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1. INTRODUCTION

A statistical temporal model which captures the time-varying
and time-spreading properties of the channel is the so-called
multipath fading channel model (MFC) [1, pages 12, 13, 760,
761], [2, page 146], [3]. The output of such channel, when
the input is the low-pass signal x�(t), is given by

y�(t) =
N(t)∑

i=1
ri
(
τi
)
e jΦi(t,τi)x�

(
t − τi

)
, (1)

which corresponds to that of the so-called quasistatic
channel. Here, ri(τ), Φi(t, τ), τi denote the attenuation,
phase, and propagation time delay, respectively, of the signal
received in the ith path, and N(t) denotes the number of
paths at time t. The phase Φi(t, τ) is typically a function
of the carrier frequency, the relative velocity between the
transmitter and the receiver, and the angle of arrivals and
phase of the incident on the receiver plane wave [4–6]. On the
other hand, if x�(t) is the low-pass equivalent representation
of a bandpass signal, modulated at some carrier frequency
ωc, namely, x(t) = Re{x�(t)e jωct}, then the received bandpass
signal is y(t) = Re{y�(t)e jωct}. In the works found in the
literature, the authors often omit this explicit dependence of
ri on τi, during the computation of the various statistics ([2,

page 146] is an exception). Although for a deterministic or
fixed sample path of {N(s); 0 ≤ s ≤ t} the computation
of the statistical properties of y�(t) is not affected by this
omission, this is not the case when the ensemble statistics
are analyzed. Ensemble statistics using a counting process
as simple as the nonhomogeneous Poisson process reveal
an additional smoothing property associated with each
propagation environment, which is expressed in terms of the
rate of the Poisson process and the attenuations.

The objective of this paper is to introduce a unified
framework for computing the statistical properties of the
received signal when {τi}i≥1 are the points of a Poisson
counting process N(t), while for fixed sample paths of the
points the distribution of the instantaneous amplitude and
phase, {ri(τi), Φi(t, τi)}, i = 1, 2, . . . , is arbitrary, by per-
forming an analysis which can be viewed as a generalization
of the shot-noise analysis investigated by Rice [7, 8] in the
mid 1940’s. This approach is similar to the one considered in
[9] which investigates the statisticalproperties of cochannel
interference. However, in [9] the authors are interested in
stable distributed processes although their approach can be
extended to other distributions.

In [10, 11], the authors questioned the accuracy of the
Poisson counting processes in matching experimental data of
path arrival time and number of paths, and thus a modified
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Poisson process is introduced, the so-called Δ − K model.
However, the failure of the Poisson process to model path
arrival times does not imply that the Poisson model will
also be inappropriate when considered as part of (1) to
study the statistics of the received signal. In this paper, we
show that when the Poisson counting process is included in
(1), then various existing properties of MFCs, such as the
power delay profile, the Doppler spread, and the Gaussianity
of the channel, are predicted. Due to its simplicity, the
Poisson counting process is the most natural process to
start the analysis with. It can form the core for subsequent
generalizations in which the rate of the counting process
is random. The validity of the Poisson counting process is
illustrated through subsequent calculations of second-order
statistics of y�(t) and y(t), their power spectrum densities,
and their moment-generating functions, which reveals that
when the rate of the Poisson process is sufficiently high,
the received signal is normally distributed with mean and
covariance functions being identified. On the other hand,
when the rate of the Poisson process is low, the received signal
can no longer be assumed as normally distributed. In the
latter case, the probability that the individual paths overlap
is negligible, while in the former case this probability is quite
high.

The above analysis is important when designing specific
receivers as follows. Assume that (1) represents the baseband
received signal which is corrupted by additive white Gaussian
noise. A well-known optimal receiver is the matched filter,
which maximizes the output signal-to-noise ratio [1]. The
implementation of the matched filter requires the knowledge
of the power spectral density of (1), which is computed in the
paper. Moreover, in many applications such as filter design
and interference analysis, it is important to know the precise
joint distribution of the processes ({yl(t)}t≥0, {y(t)}t≥0).
This joint distribution is also computed when {yl(t)}t≥0,
{y(t)}t≥0 are Gaussian distributed. Moreover, the results
of the paper when combined with [9] can be used to
analyze interference statistics of multipath fading chan-
nels.

The paper is organized as follows. Section 2 discusses
correlation properties and relations to known statistical
properties of y�(t) and y(t). Section 3 presents several power
spectral densities of y�(t) and y(t) for any information signal.
Section 4 establishes central limit theorems which imply
Gaussianity of y�(t) and y(t).

Notation 1. N+ denotes the set of positive integers; E will

denote the expectation operator; |c|2 Δ= c�c, where c ∈
C is complex and “�” denotes complex conjugation. For
T ∈ L(Cm;Cn), a linear operator T † denotes Hermitian

conjugation. For ρ ∈ Cn, where ρRi

Δ= Re(ρi) and

ρIi
Δ= Im(ρi), 1 ≤ i ≤ n, denote the real and imaginary

components of ρ, respectively. The complex derivatives with
respect to ρ and ρ� are defined in terms of real derivatives

as follows: ∂/∂ρi
Δ= (∂/∂ρRi − j(∂/∂ρIi))/2, ∂/∂ρ

�
i

Δ= (∂/∂ρRi +
j(∂/∂ρIi))/2, 1 ≤ i ≤ n. For f , g real- or complex-valued
functions, f∗g denotes convolution operation of f with g,
and Fτ{ f } denotes Fourier transform (FT).

2. MEAN, VARIANCE, AND CORRELATION

Let (Ω,A,P) be a complete probability space equipped with
filtration {At}t≥0 and finite-time [0,Ts], Ts < ∞, on which
the following random variables are defined: ri : Ωr×Ωτ→R,
φi : Ωφ→R, τi : Ωτ→R, ωdi : Ωωd →R, N : [0,Ts) ×
Ω→N+, mi(τi)

Δ= (ri(τi),φi,ωdi). This paper investigates the
statistical properties of a noncausal version of (1), namely,

y�(t) =
N(Ts)∑

i=1
ri
(
τi
)
e jφi e− j(ωc+ωdi )τi+ jωdi tx�

(
t − τi

)

Δ=
N(Ts)∑

i=1
h�
(
t, τi;mi

(
τi
))
,

(2)

where 0 ≤ t ≤ Ts and its bandpass representation is

y(t) = Re

{[N(Ts)∑

i=1
ri
(
τi
)
e jφi e− j(ωc+ωdi )τi+ jωdi tx�

(
t − τi

)
]
e jωct

}

Δ= Re

{N(Ts)∑

i=1
h
(
t, τi;mi

(
τi
))
e jωct

}

= Re

{N(Ts)∑

i=1
h
(
t − τi;mi

(
τi
))
e jωct

}
,

(3)

in which h�(t, τi;mi(τi)) = ri(τi)e jφi e− jωcτi+ jωdi (t−τi)x�(t − τi),
h(t, τi;mi(τi)) = ri(τi)x(t−τi), x(t) = Re{x�(t)e j(ωct+ωdi t+φi)},
ri is the attenuation, τi is the time delay, φi is the phase,
ωdi is the Doppler spread of the ith path, and ωc is the
carrier frequency. For fixed τi = τ, the dependence of the
attenuations {ri(τ)}i≥1 on τ implies that the attenuations
are random variables. Notice that each occurrence time τi is
associated with mi(τi) = (ri(τi),φi,ωdi), and h(t, τi;mi(τi))
(or h�(t, τi;mi(τi)) may be viewed as the impulse response
at time t due to the occurrence of τi. In the preliminary
calculations, it is assumed that for a fixed occurrence time
τi = τ, {h�(t; τ;mi(τ)}t≥0 and {h(t; τ;mi(τ)}t≥0, i = 1, 2, . . . ,
are independent of the counting process N(Ts). However,
in obtaining explicit expressions, we will often make the
following assumption.

Assumption 1. Let {λT(s) Δ= λ × λc(s); 0 ≤ s ≤ t} denote
the nonnegative and nonrandom rate of the counting process
{N(s); 0 ≤ s ≤ t}, where λ is constant and nonrandom
and λc(t) is a time-varying nonrandom function. For fixed
τi = τ, the random processes {h(t, τ;mi(τ)}t≥0 (resp.,
{h�(t, τ;mi(τ)}t≥0), i = 1, 2, 3, . . ., are mutually independent
and identically distributed, having the same distribution
as {h(t, τ;m(τ)}t≥0 (resp., {h�(t, τ;m(τ)}t≥0), and are also
independent of {N(s); 0 ≤ s ≤ t}.

Assumption 1 is invoked only when seeking closed-form
expressions for various statistics. We note that when λ is a
random variable, most of the subsequent results of this note
remain valid provided that we include an extra integration
with respect to the density of λ. Such generalizations do not
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suffer from the orderliness and the independent increment
properties of the Poisson counting process; however, the
analysis is more complicated and should be discussed
elsewhere.

Mean and variance

The mean (expected value) and the variance of the received

complex signal y�(t) are, respectively, defined by y�(t)
Δ=

E[
∑N(Ts)

i=1 h�(t, τi;mi(τi))] and Var(y�(t))
Δ= E[y�� (t)y�(t)] −

y�� (t)y�(t), where E[·] denotes expectation with respect
to the joint density of {mi(τi),N(Ts), τi}i≥1. Suppose that
{N(s); 0 ≤ s ≤ Ts} is Poisson with rate λT(t) ≥ 0, for
all t ∈ [0,Ts]. Under the assumption that {mi(τ)}i≥1 are
independent of N(Ts) and conditioning on N(Ts) = k, the
delay times {τi}ki=1 are independent identically distributed
with density f (t) = λT(t)/

∫ Ts

0 λT(t)dt, 0 ≤ t ≤ Ts

(see [12]). Hence, y�,k(t)
Δ= E[

∑N(Ts)
i=1 h�(t, τi;mi(τi)) |

N(Ts) = k] = ∑k
i=1
∫ Ts

0 f (τ)E[h�(t, τ;mi(τ))]dτ. Clearly, if
the number of paths during [0,Ts] is known, y�,k(t) gives
the average received instantaneous signal. However, this is
usually unknown unless one sounds the channel assuming
a low noise level; its ensemble average is obtained from
E[y�(t)] = ∑∞

k=1 y�,k(t)Prob{N(Ts) = k}. Similarly, we
compute E[|y�(t)|2] =

∑∞
k=1 y�,k

2(t)Prob{N(Ts) = k} and
the variance, where

y2�,k(t)
Δ= E

[
y2� (t) | N

(
Ts
) = k

]

=
k∑

i=1

∫ Ts

0
f (τ)E

[∣∣h�
(
t, τ;mi(τ)

)∣∣2]dτ

+
k∑

i, j=1
i /= j

∫ Ts

0
f
(
τi
)
dτi

∫ Ts

0
f
(
τj
)
dτj

× E
[
h��
(
t, τi;mi

(
τi
))
h�
(
t, τj ;m j

(
τj
))]

,
(4)

Var
(
y�(t)

)

=
∞∑

k=1
y2�,k(t)Prob

(
N
(
Ts
) = k

)− (y�(t)
)2

=
∞∑

k=1
Prob

(
N
(
Ts
) = k

)

×
k∑

i=1

{∫ Ts

0
f (τ)E

[
r2i (τ)

]∣∣x�(t − τ)
∣∣2dτ

−
∣∣∣∣
∫ Ts

0
f (τ)E

[
ri(τ)e jφi+ jωdi (t−τ)− jωcτx�(t−τ)

]
dτ
∣∣∣∣
2}

,

if h
(
t, τ;mi(τ)

)
is uncorrelated.

(5)

In practice, there exists a finite k such that Prob(N(Ts) = n)
is small for n ≥ k; in which case, the infinite series can be

approximated by a finite series, and thus (4) and (5) can be
computed. Alternatively, if the conditions of Assumption 1
are satisfied, which is sufficient to assume that {ri(τ),φi,ωdi},
for all i ∈ N+, are mutually independent and identically
distributed, independently of the random process {N(t); 0 ≤
s ≤ Ts}, then an explicit closed-form expression is given in
the next lemma, which is a generalization of the shot-noise
effect discussed by Rice in [7, 8].

Lemma 1. Consider model (2)-(3) under Assumption 1.
Then,

E
[
y�(t)

]

=
∫ Ts

0
λT(τ)E

[
h�
(
t, τ;m(τ)

)]
dτ

=
∫ Ts

0
λT(τ)E

[
r(τ)e jφ+ jωd(t−τ)e− jωcτ

]
x�(t − τ)dτ,

(6)

Var
(
y�(t)

) =
∫ Ts

0
λT(τ)E

[∣∣h�
(
t, τ;m(τ)

)∣∣2]dτ

=
∫ Ts

0
λT(τ)E

[
r2(τ)

]∣∣x�(t − τ)
∣∣2dτ,

(7)

for 0 ≤ t ≤ Ts.

Remark 1. Some observations concerning the results of
Lemma 1 are now in order. These observations are important
because they provide additional insight regarding the role of
the rate of Poisson process in modeling quasistatic channels.

(1) Clearly, the rate of the Poisson process is an important
parameter which shapes the statistics of the received signal,
and therefore the multipath delay profile and the Doppler
spread. It models the filtering properties of the propagation
environment. If the arrival times of the different paths are
known (information which is obtained by sounding the
channel), then the rate of the Poisson process should be
replaced by a linear combination of impulses. Thus, by
setting λT(t) =

∑N
i=1 λiδ(t − τi), we obtain

Var
(
y�(t)

) =
∫ Ts

0

N∑

i=1
λiδ
(
t − τi

)
E
[∣∣h�(t, τ;m)

∣∣2]dτ

=
N∑

i=1
λiE

[
r2
(
τi
)]∣∣x�

(
t − τi

)∣∣2,

(8)

for 0 ≤ t ≤ Ts, which is exactly what one would obtain if the
arrival times of the multipath components are known.

(2) Tapped delay channel. Consider the tapped delay
channel model, which corresponds to a frequency-selective
channel with transmitted signal bandwidth W which is
greater than the coherence bandwidth Bcoh of the channel,
and W � Bcoh. In this case, the sampling theorem (see
[1, pages 795–797]) leads to the tapped delay line model,
where N = [(1/Bcoh)W] + 1, τi = i/W , 1 ≤ i ≤ N ,
and N is the number of resolvable paths. This tapped delay
model can be generated from the model presented using a
Poisson process by choosing the rate of the Poisson process
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so that most points are concentrated at {i/W}i≥1 (e.g., letting
λT(t) be a series of mountains concentrated near i/W). That
is, the orderliness effect of the Poisson process is mitigated
because of the limitations of the equipment that is used to
measure the received signal. In the next two statements, we
present a comparison of the computation of the received
power when the arrival times of the multipath components
are known and when these are assumed to be the points of a
homogeneous Poisson process.

(3) Wideband transmission. Consider the periodic trans-
mission of a pulse x�(t) = π(t) every Ts seconds, where
π(t) = √

τm/Tc if 0 ≤ t ≤ Tc and π(t) = 0 or, otherwise,
where Ts � τm, with τm denoting the duration of the
channel impulse response (e.g., excess delay of the channel).

Suppose that the low-pass received signal is

y�,N (t) =
N∑

i=1
rie

jφi e− j(ωc+ωdi )τi+ jωdi tπ
(
t − τi

)
, (9)

where N , {τi}Ni=1, is a realization of the Poisson process (e.g.,
known).

Then, the energy received over [0, τm] at some t0 ∈
[0,Ts] is defined by (see [2, pages 147–150]) y�,N (t0)

Δ=
(1/τm)

∫ τm
0 y��,N (t)y�,N (t)dt, which is the time average of the

second moment of y�,N (t) based on a single realization over
the interval [0, τm]. Further, if the multipath components
are assumed to be resolved by the probing signal π(t) (e.g.,
|τi − τj| > Tc, for all i /= j), then

∣∣y�,N
(
t0
)∣∣2 = 1

τm

N∑

i=1
r2i
(
t0
)∫ τm

0
π2(t − τi

)
dt =

N∑

i=1
r2i
(
t0
)
.

(10)

The ensemble average power (due to a wideband signal trans-
mission) is EWB = ∑N

i=1 E[r
2
i (t0)] (= NE[r2(t0)] if ri are

i.i.d.). Our earlier equations calculate EWB using ensemble
average. In particular, EWB corresponds to

y2�,N (t) =
1
Ts

N∑

i=1

∫ Ts

0
E
[
r2i (τ)

]
π2(t − τ)dτ ≈ τm

Ts

N∑

i=1
E
[
r2i (t)

]
,

(11)

which is obtained under the assumption that N(Ts) = N
is fixed, λT(t) = λ is a constant, and Ey�(t) = 0. On the
other hand, under the assumptions of Lemma 1, assuming
constant rates λT(t) = λ and Ey�(t) = 0, we have from (7)
that

E[|y�(t)|2] = λ
∫ Ts

0
E
[
r2(τ)

]
π2(t − τ)dτ

= λτm

N∑

i=1
E
[
r2i
(
t0
)]

if r(τ) =
N∑

i=1
ri
(
t0
)
δ
(
τ − t0

)
, t0 ∈

[
t − Tc, t

]
,

(12)

which is proportional to (10) and (11).

(4) Narrowband transmission. Consider next the trans-
mission into the channel (9) of a continuous-wave signal,
x�(t) = 1. Then, the received power, given the realization of
{N(t); 0 ≤ t ≤ Ts}, is
PCW

= E

[∣∣∣∣∣

N∑

i=1
rie

jφi e− j(ωc+ωdi )τi+ jωdi t

∣∣∣∣∣

2]

=
N∑

i=1
E
[
r2i
]
+

N∑

i,m=1
i /=m

E
[
rirme

j(φi−φm)e− j[ωc(τi−τm)−(ωdi τi−ωdmτm)]
]

× e j(ωdi−ωdm )t .
(13)

On the other hand, if N(Ts) = N and λ = constant, then by
(4) letting x�(t) = 1 yields

y2�,N (t)

= 1
Ts

∫ Ts

0

N∑

i=1
E
[
r2i (τ)

]
dτ

+
1
T2
s

∫ Ts

0

N∑

i,m=1
i /=m

E
[
ri
(
τi
)
rm
(
τm
)
e j(φi−φm)

× e− j[ωc(τi−τm)−(ωdi τi−ωdmτm)]
]
e j(ωdi−ωdm )tdτi dτm,

(14)

which is proportional to (13). Clearly, the above comparisons
indicate the consistency of the ensemble averages based on
our model and analysis with respect to the analysis found in
[2], even for the simple homogeneous Poisson process.

Correlation and covariance

The correlation of y�(t1) and y�(t2) is Ry� (t1, t2)
Δ=

E[y�� (t1)y�(t2)] = E[
∑N(Ts)

i=1 h�� (t1, τi;mi(τi))
∑N(Ts)

i=1 h�(t2, τi;
mi(τi))], and the covariance is

Cy�

(
t1, t2

)

Δ= Ry�

(
t1, t2

)− E
[
y��
(
t1
)]
E
[
y�
(
t2
)]

=
∞∑

k=1
Ry�,k

(
t1, t2

)
Prob

(
N
(
Ts
) = k

)− E
[
y��
(
t1
)]
E
[
y�
(
t2
)]
,

(15)

where

Ry�,k (t1, t2)
Δ= E

[
y��,k

(
t1
)
y�,k

(
t2
)]

= E

[ k∑

i=1
h��
(
t1, τi;mi

(
τi
))
h�
(
t2, τi;mi

(
τi
))
]

+ E

⎡
⎢⎢⎢⎣

k∑

i, j=1
i /= j

h��
(
t1, τi;mi

(
τi
))
h�
(
t2, τj ;m j

(
τj
))

⎤
⎥⎥⎥⎦
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=
k∑

i=1

1
∫ Ts

0 λT(t)dt

∫ Ts

0
λT(τ)E

[
r2i (τ)e

jωdi (t2−t1)
]

× x��
(
t1 − τ

)
x�
(
t2 − τ

)
dτ

+
k∑

i,m=1
i /=m

1
∫ Ts

0 λT(t)dt
E

[
e− j(φi−φm)e− j(ωdi t1−ωdm t2)

×
∫ Ts

0
λT(τ)ri(τ)e j(ωc+ωdi )τx��

(
t1 − τ

)
dτ

× 1
∫ Ts

0 λT(t)dt

∫ Ts

0
λT(τ)rm(τ)e− j(ωc+ωdm )τx��

(
t2 − τ

)
dτ

]
.

(16)

The above expression is further simplified by invoking
Assumption 1.

Lemma 2. Consider model (2)-(3) under Assumption 1.
Then,

Ry� (t1, t2)

= λ
∫ Ts

0
λc(τ)E

[
h��
(
t1, τ;m(τ)

)
h�
(
t2, τ;m(τ)

)]
dτ

+ λ
∫ Ts

0
λc(τ)E

[
h��
(
t1, τ;m(τ)

)]
dτ

× λ
∫ Ts

0
λc(τ)E

[
h�
(
t2, τ;m(τ)

)]
dτ

= λ
∫ Ts

0
λc(τ)E

[
r2(τ)e jωd(t2−t1)]x��

(
t1 − τ

)
x�
(
t2 − τ

)
dτ

+ λ
∫ Ts

0
λc(τ)e jωcτE

[
r(τ)e− jφe− jωd(t1−τ)]x��

(
t1 − τ

)
dτ

× λ
∫ Ts

0
λc(τ)e− jωcτE

[
r(τ)e jφe jωd(t2−τ)]x�

(
t2 − τ

)
dτ,

0 ≤ t1, t2 ≤ Ts,
(17)

Cy� (t1, t2)

= λ
∫ Ts

0
λc(τ)E

[
h��
(
t1, τ;m(τ)

)
h�
(
t2, τ;m(τ)

)]
dτ

= λ
∫ Ts

0
λc(τ)E

[
r2(τ)e jωd(t2−t1)]x�� (t1 − τ)x�(t2 − τ)dτ,

0 ≤ t1, t2 ≤ Ts.
(18)

Proof. Follow the derivation of Lemma 1.

Remark 2. Next we illustrate how the rate of Poisson process
affects both the Doppler power spectrum and the power
delay profile. Consider the results of Lemma 2 when t1 =
t, t2 = t + Δt, and x�(t) = 1, for all t ∈ [0,T] (e.g.,
a narrowband signal), and for fixed τi = τ, ωdi(τ) =
(2πv(τ)/λω)cosθi, where v(τi) is the speed of the mobile,
corresponding to the ith path, λω is the wavelength, and θi
is uniformly distributed in [0, 2π] [4, 5] (the dependence of
ωdi on τ is obviously incorporated in the previous results).
We will compute the autocorrelation, Doppler spread, and
power delay profile of the channel.

(1) Doppler power spectrum. Under the above assump-
tions (and assuming Ey�(t) = 0), the autocorrelation of y�(t)
is

Ry� (Δt) = λ
∫ Ts

0
λc(τ)E[r2(τ)e jωd(τ)Δt]dτ, (19)

and its power spectral density is

FΔt
{
Ry� (Δt)

} = λ
∫∞

0

∫ Ts

0
λc(τ)E

[
r2(τ)e jωd(τ)Δt

]
e− j2π f Δtdτ dt.

(20)

Moreover, if r(τ) and ωd(τ) are independent (as commonly
assumed) and λc(t) = ∑N

i=1 δ(t − ti), then Ry� (Δt) =
λ
∑N

i=1 E[r2(ti)] × J0((2πv(ti)/λ)Δt), which is a commonly
known expression, where J0(·) is a Bessel function of first
kind of zero order (see [5] for N = 1), and FΔt{Cy� (Δt)} =
λ
∑N

i=1 E[r2(ti)]× SDi( f ), where

SDi( f ) =

⎧
⎪⎪⎨
⎪⎪⎩

1
2π

λω
v
(
ti
) 1√

1− ( f λω/v
(
ti
))2 , | f | ≤ v

(
ti
)

λω
,

0, elsewhere,
(21)

for 1 ≤ i ≤ N . Thus, SDi( f ) is the Doppler spread predicted
in [4, 5] for a two-dimensional propagation model. More
general models such as those found in [5] can be considered
as well.

(2) Power delay profile. Under the above assumptions
(and assuming Ey�(t) = 0), the power delay profile of
y�(t), denoted by φ(τ), is obtained from (17) by letting
t1 = t2 = t and letting x(t) be a delta function, which
implies that φ(τ) = λT(τ)E[r2(τ)]. Clearly, the rate of the
Poisson process determines the shape of the power delay
profile as expected. Note that in practise one can obtain
the rate λT(·) via maximum-likelihood methods by noisy
channel measurements.

However, if r(τ) and ωd(τ) are not independent,
then more general expressions for the autocorrelation and
Doppler spread are obtained.

3. POWER SPECTRAL DENSITIES

Throughout this section, it is assumed (for simplicity) that
{ri(τi)}i≥1 are independent of τ′i s, and thus we denote them
by {ri}i≥1; N(Ts) is homogeneous Poisson. However, if one
considers the τ-dependent attenuations {ri(τ)}i≥1, then as a
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function of τ, each ri : Ω × [0,Ts]→ [0,∞), and therefore
each ri is a random process as a function of τ. In this
case, the results will also hold provided that one assumes
that {ri(τ)}τ≥0 as functions of τ are wide-sense stationary
(because E[r2(τ)] and E[r(τ)] are independent of τ).

Power spectral density

The expressions for the correlation function and the covari-
ance function (assuming that

∫ t
t−Ts

is denoted by
∫∞
∞) are

Cy� (τ) = λE
[
r2e jωdτ

]∫∞

−∞
x�� (α)x�(τ + α)dα, (22)

Ry� (τ) = Cy� (τ) + λE
[
re− jφ

∫∞

−∞
e− j(ωc+ωd)αx�� (α)dα

]

× λE
[
re jφ

∫∞

−∞
e j(ωc+ωd)αe jωdτx�(τ + α)dα

]
.

(23)

Taking Fourier transforms, we obtain the following result.

Theorem 1. Consider model (2)-(3) under Assumption 1
with {ri(τ)}i≥1 being independent of τ, and consider N(t) a
homogeneous Poisson process with rate λ ≥ 0. Define the

centered processes y�,c(t)
Δ= y�(t)− y�(t), yc(t)

Δ= y(t)− y(t),
and

X�( jω)
Δ=
∫∞

−∞
x�(t)e− jωtdt,

X( jω)
Δ=
∫∞

−∞
x(t)e− jωtdt,

x(t) = Re
{
x�(t)e j(ωc+ωd)t+ jφ

}
.

(24)

The power spectral densities of the centered processes y�,c(t) and
yc(t) are

Sy�,c( jω)
Δ= Fτ

{
Cy� (τ)

} = λE
[
r2
∣∣X�

(
j
(
ω− ωd

))∣∣2], (25)

Syc( jω)
Δ= Fτ

{
Ryc(τ)

} = λE
[
r2
∣∣X( jω)

∣∣2], (26)

and the power spectral densities of y�(t) and y(t) are

Sy� ( jω)
Δ= Fτ{Ry� (τ)}
= Sy� ,c( jω) + 2πλ2E

[
re jφX�

(− j
(
ωc + ωd

))]

× E
[
re− jφX��

(− j
(
ωc + ωd

))]
δ
(
w + ωc

)
,

(27)

Sy( jω)
Δ= Fτ

{
Ry(τ)

}

= Syc( jω) + 2πλ2
(
E
[
rX(0)

])2
δ(ω).

(28)

Further, assuming γ1(t) = λ
∫ Ts

0 E[h(t, τ;m)]dτ = 0, the power
spectral density of y2(t) is

Sy2 ( jω)
Δ= Fτ

{
Cy2 (τ)

}

= λ2

π
E
[
r2
∣∣X( jω)

∣∣2]∗E[r2∣∣X( jω)∣∣2]

+ 2πλ2E
2
δ(ω) +

λ

4π2
E
[∣∣r2X( jω)∗X( jω)∣∣2],

(29)

where E = E[
∫∞
−∞r2x2(t)dt].

Remark 3. The behavior of the power spectral densities for
high and low rates λ is obtained as follows.

(1) High-rate approximation. If λ is sufficiently large,
then the third term in (29) can be neglected and the power
spectrum of y2(t) consists of only the first and second right-
hand side terms of (29).

(2) Low-rate approximation. If λ is small, then the
probability that the terms h(t − τi;mi) and h(t − τj ;m j)
have significant overlaps, for i /= j, is very small, hence

the approximation y2(t) = ∑N(Ts)
i=1 h2(t − τi;mi). This is

equivalent to assuming that the paths do not overlap. As
described earlier, the power spectral density expressions
are important in receiver designing and for modeling the
interference.

4. DISTRIBUTIONS AND
MOMENT-GENERATING FUNCTIONS

Let I{A} denote the indicator function ofthe event A, which
is 1 if the event A occurs and zero otherwise. The prob-
ability density function and moment-generating functions

of y(t) and y�(t) are, respectively, defined by fy(x, t)dx
Δ=

E[I{y(t)∈dx}], fy� (x� , t)dx�
Δ= E[I{y�(t)∈dx�}], Φy(s, t)

Δ=
E[esy(t)], Φy� (ρ, t)

Δ= E[e jRe(ρ
� y�(t))], s

Δ= jω, ρ ∈ C. Consider
the real signal y(t); for fixed N(Ts) = k, the density

of y(t) is fyk (x, t)dx
Δ= E[I{y(t)∈dx} | N(Ts) = k] =

Prob{∑k
i=1 h(t, τi;mi(τi)) ∈ dx}. Assuming a homogeneous

Poisson process (for simplicity of presentation), we obtain
fy(x, t) = e−λTs

∑∞
k=1 fyk (x, t)((λTs)

k/k!). For fixed N(Ts) =
k, the moment-generating function of y(t) is

Φyk (s, t)

Δ= E

[
exp

{
s
N(Ts)∑

i=1
h(t, τi;mi(τi))

}
| N(Ts) = k

]

= 1
Tk
s

∫ Ts

0
dτ1

∫ Ts

0
dτ2 · · ·

∫ Ts

0
dτkE

[ k∏

i=1
esh(t,τi;mi(τi))

]
(30)

=
k∏

i=1

1
Ts

∫ Ts

0
dτE

[
esh(t,τ;mi(τ))

]

if
{
esh(t,τi;mi(τi))

}
i≥1 are uncorrelated.

(31)

Clearly, the above calculations hold for the low-pass equiva-
lent complex representation as well, leading to the following
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results. The above expressions are simplified further by
invoking Assumption 1.

Theorem 2. Consider model (2)-(3) and Assumption 1.
(1) The characteristic function of y(t) is

Φy(s, t)
Δ= E

[
esy(t)

]

= exp
{
λ
∫ Ts

0
λc(τ)E

[
esh(t,τ;m(τ)) − 1

]
dτ
}
, s

Δ= jω,

(32)

and its density is

fy(x, t) = 1
2π

∫∞

−∞
dωe− jωx

× exp
{
λ
∫ Ts

0
λc(τ)E

[
esh(t,τ;m(τ)) − 1

]
dτ
}
.

(33)

Moreover,

Ψy( jω, t)
Δ= lnE

[
esy(t)

]

=
∞∑

k=1

( jω)k

k!
γk(t) provided that γk(t) <∞,

(34)

where

γk(t) = λ
∫ Ts

0
λc(τ)E

[
h
(
t, τ;m(τ)

)]k
dτ, (35)

is the kth cumulant of y(t), and γ1(t) = E[y(t)] and γ2(t) =
Var(y(t)).

(2) The characteristic function of y�(t) is

Φy� (ρ, t)
Δ= E

[
e jRe(ρ

� y�(t))
]

= exp
{
λ
∫ Ts

0
λc(τ)E

[
e jRe(ρ

�h�(t,τ;m(τ))) − 1
]
dτ
}
,

(36)

where ρ
Δ= ρR + jρI , and its density is

fy� (x� , t) =
1

(2π)2

∫∫∞

−∞
dρR dρI e

− jRe(ρ�x�)

× exp
{
λ
∫ Ts

0
λc(τ)E

[
e jRe(ρ

�h(t,τ;m(τ))) − 1
]
dτ
}
.

(37)

Moreover, form,n > 0 integers

E
[(
y�� (t)

)k(
y�(t)

)m]

= (−2 j)k+m
(
∂

∂ρ

)k( ∂

∂ρ�

)m
Φy� (ρ, t)

∣∣
ρ=0,

(38)

Ψy� (ρ, t)
Δ= lnE

[
e jRe(ρ

� y�(t))
] =

∞∑

k=1
jk
γ�,k(t)
k!

, (39)

where

γ�,k(t) = λ
∫ Ts

0
λc(τ)E

[
Re
(
ρ�h�

(
t, τ;m(τ)

))]k
dτ,

E
[
y�(t)

] = (−2 j) j ∂

∂ρ�
γ�,1(t),

E
[
y�� (t)

] = (−2 j) j ∂
∂ρ

γ�,1(t),

Var
(
y(t)

) = (−2 j)2 j2 ∂

∂ρ

∂

∂ρ�
γ�,2(t)
2!

.

(40)

Proof. The derivation is similar to that found in [13, page
156-157].

The above theorem gives closed-form expressions for all
the moments of y(t) and y�(t) and their real and imaginary
parts. These expressions are easily computed for the example
of Remark 2.

Central limit theorem

The joint characteristic functions of y(t1), . . . , y(tn) and
y�(t1), . . . , y�(tn) along with their cumulants are obtained
following the derivation of Theorem 2.

Corollary 1. Consider model (2)-(3) under Assumption 1.
(1) The joint characteristicfunction of y(t1), . . . , y(tn) is

Φy
(
s1, t1; . . . ; sn, tn

)

Δ= E

{
exp

( n∑

i=1
si y
(
ti
)
)}

,

= exp

{
λ
∫ Ts

0
λc(τ)E

[
exp

( n∑

i=1
sih
(
ti, τ;m(τ)

)
)
− 1

]
dτ

}
,

y(t) = (y(t1), y
(
t2), . . . , y

(
tn
))′ ∈ Rn,

(41)

where si
Δ= jωi, 1 ≤ i ≤ n.

(2) The joint characteristic function of y�(t1), . . . , y�(tn) is

Φy�

(
ρ1, t1; . . . ; ρn, tn

)

Δ= E
[
exp

{
jRe

(
ρ†y�(t)

)}]

= exp

{
λ
∫ Ts

0
λc(τ)E

[
exp

(
j
n∑

i=1

[
ρRiRe

(
h�
(
ti, τ;m(τ)

))

+ ρIiIm
(
h�
(
ti, τ;m(τ)

))]
)
− 1

]
dτ

}

= exp
{
λ
∫ Ts

0
λc(τ)E

[
exp

(
jRe

(
ρ†h�

(
t, τ;m(τ)

)))− 1
]
dτ
}
,

y�(t) =
(
y�
(
t1
)
, . . . , y�

(
tn
))′ ∈ Cn,

(42)

where h�(t, τ;m(τ)) = (h�(t1, τ;m(τ)), . . . ,h�(tn, τ;m(τ)))′.
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The joint moment-generating function of the complex
random variables y�(t1), . . . , y�(tn) is

E

[ n∏

i=1

(
y��
(
ti
))ki

n∏

i=1

(
y�
(
ti
))mi

]

= (−2 j)
∑n

i=1(ki+mi)
n∏

i=1

(
∂

∂ρi

)ki n∏

i=1

(
∂

∂ρ�i

)mi

×Φy�

(
ρ1, t1, . . . ; ρn, tn

)∣∣
ρ=0.

(43)

Corollary 1 gives closed-form expressions for joint statistics of
{y�(t)}t≥0 and {y(t)}t≥0, including correlations and higher-
order statistics. These are easily computed for the example of
Remark 2.

We will show next that for large λ, compared to the
time constants of the signal x, the joint distribution of
y(t1), . . . , y(tn) is normal, thus establishing a central limit
theorem for {y(t)}t≥0 as a random process. Further, we will
illustrate that similar results hold for the complex random
variables y�(t1), . . . , y�(tn). This is a generalization of the
Gaussianity of shot noise described by Rice in [7, 8].

To this end, define the centered random variables yc(ti)
Δ=

(y(ti) − y(ti))/σy(ti) and σy(ti) =
√
Var(y(ti)), 1 ≤ i ≤ n.

According to Corollary 1, the joint characteristic function of
the centered random variables yc(t1), yc(t2), . . . , yc(tn) is

Φyc

(
jω1, t1; . . . , jωn, tn

)

Δ= E

[
exp

{ n∑

i=1
si yc

(
ti
)
}]∣∣∣∣∣

si= jωi

= exp

{
− j

n∑

i=1
ωi

y
(
ti
)

σy
(
ti
)
}

× exp

{
λ
∫ Ts

0
λc(τ)E

×
[
exp

( n∑

i=1

jωi

σy
(
ti
)h
(
ti,m(τ); τ

)
)
− 1

]
dτ

}
.

(44)

Expand in power series (assuming an absolute convergent
series with finite integrals):

λ
∫ Ts

0
λc(τ)E

[
exp

{ n∑

i=1
j

ωi

σy
(
ti
)h
(
ti, τ;m(τ)

)
}
− 1

]
dτ

= λ
∫ Ts

0
λc(τ)E

[ n∑

i=1

jωi

σy
(
ti
)h
(
ti, τ;m(τ)

)
]
dτ

+
1
2
λ
∫ Ts

0
λc(τ)E

[ n∑

i=1

jωi

σy
(
ti
)h
(
ti, τ;m(τ)

)
]2

dτ + · · · .
(45)

Since σy(ti) is proportional to λ1/2, the first term in the power
series expansion is of order λ1/2, the second term is of order 1,
the third term is of order 1/λ1/2, and the kth is term of order

λ/λk/2 = λ−(k−2)/2. Hence, for large λ, we have the following
approximation (neglecting terms of order λ−(k−2)/2, k ≥ 3):

λ
∫ Ts

0
λc(τ)E

[
exp

( n∑

i=1
jωih

(
ti, τ;m(τ)

)
)
− 1

]
dτ

≈ λ
∫ Ts

0
λc(τ)E

[ n∑

i=1

jωi

σy(ti)
h�
(
ti, τ;m(τ)

)
]
dτ

+
1
2
λ
∫ Ts

0
λc(τ)E

[ n∑

i=1

jωi

σy(ti)
h
(
ti, τ;m(τ)

)
]2

dτ.

(46)

Substituting (46) into (44), the first right-hand side term in
(44) is cancelled, hence

Φyc

(
jω1, t1; . . . ; jωn, tn

)

≈ exp

{
− λ

2

∫ Ts

0
λc(τ)E

[ n∑

i=1

ωi

σy
(
ti
)h
(
ti, τ;m(τ)

)
]2

dτ

}
.

(47)

The last expression shows that the joint characteristic
function is quadratic in {ωj}nj=1. Hence, yc(t1), . . . , yc(tn) are
approximately Gaussian, with zero mean and the covariance
matrix identified. Moreover, yc(t j)∼N(0; 1), 1 ≤ j ≤ n.
In the limit, as λ→∞, the above approximation becomes
exact. In general, the above central limit result holds as
certain parameters entering h(·, ·; ·) approach their limits,
other than λ→∞. If we consider the example of Remark 2,
and let λT(t) be a constant (say λ), then the Gaussianity
statement holds provided that Ts → ∞ (this is consistent
with the understanding that as Ts becomes large, more paths
are present and hence the central limit theorem will hold).

Lemma 3. Consider model (2)-(3) under Assumption 1.
(1) The joint characteristic function of the centered random

variables

yc
(
ti
) Δ= y

(
ti
)− y

(
ti
)

σy
(
ti
) ,

σy
(
ti
) =

√
Var

(
y
(
ti
))
,

1 ≤ i ≤ n, (48)

is in the limit, as λ→∞, and is Gaussian with

lim
λ→∞

Φyc

(
jω1, t1; . . . ; jωn, tn

)

Δ= lim
λ→∞

E

[
exp

{ n∑

i=1
si yc

(
ti
)
}]

,

= exp

{
− λ

2

∫ Ts

0
λc(τ)E

[ n∑

i=1

ωi

σy
(
ti
)h
(
ti, τ;m(τ)

)
]2

dτ

}
,

si
Δ= jωi (1 ≤ i ≤ n).

(49)

(2) The joint characteristic function of the centered random
variables

y�,c
(
ti
) Δ= y�

(
ti
)− y�

(
ti
)

σy�
(
ti
) ,

σy�
(
ti
) =

√
Var

(
y�
(
ti
))
,

1 ≤ i ≤ n, (50)
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is in the limit, as λ→∞, and is complex Gaussian with

lim
λ→∞

Φy�,c

(
ρ1, t1; . . . ; ρn, tn

)

Δ= lim
λ→∞

E
[
exp

{
jRe

(
ρ†y�,c(t)

)}]

= exp

{
− λ

2

∫ Ts

0
λc(τ)E

×
n∑

i=1

[
ρRi

σy� (ti)
Re
(
h�
(
ti, τ,m(τ)

))

+
ρIi

σy�
(
ti
) Im

(
h�
(
ti, τ,m(τ)

))]2
dτ

}
,

(51)

where y�,c(t) = (y�,c(t1), . . . , y�,c(tn))
′ ∈ Cn.

Proof. (1) The proof follows from the above construction.
(2) Equation (51) is obtained by following exactly the same
procedure as in (1) (see also [13, page 157]).

Remark 4. Next, we discuss the implications of the previous
lemma and some generalizations of the results obtained.

(1) Clearly, in (49) and (51), the exponents are quadratic
functions of {ωi}ni=1 and {ρRi , ρIi}ni=1, respectively; therefore
one can easily specify the correlation properties of the
received Gaussian signal, irrespective of the transmitted
input signal. Unlike [5] in which Gaussianity of the inphase
and quadrature components is derived, the last theorem
shows Gaussianity of the received signal which is multipath,
and identifies one of the parameters which is responsible
for such Gaussianity to hold. Further, in many places it
is often conjectured that for a large number of paths
the inphase and quadrature components of the received
signal are Gaussian. Some authors argue that the low-
pass representation of the band-limited channel impulse
response is complex Gaussian. Lemma 3 establishes the
above conjecture in the limit as the rate of the Poisson process
tends to infinity, by identifying the mean and the covariance
of the Gaussian process. Clearly, as λ increases the number
of paths received in a given observation interval increases,
which then implies that resolvability of the paths is highly
unlikely. Note that Lemma 3 can be used to compute the
second-order statistics of the inphase and quadrature com-
ponents. The mean of the inphase component is E[I(t)] =
λ
∫ Ts

0 λc(τ)E[r(τ)cos(ωcτ +ωd(t−τ))]dτ, and its covariance is

CI(t1, t2) = λ
∫ Ts

0 λc(τ)E[r
2(τ)cos(ωcτ + ωd(t1 − τ))cos(ωcτ +

ωd(t2 − τ))]dτ.
(2) Every result obtained also holds for random signals x

and x� , such as CDMA signals, provided that the expectation
operation E[·] operates on the signals x and x� as well.
Moreover, if the counting process is neither orderly nor
independent increment, then the rate of the counting
process, namely, λ × λc(t), should be random. This will be
the case if λ is a random variable, and the earlier results will
hold provided that there is an additional expectation with
respect to the distribution of the random variable λ. Finally,
we point out that one may use the current paper and the

methodology in [9] to derive expressions for interference
signals.

5. CONCLUSION

This paper presents a unified framework for studying the
statistical characteristics of multipath fading channels, which
can be viewed as a generalization of the mathematical
analysis of the shot-noise effect. These include the second-
order statistics, power spectral densities, and central limit
theorems which are generalizations of Campbell’s theorem.
In the case of nonhomogeneous Poisson process, each
propagation environment is identified with the rate λT(t) =
λ×λc(t), in which λc(·) acts as a filter in shaping the received
signal. This rate is an important parameter which needs to be
identified prior to any design considerations associated with
wireless channels.
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