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1. INTRODUCTION

For a set of sinks in a directed multicast network, it was
shown in [1] that if the network can achieve a certain
throughput to each sink individually, then it can achieve
the same throughput to all sinks simultaneously by allowing
coding at intermediate nodes. Such argument is possible
since information is an abstract entity rather than a physical
one. Thus, in addition to repetition and forwarding, nodes
can manipulate the symbols available from their in-edges
and apply functions of such symbols to their out-edges. The
collection of edge functions can be referred to as the network
code. The work in [1] shows that a natural bound on the
achievable coding rate is the least of the min-cuts between
the source and each of the sinks. We refer to a code achieving
the min-cut rate as a solution.

It is known that every multicast network has a linear
solution over a sufficiently large finite field [2]. Sanders et al.
[3] showed for linear network coding that an alphabet of size
O(|T |) is sufficient to achieve the min-cut rate, where |T |
is the number of sinks in the network. Rasala-Lehman and
Lehman [4] indicated that such bound is tight by advising
a solvable multicast network requiring an alphabet of size
Ω(
√|T |) to achieve the min-cut rate. This shows that some

multicast networks might require alphabets of huge sizes
to achieve their min-cut throughputs. Coding over large
alphabet sizes is not always desirable since it introduces
some complexity and latency concerns. Hence, this motivates
working below min-cut rates (i.e., relaxing the constraint of

operating at network capacity) but with significantly smaller
alphabet sizes (if possible) [5].

Chekuri et al. [6] introduced the measure average
routing throughput by relaxing the constraint that all sinks
must receive the same rate. By decoupling the problem of
maximizing the average rate from the problem of balancing
rates toward sinks, they showed that average routing rates
can significantly exceed the maximum achievable common
routing rates in the network. They also argued that the
majority rather than the minority of multicast applications
experience different rates at the receivers. In [7], the concept
average linear network coding throughput was introduced
under the constraint where source alphabet and linear
network coding are restricted to the binary field. In this work,
we extend average coding throughput measure to include
linear coding over arbitrary finite fields. Such extension is
an important step toward practical network coding. To see
this, we first remark that in [7] the motivation to restrict
the alphabet to the binary field was to present a simple
coding scheme where nodes are not required to perform
operations over a field larger than F2. Such cut on processing
complexity came with the price of reducing the total network
throughput. In practice, although nodes might not posses
the capability to perform operations over the necessary field
to achieve the min-cut throughput, they might still have
a computation capability beyond the binary field. In such
situations, it is more reasonable to design codes compatible
with nodes computation capability and thus get closer to the
min-cut throughput.



2 EURASIP Journal on Wireless Communications and Networking

In the literature, two different variations of the problem
of nonuniform coding throughputs at the terminals were
considered. The general connection model [5, 8] considers
the problem where each sink specifies its set of demanded
messages. On the other hand, the nonuniform demand
problem refers to the problem where each sink specifies only
the size of its demand (i.e., the number of messages) and such
demanded size might vary from sink to another [9]. In this
work, a sink does not specify neither the identities nor the
number of demanded messages. The objective is to maximize
the average throughput achievable with linear network
coding under the additional constraint where messages and
network coding are restricted to the finite field Fq (where
Fq might not be sufficiently large to achieve the min-cut
throughput).

2. DEFINITIONS AND PROBLEM FORMULATION

In general, assume an h unit rate information source consists
of h unit rate messages x1, x2, . . . , xh, where messages are
symbols from a finite field Fq. Also assume symbols carried
by edges belong to the same field Fq. For the comparison
between average throughputs and common throughputs to
be fair and meaningful, it is important that the number of
messages h at the source does not exceed the min-cut. In the
more general case where the min-cuts from the source to the
sinks are not equal, h can be set such that it does not exceed
the smallest of such min-cuts.

A directed network N on V nodes and E links can be
modeled as a directed graph G(V ,E). In multicast networks,
a node s ∈ V broadcasts a set of messages x1, . . . , xh to
a set of sinks T = {t1, . . . , tn} ⊆ V \ s where h is the
smallest min-cut between s and t, for all t ∈ T . For any edge
e ∈ E, we denote by δin(e) the set of edges entering the node
from which e departs. At some parts of this work, we find it
more convenient to deal with the valuation (defined below)
induced by the network code rather than the network code
itself.

Definition 1. Given a network code, C, defined by a collec-
tion of functions fe, for all e ∈ E such that

fe : F|δin(e)|
q −→ Fq. (1)

The code valuation induced by C is a collection of functions:

f ′e : Fhq −→ Fq, (2)

where f ′e is the value of fe as a function of x1, . . . , xh.
For a multicast network N with a set of messages at

the source whose size does not exceed the smallest of the
min-cuts between the source and each sink. Linear network
coding over sufficiently large field allows every sink t ∈
T to recover the entire set of messages. In this work, we
somehow reverse the story, that is, we restrict the field size
and allow sinks to recover subsets of the set of messages.
Since sinks do not experience the same throughput any more,
average throughput per sink becomes a natural measure to
evaluate the performance of a given network code. Hence,
the objective is to decide on a linear network code over the

specified alphabet which maximizes the average throughput-
or equivalently the sum of throughputs experienced by all
sinks. More formally, we define the maximum average linear
coding throughput over Fq as

T
avg
c = 1

|T |max
Q∈Q

[
∑

t∈T
Tt
c(Q)

]

, (3)

where the maximization is over Q, the set of all possible
linear coding schemes over Fq, and Tt

c(Q) is the throughput
at sink t under linear coding scheme Q ∈ Q. In contrast,
maximum average routing throughput was defined in [6]
and is repeated here for convenience:

T
avg
i = 1

|T |max
P∈P

[
∑

t∈T
Tt
i (P)

]

, (4)

where in this formulation, the maximization is over all
possible integer routing schemes, P , and Tt

i (P) is the integer
routing throughput at sink t under routing scheme P ∈ P .

In what follows, we restrict our attention to the family of
combination networks with N intermediate nodes and min-
cut 2. Such networks are sufficient to develop the ideas we
need to present in this work.

3. COMPLEXITY VERSUS ALPHABET SIZE

Consider a multicast network that requires a field Fq of size
q to achieve the min-cut throughput. Thus, all operations to
compute edge functions must be done over the field Fq. In
other words, each node in the network must have a memory
of Θ(log2(q)) bits to store and manipulate the received
symbols. In practice, each edge can deliver a fixed number
of bits per unit time. Hence, the assumption that edges can
deliver one symbol from Fq per network use implies a latency
of Θ(log2(q)).

4. AVERAGE THROUGHPUT OF COMBINATION
NETWORKWITHMIN-CUT 2

Consider a combination network N with min-cut 2 and
messages x1, x2 ∈ Fq at the source. A combination network
with min-cut 2 consists of three layers of nodes: the source
s, a set of N intermediate nodes, and a set of ( N

2 ) sinks. The
source has an out-edge to each intermediate node. Finally,
each distinct pair of intermediate nodes is connected to a
unique sink via a pair of edges directed into the sink. In this
section, we derive an expression for the maximum average
throughput of N over an arbitrary finite field Fq. It is known
that the network, N , is solvable when N ≤ q + 1, where q
is the field size. Hence, average throughput is equivalent to
the min-cut throughput in this case. On the other hand, for
q = 2, the problem was solved in [7]. Therefore, in most of
the mathematical treatment which follows, we assume 2 <
q < N − 1. In spite of this assumption, whenever applicable,
we use the previously obtained results for the binary field and
the fact that N is solvable for q ≥ N−1 to present the results
for any q ≥ 2.
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Definition 2. Let F be a collection of functions such that

f : Fq × Fq −→ Fq, (5)

for each f ∈ F . Then, an average throughput, T
avg
c , is said to

be achievable over F if there exists a network code valuation
C = { fe(x1, x2) : fe(x1, x2) ∈ F for all e ∈ E} achieving
T

avg
c .

Let G = {αx1 + βx2 : α,β ∈ Fq} be the set of all linear
functions (combinations) of x1 and x2 over Fq. Also let F =
{x2} ∪ {x1 + βx2 : β ∈ Fq}.

Lemma 1. Let f (x1, x2) = αx1 + βx2, f ′(x1, x2) = α′x1 + β′x2

be two functions in G with α,β,α′,β′ ∈ Fq \ {0} then x1 is
recoverable from f and f ′ if and only if x2 is recoverable from
f and f ′ (i.e., either both messages are recoverable or non of
them).

Proof. See the appendix.

Corollary 1. Let f (x1, x2) = x1+βx2, f ′(x1, x2) = x1+β′x2 be
two functions in F with β,β′ ∈ Fq \ {0} then x1 is recoverable
from f and f ′ if and only if x2 is recoverable from f and f ′.

Proof. The corollary follows from Lemma 1 and the fact that
F ⊂ G.

Lemma 2. An average throughput, T
avg
c , is achievable over F

if and only if it is achievable over G.

Proof. See the appendix.

Remarks

(i) Lemma 2 suggests that it is sufficient to consider the set
of functions F and there is no gain in considering G.

(ii) With a slight modifications in the proofs, it is easy to
show that Lemmas 1 and 2 are still valid even if G was
the set of all affine functions of x1 and x2 over Fq.

From the definition of F , we see that |F | = q + 1, and
with the aid of Corollary 1, it is straight forward to show that
any sink receiving two distinct functions from F will be able
to recover both messages. Thus, for N ≤ q + 1 the network
is solvable [10], and the average throughput is equal to the
min-cut throughput. For N > q + 1, a simple pigeon hole
argument shows that some source edges will be carrying the
same combination of messages. Thus, a receiver with two in-
edges carrying the same function of messages will be able to
recover one or non of the messages.

The next proposition determines how functions
f (x1, x2) ∈ F must be distributed among source out-edges
in order to maximize average throughput (i.e., minimize
loss in throughput). Let mi be the number of source edges
carrying fi(x1, x2) = x1 + βix2, for all 1 ≤ i ≤ q − 1, βi ∈
Fq \ {0}, βi /=βj , for all i /= j. With such assignment of

functions to source out edges, we still have N − ∑q−1
i=1 mi

unused source out-edges and two functions in F namely,
f (x1, x2) = x1 and f (x1, x2) = x2. Let m0 and m′

0 be the
number of source edges carrying x1 and x2, respectively.

Since there is no preference in recovering one message
over the other (both messages are equally important
to each destination), a maximum average throughput

achieving assignment must have N−∑q−1
i=1 mi equally divided

between m0 and m′
0, that is, m0 = 
(N − ∑q−1

i=1 mi)/2� and

m′
0 = 
(N − ∑q−1

i=1 mi + 1)/2�. Now, if a sink has both its
in-edges carrying x1 then it can not recover x2, and thus
there are ( m0

2 ) sinks which cannot recover x2. Similarly, there
are ( m′

0
2 ) destinations which cannot recover x1. Finally, a

destination receiving fi(x1, x2) = x1 + βix2, βi /= 0 on both
of its in-edges will not recover any of the messages, and so
there is a loss of 2( mi

2 ). Hence, the total loss in throughput is
given by

L
(
m1, . . . ,mk

)

=

⎛

⎜
⎝

⌊
N−∑k

i=1mi

2

⌋

2

⎞

⎟
⎠+

⎛

⎜
⎝

⌊
N−∑k

i=1mi + 1
2

⌋

2

⎞

⎟
⎠ + 2

k∑

i=1

⎛

⎝
mi

2

⎞

⎠ ,

(6)

where k = q − 1 and the average throughput, as function of
m1, . . . ,mk, is given by

T
avg
c
(
m1, . . . ,mk

) = 1
( N

2 )

[

2

(
N
2

)

− L
(
m1, . . . ,mk

)
]

. (7)

Before we present the proposition, we need the following
lemma.

Lemma 3. Let

A =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a 1 · · · 1

1 a · · · 1

... · · · . . . 1

1 · · · 1 a

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(8)

be a k × k matrix with a ∈ R, a /= 1 or −(k − 1), then

A−1 = 1
(a− 1)(a + k − 1)

×

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a + (k − 2) −1 · · · −1

−1 a + (k − 2) · · · −1

... · · · . . .
...

−1 · · · −1 a + (k − 2)

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(9)

Proof. See the appendix.

Proposition 1. Average linear network coding throughput of
networkN is maximized whenm1 = m2 = · · · = mk := m∗

int,
where 
(N + 1)/(k + 4)� ≤ m∗

int ≤ 
(N + 1)/(k + 4)� + 1 .
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Proof. From (6), we can write size

L
(
m1, . . . ,mk

)= 1
2

[(
N−∑k

i=1mi−δ
2

)(
N−∑k

i=1mi − δ

2
−1
)

+
(
N−∑k

i=1mi +δ
2

)(
N−∑k

i=1mi +δ
2

−1
)

+ 4
k∑

i=1

mi
(
mi − 1

)

2

]

,

(10)

where δ = 0 and 1 for N − ∑k
i=1mi is even and odd,

respectively. This reduces to

L
(
m1, . . . ,mk

) = 1
4

[(

N −
k∑

i=1

mi

)2

− 2

(

N −
k∑

i=1

mi

)

+ 4
k∑

i=1

mi
(
mi − 1

)
+ δ

]

.

(11)

For the moment, we relax the constraintthat m1, . . . ,mk

must be integer valued. We also relax the constraint that
(N − ∑k

i=1mi)/2 and (N − ∑k
i=1mi + 1)/2 must be integers

(note that with such relaxation δ disappears from (11)). Now,
we compute the partial derivative of (11) with respect to
mj , for all 1 ≤ j ≤ k and equate to zero. Thus, we obtain

5mj +
∑

i /= j

mi = N + 1. (12)

This can equivalently be written as
(
m1 m2 · · · mk

)
A = (N + 1)(1 1 · · · 1), (13)

where A = 4I + 1, I is the k × k identity matrix, and 1 is the
all ones k × k matrix. Thus,

(
m1 m2 · · · mk

) = (N + 1)(1 1 · · · 1)A−1 (14)

and from Lemma 3 (using a = 5), we obtain

(
m1 m2 · · · mk

) = N + 1
k + 4

(1 1 · · · 1), (15)

that is, m1 = m2 = · · · = mk = (N + 1)/(k + 4). Noting
that L(m1, . . . ,mk) is a convex function of m1, . . . ,mk then
we know that the integer value m∗

int of m1, . . . ,mk which
minimizes L(m1, . . . ,mk) is bounded as

⌊
N + 1
k + 4

⌋
≤ m∗

int ≤
⌊
N + 1
k + 4

⌋
+ 1 (16)

as required.

Since T
avg
c =maxm1,...,mkT

avg
c (m1,. . .,mk) andT

avg
c (m1,. . .,

mk) is maximized by the choice of m1, . . . ,mk as in
Proposition 1, then T

avg
c is totally specified by m∗

int. The
following proposition establishes a simple relation between
m∗

int and the field size q.

Proposition 2. In a combination network with N interme-
diate nodes, m∗

int that maximizes the average linear network
coding throughput over Fq is given by

m∗
int =

⌊
N + 2 + 
q/2�

q + 3

⌋
, (17)

where 2 < q < N − 1.

Proof. From (7) and (11), and by substituting m1 = m2 =
· · · = mk := m, we obtain

T
avg
c (m)= 1

2N(N − 1)

[
4N(N − 1)− (N − km)2

+ 2(N − km)− 4km(m− 1)− δ
]
,

(18)

where δ = 0 for N − km is even, and δ = 1 for N − km is
odd. Since δ plays a roll in the next derivations, we will write
δ(N ,m) to emphasize its dependence on N and m. From
(18), we can write

T
avg
c (m) = 1

2N(N − 1)
h(m), (19)

where

h(m) = − (k2 + 4k
)
m2 − 2(N + 1)km

+ N(3N − 2)− δ(N ,m).
(20)

Let ma = 
(N + 1)/(k+ 4)� and mb = ma + 1 = 
(N + 1)/(k+
4)� + 1, then from Proposition 1 we know that m∗

int is either
ma or mb. Thus, we can write

m∗
int = arg max

m∈{ma ,mb}
T

avg
c (m) = arg max

m∈{ma ,mb}
h(m). (21)

In what follows, we assume k > 1 (the case when k = 1 was
solved in [7])

Now consider the following two possibilities.

Possibility A (k is odd)

Note in this case the field size, q, is even since k = q−1. Thus,
q= 2n for some integer n > 1, that is, Fq is an extension field
with characteristic 2. Depending on the parities of N and ma

(or equivalently mb), the following four cases arise.

Case 1. Both N and ma are even. Noting that for this case
δ(N ,ma) = 0 and δ(N ,mb) = 1, then from (20) and the fact
that mb = ma + 1 we obtain

h
(
mb
) = h

(
ma
)− k(k + 4)

(
2ma + 1

)
+ 2(N + 1)k − 1.

(22)

Since ma = 
(N + 1)/(k + 4)� = (N + 1− ε)/(k + 4) for some
ε ∈ {0, 1, . . . , k + 3}, then we obtain

h
(
mb
) = h

(
ma
)

+ k
(
2ε − (k + 4)

)− 1. (23)

From this and (21), we see that m∗
int = ma if k(2ε − (k +

4)) − 1 < 0, and m∗
int = mb if k(2ε − (k + 4)) − 1 > 0. But
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k(2ε − (k + 4)) − 1 > 0 if and only if ε > (k + 4)/2 + 1/2k.
Thus,

m∗
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma, ε <
k + 4

2
+

1
2k

,

mb, ε >
k + 4

2
+

1
2k

.

(24)

Now, we impose more structure on ε. Since ma = (N + 1 −
ε)/(k + 4) and noting that ma is even while N + 1 and k + 4
are odd, then ε must be odd, that is, ε ∈ {1, 3, . . . , k, k + 2}.
From this and (24), we get

m∗
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma, ε ∈
{

1, 3, 5, . . . ,
k − 1

2
,
k + 3

2

}
,

mb, ε ∈
{
k + 7

2
,
k + 11

2
, . . . , k, k + 2

}
.

(25)

Case 2. Both N and ma are odd. An identical result to (25)
can be obtained.

Case 3. N is even, and ma is odd. For this case, we have
δ(N ,ma) = 1 and δ(N ,mb) = 0 and from (20) we can write

h
(
mb
) = h

(
ma
)

+ k
(
2ε − (k + 4)

)
+ 1, (26)

since ma = (N +1−ε)/(k+4) and from the fact that ma, N +
1, and k + 4 are all odd, then ε must be even, that is, ε ∈
{0, 2, . . . , k + 1, k + 3}.

Now, k(2ε− (k+ 4)) + 1 > 0 if and only if ε > (k+ 4)/2−
1/2k. Thus,

m∗
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma, ε ∈
{

0, 2, 4, . . . ,
k − 3

2
,
k + 1

2

}
,

ma, ε ∈
{
k + 5

2
,
k + 9

2
, . . . , k + 1, k + 3

}
.

(27)

Case 4. N is odd, and ma is even. An identical result to (27)
can be obtained.

Combining the previous four cases, we can write for any
odd k > 1:

m∗
int=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma=
⌊
N + 1
k + 4

⌋
, ε∈

{
0,1, 2, 3, . . . ,

k + 1
2

,
k + 3

2

}
,

mb=
⌊
N + 1
k + 4

⌋
+1, ε∈

{
k + 5

2
,
k + 7

2
, . . . ,k + 2,k + 3

}
.

(28)

Or more compactly

m∗
int =

⌊
N + 2 + (k + 1)/2

k + 4

⌋
. (29)

Possibility B (k is even)

Note that in this case the field size, q, is odd. Thus, q = pn

for some prime p /= 2 and integer n ≥ 1. As in possibility A.
the following four cases arise.

Case 1. Both N and ma are even. In this case, we have
δ(N ,ma) = δ(N ,mb) = 0 and from (20) we can write

h
(
mb
) = h

(
ma
)

+ k
(
2ε − (k + 4)

)
, (30)

since ma is even, N + 1 is odd, and k + 4 is even, we induce
that ε must be odd. Combining this with (30), (21) and the
fact that k(2ε − (k + 4)) < 0 if and only if ε < (k + 4)/2 we
obtain, for k/2 is even (i.e., k is divisible by 4),

m∗
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma, ε ∈
{

1, 3, 5, . . . ,
k − 2

2
,
k + 2

2

}
,

mb, ε ∈
{
k + 6

2
,
k + 10

2
, . . . , k + 3

}
,

(31)

and for k/2 is odd:

m∗
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma, ε ∈
{

1, 3, 5, . . . ,
k

2
,
k + 4

2

}
,

mb, ε ∈
{
k + 8

2
,
k + 12

2
, . . . , k + 3

}
.

(32)

Case 2. Both N and ma are odd. Following the same steps as
before and noting that ε is even for this case, we obtain (for
k/2 is even)

m∗
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma, ε ∈
{

0, 2, 4, . . . ,
k

2
,
k + 4

2

}
,

mb, ε ∈
{
k + 8

2
,
k + 12

2
, . . . , k, k + 2

}
,

(33)

and for k/2 is odd:

m∗
int =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma, ε ∈
{

0, 2, 4, . . . ,
k − 2

2
,
k + 2

2

}
,

mb, ε ∈
{
k + 6

2
,
k + 10

2
, . . . , k, k + 2

}
.

(34)

Case 3. N is even, and ma is odd. It can be shown that m∗
int

in this case is given by identical relations to (31) and (32).

Case 4. N is odd, and ma is even. This case can be shown to
be similar to Case 2, that is, m∗

int is given by (33) and (34).

Combining the previous four cases, we can write for any
even k > 1:

m∗
int=

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ma=
⌊
N + 1
k + 4

⌋
, ε∈

{
0,1, 2, 3, . . . ,

k

2
,
k + 2

2
,
k + 4

2

}
,

mb=
⌊
N + 1
k + 4

⌋
+1, ε∈

{
k + 6

2
,
k + 8

2
, . . . ,k + 2,k + 3

}
.

(35)

This can also be written as

m∗
int =

⌊
N + 2 + k/2

k + 4

⌋
. (36)

From (29) and (36), we obtain for any 1 < k < N − 2

m∗
int =

⌊
N + 2 + 
(k + 1)/2�

k + 4

⌋
, (37)

substituting k = q − 1 and the proposition follows.
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From the work in [7] for q = 2 and the results presented
in this work, we obtain the following corollary which char-
acterizes T

avg
c over any finite field.

Corollary 2. For a combination network with N intermediate
nodes and min-cut 2, the maximum achievable average linear
network coding throughput over Fq is given as

T
avg
c =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2, q ≥ N − 1,

1
( N

2 )

[

2

⎛

⎝
N

2

⎞

⎠− L
(
m∗

q

)
]

, 2 ≤ q < N − 1,
(38)

where

L
(
m∗

q

)=

⎛

⎜
⎝

⌊N − km∗
q

2

⌋

2

⎞

⎟
⎠+

⎛

⎜
⎝

⌊N − km∗
q + 1

2

⌋

2

⎞

⎟
⎠+2k

⎛

⎝
m∗

q

2

⎞

⎠ ,

m∗
q =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

⌊
N + 2 + 
q/2�

q + 3

⌋
, 2 < q < N − 1,

⌊
N + 2

5

⌋
, q = 2.

(39)

Proof. For q ≥ N − 1, the result is immediate since the
network is solvable. For 2 < q < N − 1, the claim follows
from (6) and (7), where from Proposition 1 we know that
average throughput is maximized when m1, . . . ,mk are equal.
Hence, we substitute m∗

q for m1, . . . ,mk in (6), where m∗
q is

the integer value which maximizes the average throughput
and was obtained in Proposition 2 (it was denoted m∗

int).
Finally, for q = 2 the result was proven in [7].

Figure 1 shows T
avg
c as a function of N and the number

of intermediate nodes, for different field sizes. It also shows
the average integer routing throughput T

avg
i .

APPENDIX

PROOFS

Proof of Lemma 1. Assume x1 is recoverable from f and f ′,
then x2 = β−1( f −αx1) where β−1 exists since β /= 0, and Fq \
{0} is a group under multiplication. Thus, x2 is recoverable.
The proof of the other direction is similar.

Proof of Lemma 2. The forward implication is obvious since
F ⊂ G. To prove the reverse implication, assume that
there exists a code valuation C = {ge(x1, x2) : ge(x1, x2) ∈
G, for all e ∈ E} achieving average throughput T

avg
c .

Consider an indexing set I = {1, 2, . . . ,N} on the source out-
edges (and equivalently on intermediate nodes). Since each
intermediate node in N has only one in-edge then interme-
diate nodes merely forward what they receive on their in-
edges to their out-edges. Thus, C is uniquely specified by
the functions carried by the source out-edges. Hence, we may
consider C = {gi(x1, x2) : gi(x1, x2) ∈ G, for all i ∈ I}. For
any i ∈ I, if gi(x1, x2) = αix1 + βix2 ∈ C with αi = βi = 0,
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Figure 1: Average linear network coding throughput.

then gi can be replaced with any function without reducing
the average throughput. Thus, we can assume that αi and
βi are not both zero. Now, let A be the subset of I whose
elements are the indices of source edges carrying functions
gi(x1, x2) = αix1, that is, βi = 0, for all i ∈ A. Similarly,
let B be the subset of I such that gi = βix2, for all i ∈ B.
Obviously, A and B are disjoint since αi and βi are not both
zero for any i ∈ I. Finally, let C be the subset of I whose
elements are the indices of all source edges carrying functions
of the form gi = αix1 + βix2 with αi /= 0 and βi /= 0. Clearly,
A,B, and C partition I.

Now, design a code over F such that fi(x1, x2) = x1,
for all i ∈ A, fi(x1, x2) = x2, for all i ∈ B, and fi(x1,
x2) = x1 + α−1

i βix2, for all i ∈ C. The existence of fi in the
given form for i ∈ C is guaranteed since αi /= 0, βi /= 0, and
Fq \ {0} is a group under multiplication.

Now for all i, j ∈ I, consider sink ti j ∈ T with incoming
edges originating from intermediate nodes i, j ∈ I.

(i) If i, j ∈ A, then ti j will be able to recover only x1 from
g1 and g2 which is still the case if gi and gj are replaced by fi
and f j . The same argument holds if i, j ∈ B with x2 replacing
x1.

(ii) If i ∈ A and j ∈ B, then fi and f j will make x1 and x2

available to ti j so both messages are recoverable and there is
no loss in throughput due to replacing gi and gj with fi and
f j .

(iii) If i ∈ A and j ∈ C, then fi makes x1 available to ti j
which can be used with f j to recover x2. Thus, both messages
are recoverable, and there is no loss in considering F instead
of G. A similar argument holds for i ∈ B and j ∈ C.

(iv) If i, j ∈ C, then from gi and gj we can write
γx2 = αigj − αjgi where γ = αiβj − αjβi. Hence, x2 is not
recoverable if and only if γ = 0. From this and Lemma 1
(since αi,βi,αj ,βj ∈ Fq \ {0}), we know that both x1 and
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x2 are not recoverable if and only if γ = 0. Also from fi and
f j, we can write γ′x2 = f j − fi where γ′ = α−1

j β j − α−1
i βi, and

the same argument for γ holds for γ′. Thus, we need to show
γ = 0 if and only if γ′ = 0. To this end, note that

γ = 0 ⇐⇒ αiβj = αjβi ⇐⇒ βj = α−1
i α jβi

⇐⇒ βj = αjα
−1
i βi ⇐⇒ α−1

j β j = α−1
i βi ⇐⇒ γ′ = 0.

(A.1)

Hence, there is no loss in considering F instead of G in any
of the previous cases. The lemma follows by noting that the
previous cases represent all possibilities of receiving a pair of
functions by any sink.

Remarks

(i) With a slight modification in the last step of the proof,
the lemma can be shown to be still true even if the
alphabet was a finite division ring (a skew field) instead
of a field.

(ii) It is possible to show that the lemma is true for any
multicast network N with min-cut 2. The proof in this
case can be of the same nature as the proof presented in
[11] for the sufficiency of homogeneous functions.

Proof of Lemma 3. Note that A can be written as A = (a −
1)I + 1 where I is the k × k identity matrix, and 1 is the all
ones k × k matrix (1i j = 1, for all 1 ≤ i, j ≤ k). Let B be
another k×k matrix such that AB = I. Assume that B can be
written as B = (bI− 1)c, where b and c are scalars. Thus,

AB = ((a− 1)I + 1
)
(bI− 1)c

= ((a− 1)bI + b1− (a− 1)1− k1
)
c.

(A.2)

For the multiplication AB to equal I, we need b1− (a−1)1−
k1 = 0, where 0 is the all zero matrix. This can be satisfied by
choosing

b = a + k − 1. (A.3)

We also need

c(a− 1)b = c(a− 1)(a + k − 1) = 1. (A.4)

Since a /= 1, − (k − 1), we obtain c = 1/(a − 1)(a + k − 1).
Thus,

B = 1
(a− 1)(a + k − 1)

(
(a + k − 1)I− 1

)
. (A.5)

It is easy to check that BA = I, thus A−1 = B.
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