | u, g)p(g)dg) precisely describes the

marginalized transmission channels (cf. (21)). This leads to
the standard channel aware design where the transmission
channels are characterized by p(y | u). From [9], we have a
result resembling that of Theorem 1 except that Ak, Bk, and
C are replaced by A′k, B

′
k, and C′,

A′k =
∫

y
P
(
U0 = 1 | y)

[∑

uk

(
p
(
y | uk1)− p

(
y | uk0))

× P
(
uk | H0

)]
dy,

B′k =
∫

y
P
(
U0 = 0 | y)

[∑

uk

(
p
(
y | uk0)− p

(
y | uk1))

× P
(
uk | H1

)]
dy,

C′ =
∫

Xk

[ 1∑

i=0
πip
(
Xk | Hi

)
∫

y
P
(
U0=1−i | y)

∑

uk
p
(
y | uk0)

× p
(
uk | Hi

)
dy
]
dXk.

(25)

Contrary to the CSIF case, A′k, B
′
k for the NOCSIF case are

much easier to evaluate.

4. PERFORMANCE EVALUATION

In this section, we first use a two-sensor example to eval-
uate the performance of both the CSIF and NOCSIF cases
and compare them with the clairvoyant case where the global
channel information is known to the designer. For conve-
nience, we call the clairvoyant case the CSI case. Consider the
detection of a known signal S in zero-mean complex Gaus-
sian noises that are independent and identically distributed
(i.i.d.) for the two sensors, that is, for k = 1, 2,

H0 : Xk = Nk, H1 : Xk = S +Nk, (26)

with N1 and N2 being i.i.d. CN (0, σ21 ). Without loss of gen-
erality, we assume S = 1 and σ21 = 2.

Each sensor makes a binary decision based on its obser-
vation Xk,

Uk = γk
(
Xk
)
, Uk ∈ {0, 1}, (27)

and then transmits it through a Rayleigh fading channel to
the fusion center. Notice that Uk ∈ {0, 1} implies an on-off
signaling, thus enabling the detection at the fusion center in
the absence of CSI (i.e., the NOCSIF case). The channel out-
put is

Yk = gkUk +Wk, (28)

where g1, g2 are independently distributed with zero-mean
complex Gaussian distributions CN (0, σ2g1 ) and CN (0, σ2g2 ),
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Figure 2: Average error probability versus channel SNR for identi-
cal channel distribution.

respectively. W1, W2 are i.i.d. zero-mean complex Gaussian
noises with distribution CN (0, σ22 ).

We first consider a symmetric case where the CSI is iden-
tically distributed, that is, σg21 = σg22 . Without loss of gen-
erality, we assume σg21 = σg22 = 1. In Figure 2, with the as-
sumption of equal prior probability, the average error prob-
abilities as a function of the average signal-to-noise ratio
(SNR) of the received signal at the fusion center are plot-
ted for the CSIF and NOCSIF cases, along with the CSI case.
We also plot a curve, legended with “CSIF1” in Figure 2,
where the local sensors use thresholds obtained via the NOC-
SIF approach but the fusion center implements a fusion rule
that utilizes the CSI g. The motivation is twofold. First,
estimating g at the fusion center is typically feasible. Sec-
ond and more importantly, the threshold design for NOC-
SIF is much simpler compared with CSIF, as explained in
Section 3.1.

In evaluating the performance of CSIF case, we consider
the following two methods to get the optimal thresholds for
local sensors.

Exhaustive searchmethod

We first partition the space of likelihood ratio of observations
into many small disjoint cells. For each cell, we compute the
average error probability at the fusion center by using the
center point of the cell (for small enough cell size, the cen-
ter point can be considered “representive” of the whole cell)
as the local thresholds. After evaluating the performance for
all the cells, we choose the one with smallest average error
probability as our optimal thresholds. Intuitively, one can get
arbitrarily close to the optimal thresholds by decreasing the
cell size, which proportionally increases the computational
complexity.

Greedy search

(1) choose initial thresholds t(0), for example, the thresh-
olds obtained via the NOCSIF case and set r = 0 (iter-
ation index);

(2) compute the average error probability using t(0) as lo-
cal thresholds;

(3) choose several directions. For example, for two-sensor
case, we can choose (1, 0), (−1, 0), (0, 1), and (0,−1)
as our directions;

(4) choose a small stepsize ε;
(5) move the current thresholds t(r) one stepsize along

each direction and compute the average error proba-
bility using the new thresholds;

(6) compare the error probability of using current thresh-
olds t(r) and new thresholds and assign the thresholds
corresponding to the smallest one as t(r+1);

(7) if t(r+1) = t(r), stop; otherwise, set r = r + 1 and go to
step (5).

Greedy search method is much faster than exhaustive
search method since we do not need to compute the aver-
age error probability corresponding to every point. But it can
only guarantee convergence to a local minimum point.

As seen from Figure 2, the CSI case has the best perfor-
mance and NOCSIF case has the worst performance. This
is true because the designer has the most information in
the clairvoyant case and the least information in NOCSIF
case. The CSIF case is only slightly worse than the CSI
case but is much better than the NOCSIF case. The dif-
ference of CSIF1 and CSIF is almost indistinguishable. The
explanation is that the performance is much more sensi-
tive to the fusion rule than to the local sensor thresholds.
This phenomenon has been observed before: the error prob-
ability versus threshold plot is rather flat near the opti-
mum point, hence is robust to small changes in thresh-
olds.

We also consider an asymmetric case where σg21 �= σg22 .
As plotted in Figure 3 where σg21 = 1 and σg22 = 3, all three
cases with known CSI at the fusion center have similar per-
formance and are much better than the NOCSIF case. This is
consistent with the symmetric case.

As we stated above, for the system with only two lo-
cal sensors, a mixed approach (CSIF1) achieves almost same
performance to that of the CSIF case. In the following, we
show that the same holds true even in the large system
regime, that is, asK increasing.We first consider the Bayesian
framework. As K goes to infinity, all the local sensors use the
same local decision rule [16] and the optimal local thresholds
are determined by maximizing the Chernoff information to
achieve the best error exponent,

C
(
p
(
Y | H0

)
, p
(
Y | H1

))

= − min
0≤s≤1

log
[∫

p
(
Y | H0

)s
p
(
Y | H1

)1−s
dY
]
.

(29)

For simplicity, we consider another performance measure,
Bhattacharyya’s distance, which is an approximation of
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Figure 4: Bhattacharyya’s distance versus the local threshold at the
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Chernoff information by setting s = 1/2,

B
(
p
(
Y | H0

)
, p
(
Y | H1

))

= − log
[∫

p
(
Y | H0

)1/2
p
(
Y | H1

)1/2
dY
]

= − log
[∫ (

p
(
Y | H0

)

p
(
Y | H1

)
)1/2

p
(
Y | H1

)
dY
]
.

(30)

From Figure 4, which gives Bhattacharyya’s distance as a
function of local threshold for both CSIF and NOCSIF cases
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Figure 5: KL distance versus the local threshold at the local sensors.

with σ22 = 2 and σ2g = 1, we can observe that the optimal
threshold obtained in NOCSIF case is close to that of the
CSIF case.

Alternatively, under the Neyman-Pearson framework,
the Kullack-Leibler (KL) distance gives the asymptotic error
exponent,

KL
(
p
(
Y | H0

)
, p
(
Y | H1

))

= EH0

[

log

(
p
(
Y | H0

)

p
(
Y | H1

)

)]

=
∫

p
(
Y | H0

)
log

(
p
(
Y | H0

)

p
(
Y | H1

)

)

dY.

(31)

In Figure 5, with the same setting as in Figure 4, the KL dis-
tance as a function of local threshold for both CSIF and
NOCSIF cases is plotted and we can also observe that the op-
timal local thresholds obtained in NOCSIF and CSIF cases
are close to each other.

5. CONCLUSIONS

In this paper we investigated the design of the distributed
detection problem with only channel fading statistics avail-
able to the designer. Restricted to conditional independent
observations and binary local sensor decisions, we derive the
necessary conditions for optimal local sensor decision rules
that minimize the average error probability for the CSIF and
NOCSIF cases. Numerical results indicate that a mixed ap-
proach where the sensors use the decision rules from the
NOCSIF approach while the fusion center implements a fu-
sion rule using the CSI achieves almost identical perfor-
mance to that of the CSIF case.
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APPENDICES

A. PROOF OF AK > 0 AND BK > 0

P
(
H1 | yk,Uk

)

= p
(
H1, yk,Uk

)

p
(
yk,Uk

)

= p
(
yk,Uk | H1

)
P
(
H1
)

p
(
yk,Uk | H0

)
P
(
H0
)
+ p
(
yk,Uk | H1

)
P
(
H1
)

= π1p
(
yk | Uk,H1

)
P
(
Uk | H1

)

π0p
(
yk | Uk,H0

)
P
(
Uk | H0

)
+π1p

(
yk | Uk,H1

)
P
(
Uk | H1

) .

(A.1)

Since the observations, X1, . . . ,XK , are conditionally inde-
pendent and the local decision in each sensor depends only
on its own observation, the local decisions are also condi-
tionally independent for a given hypothesis. In addition, the
local decisions are transmitted through orthogonal channels,
thus the channel output for one sensor is conditionally in-
dependent to the channel input from another sensor. There-
fore,

p
(
yk | Uk,H1

) = p
(
yk | H1

)
. (A.2)

Defining the likelihood ratio function for the local decision
at the kth sensor,

L
(
Uk
)

� P
(
Uk | H1

)

P
(
Uk | H0

) . (A.3)

Then

P
(
H1 | yk,Uk

)

= π1p
(
yk | H1

)
P
(
Uk | H1

)

π0p
(
yk | H0

)
P
(
Uk | H0

)
+ π1p

(
yk | H1

)
P
(
Uk | H1

)

= π1p
(
yk | H1

)
L
(
Uk
)

π0p
(
yk | H0

)
+ π1p

(
yk | H1

)
L
(
Uk
)

(A.4)

which is a monotone increasing function of L(Uk). Then,
given a monotone LR index assignment for the local output,
that is, L(Uk = 1) > L(Uk = 0), P(H1 | yk,Uk) is a monotone
increasing function of Uk. Thus,

P
(
H1 | yk,Uk = 0

)
< P

(
H1 | yk,Uk = 1

)
. (A.5)

Similarly, we can get

P
(
H0 | yk,Uk = 0

)
> P

(
H0 | yk,Uk = 1

)
. (A.6)

The optimum fusion rule is a maximum a posteriori rule
(i.e., to minimize error probability). Thus deciding U0 = 1
for a given yk and Uk = 0 requires

P
(
H1 | yk,Uk = 0

)
> P

(
H0 | yk,Uk = 0

)
. (A.7)

From (A.5) and (A.6), (A.7) implies

P
(
H1 | yk,Uk = 1

)
> P

(
H0 | yk,Uk = 1

)
. (A.8)

Therefore, we must haveU0 = 1 for the same yk withUk = 1.
Thus

P
(
U0 = 1 | yk,Uk = 0

)
< P

(
U0 = 1 | yk,Uk = 1

)
(A.9)

and further,

Ak > 0. (A.10)

Similarly, one can show

P
(
U0 = 0 | yk,Uk = 0

)
> P

(
U0 = 0 | yk,Uk = 1

)
(A.11)

and further,

Bk > 0. (A.12)

B. ALTERNATIVE DERIVATION FOR OPTIMAL
LOCAL DECISION RULES

From [7, Proposition 2.2], with a cost function F : {0, 1} ×
Z × {H0,H1} → R and a random variable z which takes
values in the set Z and is independent of X conditioned on
any hypothesis, the optimal decision rule that minimizes the
cost E[F(γ(X), z,H)] is

γ(X) = arg min
U=0,1

1∑

j=0
P
(
Hj | X

)
α
(
Hj ,U

)
, (B.1)

where

α
(
Hj ,d

) = E
[
F
(
U , z,Hj

) | Hj
]
. (B.2)

Assuming the cost that we want to minimize at the fusion
center can be written as

J = E
[
C
(
γ0(y, g),u,H

)]
(B.3)

and we further have

J = E
[
C
(
γ0(y, g),u,H

)]

= E
[
C
(
γ0
(
Yk, yk, gk, gk

)
, γk
(
Xk
)
,uk,H

)]

= E
[
E
[
C
(
γ0
(
Yk , yk, gk, gk

)
, γk
(
Xk
)
,uk,H

)

| uk, yk, gk, gk,Xk,H
]]

= E
[
E
[
C
(
γ0
(
Yk , yk, gk, gk

)
, γk
(
Xk
)
,uk,H

) | Xk, gk
]]

= E
[∫

Yk

C
(
γ0
(
Yk, yk, gk, gk

)
, γk
(
Xk
)
,uk,H

)

× p
(
Yk | γk

(
Xk
)
, gk
)
dYk

]
,

(B.4)

where gk = [g1, . . . , gk−1, gk+1, gK ] and (B.4) follows that con-
ditioned on γk(Xk) and gk, the channel output Yk is indepen-
dent of everything else.
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Defining X = Xk, z = (yk,uk, g),

F
(
Uk, z,H

)

=
∫

Yk

C
(
γ0
(
Yk, yk, g

)
,Uk,uk,H

)
p
(
Yk | Uk, gk

)
dYk

(B.5)

and substituting them into (B.1), we obtain the optimal local
decision rule for kth sensor:

γk
(
Xk
) = arg min

Uk=0,1

1∑

j=0
P
(
Hj | Xk

)
αk
(
Hj ,Uk

)
, (B.6)

where

αk
(
Hj ,Uk

)

=E
[∫

Yk

C
(
γ0
(
Yk, yk, g

)
,Uk,uk,Hj

)
p
(
Yk | Uk, gk

)
dYk | Hj

]
.

(B.7)

Since

P
(
Hj | Xk

) = p
(
Xk | Hj

)
πj

∑1
i=0 p

(
Xk | Hi

)
πi
, (B.8)

(B.6) is equivalent to

γk
(
Xk
) = arg min

Uk=0,1

1∑

j=0
πj p

(
Xk | Hj

)
αk
(
Hj ,Uk

)

= arg min
Uk=0,1

1∑

j=0
p
(
Xk | Hj

)
bk
(
Hj ,Uk

)
,

(B.9)

where

bk
(
Hj ,Uk

) = πjαk
(
Hj ,Uk

)
. (B.10)

Thus, the optimal local decision rule for the kth sensor is

γk
(
Xk
) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, P
(
Xk | H0

)(
bk
(
H0, 1

)− bk
(
H0, 0

))

≥ P
(
Xk | H1

)(
bk
(
H1, 0

)− bk
(
H1, 1

))
,

1, otherwise.
(B.11)

In the approach proposed in this paper, the objective is to
minimize the average error probability at the fusion center,

J =
∫

g
P
(
γ0(y, g) �= H

)
p(g)dg. (B.12)

Thus we have

αk
(
Hj ,Uk

) =
∫

y

∫

g
P
(
U0 = 1− j | y, g)

×
[∑

uk
p
(
y | uk ,Uk, g

)
p(g)P

(
uk | Hj

)]
dg dy.

(B.13)

It is straightforward to see that (αk(H0, 1) − αk(H0, 0)) is
the same as Ak in (14) and (αk(H1, 0) − αk(H1, 1)) is the
same as Bk in (15). Therefore, (B.11) is equivalent to (20)
in Theorem 1.
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