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A fast linear minimum mean square error (LMMSE) channel estimation method has been proposed for Orthogonal Frequency
Division Multiplexing (OFDM) systems. In comparison with the conventional LMMSE channel estimation, the proposed channel
estimation method does not require the statistic knowledge of the channel in advance and avoids the inverse operation of a large
dimension matrix by using the fast Fourier transform (FFT) operation. Therefore, the computational complexity can be reduced
significantly. The normalized mean square errors (NMSEs) of the proposed method and the conventional LMMSE estimation have
been derived. Numerical results show that the NMSE of the proposed method is very close to that of the conventional LMMSE
method, which is also verified by computer simulation. In addition, computer simulation shows that the performance of the
proposed method is almost the same with that of the conventional LMMSE method in terms of bit error rate (BER).
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1. Introduction

Orthogonal frequency division multiplexing (OFDM) is an
efficient high data rate transmission technique for wireless
communication [1]. OFDM presents advantages of high
spectrum efficiency, simple and efficient implementation
by using the fast Fourier transform (FFT) and the inverse
Fast Fourier Transform (IFFT), mitigation of intersym-
bol interference (ISI) by inserting cyclic prefix (CP), and
robustness to frequency selective fading channel. Channel
estimation plays an important part in OFDM systems. It can
be employed for the purpose of detecting received signal,
improving the capacity of orthogonal frequency division
multiple access (OFDMA) systems by cross-layer design [2],
and improving the system performance in terms of bit error
rate (BER) [3–5].

1.1. Previous Work. The present channel estimation methods
generally can be divided into two kinds. One kind is based
on the pilots [6–9], and the other is blind channel estimation
[10–12] which does not use pilots. Blind channel estimation
methods avoid the use of pilots and have higher spectral
efficiency. However, they often suffer from high computation
complexity and low convergence speed since they often need
a large amount of receiving data to obtain some statistical

information such as cyclostationarity induced by the cyclic
prefix. Therefore, blind channel estimation methods are not
suitable for applications with fast varying fading channels.
And most practical communication systems such as World
Interoperability for Microwave Access (WIMAX) system
adopt pilot assisted channel estimation, so this paper studies
the first kind.

For the pilot-aided channel estimation methods, there
are two classical pilot patterns, which are the block-type
pattern and the comb-type pattern [4]. The block-type
refers to that the pilots are inserted into all the subcarriers
of one OFDM symbol with a certain period. The block-
type can be adopted in slow fading channel, that is, the
channel is stationary within a certain period of OFDM
symbols. The comb-type refers to that the pilots are inserted
at some specific subcarriers in each OFDM symbol. The
comb-type is preferable in fast varying fading channels, that
is, the channel varies over two adjacent OFDM symbols
but remains stationary within one OFDM symbol. The
comb-type pilot arrangement-based channel estimation has
been shown as more applicable since it can track fast
varying fading channels, compared with the block-type
one [4, 13]. The channel estimation based on comb-type
pilot arrangement is often performed by two steps. Firstly,
it estimates the channel frequency response on all pilot
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subcarriers, by lease square (LS) method, LMMSE method,
and so on. Secondly, it obtains the channel estimates on
all subcarriers by interpolation, including data subcarriers
and pilot subcarriers in one OFDM symbol. There are
several interpolation methods including linear interpolation
method, second-order polynomial interpolation method,
and phase-compensated interpolation [4].

In [14], the linear minimum mean square error
(LMMSE) channel estimation method based on channel
autocorrelation matrix in frequency domain has been pro-
posed. To reduce the computational complexity of LMMSE
estimation, a low-rank approximation to LMMSE estimation
has been proposed by singular value decomposition [6]. The
drawback of LMMSE channel estimation [6, 14] is that it
requires the knowledge of channel autocorrelation matrix
in frequency domain and the signal to noise ratio (SNR).
Though the system can be designed for fixed SNR and
channel frequency autocorrelation matrix, the performance
of the OFDM system will degrade significantly due to
the mismatched system parameters. In [15], a channel
estimation exploiting channel correlation both in time and
frequency domain has been proposed. Similarly, it needs
to know the channel autocorrelation matrix in frequency
domain, the Doppler shift, and SNR in advance. Mismatched
parameters of the Doppler shift and the delay spread will
degrade the performance of the system [16]. It is noted
that the channel estimation methods proposed in [6, 14–16]
can be adopted in either the block-type pilot pattern or the
comb-type pilot pattern.

When the assumption that the channel is time-invariant
within one OFDM symbol is not valid due to high Doppler
shift or synchronization error, the intercarrier interference
(ICI) has to be considered. Some channel estimation and
signal detection methods have been proposed to compensate
the ICI effect [17, 18]. In [17], a new equalization technique
to suppress ICI in LMMSE sense has been proposed.
Meanwhile, the authors reduced the complexity of channel
estimator by using the energy distribution information of the
channel frequency matrix. In [18], the authors proposed a
new pilot pattern, that is, the grouped and equispaced pilot
pattern and corresponding channel estimation and signal
detection to suppress ICI.

1.2. Contributions. In this paper, the OFDM system frame-
work based on comb-type pilot arrangement is adopted,
and we assume that the channel remains stationary within
one OFDM symbol, and therefore there is no ICI effect.
We propose a fast LMMSE channel estimation method.
The proposed method has three advantages over the con-
ventional LMMSE method. Firstly, the proposed method
does not require the knowledge of channel autocorrelation
matrix and SNR in advance but can achieve almost the
same performance with the conventional LMMSE channel
estimation in terms of the normalized mean square error
(NMSE) of channel estimation and bit error rate (BER).
Secondly, the proposed method needs only fast Fourier
transform (FFT) operation instead of the inversion operation
of a large dimensional matrix. Therefore, the computational

complexity can be reduced significantly, compared with
the conventional LMMSE method. Thirdly, the proposed
method can track the changes of channel parameters, that
is, the channel autocorrelation matrix and SNR. However,
the conventional LMMSE method cannot track the channel.
Once the channel parameters change, the performance of
the conventional LMMSE method will degrade due to the
parameter mismatch.

1.3. Organization. The paper is organized as follows.
Section 2 describes the OFDM system model. Section 3
describes the proposed fast LMMSE channel estimation. We
analyze the mean square error (MSE) of the proposed fast
LMMSE channel estimation and the MSE of the conventional
LMMSE channel estimation in Section 4. The simulation
results and numerical results of the proposed algorithm are
discussed in Section 5 followed by conclusion in Section 6.

2. SystemModel

The OFDM system model with pilot signal (i.e., training
sequence) assisted is shown in Figure 1. For N subcarriers
in the OFDM system, the transmitted signal x(i,n) in time
domain after inverse Fast Fourier Transform (IFFT) is given
by

x(i,n) = IFFTN [X(i, k)] = 1
N

N−1∑

k=0

X(i, k) exp
{
j2πnk
N

}
, (1)

where X(i, k) denotes the transmitted signal in frequency
domain at the kth subcarrier in the ith OFDM symbol. The
comb-type pilot pattern [4] is adopted in this paper. The
pilot subcarriers are equispaced inserted into each OFDM
symbol. It is assumed that the number of the total pilot
subcarriers is Np, and the inserting gap is R. Each OFDM
symbol is composed of the pilot subcarriers and the data
subcarriers. It is assumed that the index of the first pilot
subcarrier is k0. Therefore, the set of the indeces of pilot
subcarriers, η, can be written as

η =
{
k | k = mR + k0, m = 0, 1, . . . ,Np − 1

}
, (2)

where k0 ∈ [0, R). The received signal Y(i, k) in frequency
domain after FFT can be written as

Y(i, k) = X(i, k)H(i, k) + W(i, k), (3)

where W(i, k) denotes the AGWN with zero mean, and
variance σ2

w, H(i, k) is the frequency response of the radio
channel at the kth subcarrier of the ith OFDM symbol.
Then, the received pilot signal Yp(i, k) is extracted from
Y(i, k) to perform channel estimation. As shown in Figure 2,
the channel estimator firstly performs channel frequency
response estimation at pilot subcarriers. There are some
channel estimation methods for this part such as LS and
LMMSE estimator [4]. Next, once the channel frequency
response estimation at pilot subcarriers, H̃p(i, k), is obtained,
the estimator performs interpolation to obtain channel
frequency response estimation at all subcarriers. There
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are linear interpolation method [4], second-order polyno-
mial interpolation method [4], discrete Fourier transform-
(DFT-) based interpolation method [19], and so on. In our
system model, the linear interpolation method is adopted.
After channel estimation, maximum likelihood detection is
performed to obtain the estimated frequency signal X̃(i, k).
The X̃(i, k) is given by

X̃(i, k) = argmin
S

∣∣∣Y(i, k)− H̃(i, k)S
∣∣∣

2
, (4)

where S ∈ s, and s is the set containing all constellation
points, which depends on modulation method, that is, the
signal mapper. For instance, if QPSK modulation is adopted,
the set s = {(1/

√
2)(1 + j), (1/

√
2)(1 − j), (1/

√
2)(−1 +

j), (1/
√

2)(−1 − j)}. Finally, the estimated frequency signal
X̃(i, k) passes through the signal demapper to obtain the
received bit sequence.

3. The Proposed Fast LMMSE Algorithm

3.1. Properties of the Channel Correlation Matrix in Frequency
Domain. The channel impulse response in time domain can
be expressed as

h(i,n) =
L−1∑

l=0

hl(i)δ(n− τl), (5)

where hl(i) is the complex gain of the lth path in the ith
OFDM symbol period, δ(·) is the Kronecker delta function,
τl is the delay of the lth path in unit of sample point, and
L is the number of resolvable paths. Assume that different
paths hl(i) are independent from each other and the power
of the lth path is σ2

l . The channel is normalized so that
σ2
h =

∑
l σ

2
l = 1. The channel response in frequency domain

H(i, k) is the FFT of h(i,n), and it is given by

H(i, k) = FFTN (h(i,n)) =
N−1∑

m=0

h(i,m) exp
{
− j2πmk

N

}
, (6)

where FFTN (•) denotes N points FFT operation. The
channel autocorrelation matrix in frequency domain can be
expressed as

RHH(m,n)

= E[H(i,m)H∗(i,n)]

= E

⎡
⎣
N−1∑

k=0

h(i, k) exp
{
− j2πkm

N

}

·
N−1∑

k=0

h∗(i, k) exp
{
j2πkn
N

}⎤
⎦

=
N−1∑

k=0

E
{
|h(i, k)|2

}
exp

{
− j2πk(m− n)

N

}

=
L−1∑

l=0

σ2
l exp

{
− j2πτl(m− n)

N

}
,

(7)

where E(•) denotes expectation. Denote the vector form of
the channel autocorrelation matrix by RHH, and we have
RHH = [RHH(i, j)]N×N . It is easy to find that the matrix RHH

is a circulant matrix. Therefore, as in [20], the eigenvalues of
RHH are given by

[λ0 λ1 · · · λN−1]

= [FFTN (RHH(0, 0)RHH(0, 1) · · ·RHH(0,N − 1))].
(8)

The formula (8) can be equivalently written as

λk =
N−1∑

n=0

RHH(0,n) exp
{
− j2πnk

N

}
, k = 0, 1, ...,N − 1.

(9)

We can easily obtain from (7) and (9) that the number of
nonzero eigenvalues of RHH is equal to the total number of
resolvable paths, L (see Appendix A). It is known by us that
the rank of a square matrix is the number of its nonzero
eigenvalues. Therefore the rank of RHH is L, and RHH is a
singular matrix since L < N . The matrix RHH does not have
the inverse matrix and has only the Moore-Penrose inverse
matrix. However, the rank of the matrix RHH + σ2

wI is N
(see Appendix A), where I is an N by N identity matrix.
Therefore, the matrix RHH + σ2

wI is not singular and has the
inverse matrix.

3.2. The Proposed Fast LMMSE Channel Estimation Algo-
rithm. Let

Hp(i) =
[
Hp(i, 0) Hp(i, 1) · · · Hp

(
i,Np − 1

)]T
(10)

denote the channel frequency response at pilot subcarriers of
the ith OFDM symbol, and let

Yp(i) =
[
Yp(i, 0) Yp(i, 1) · · · Yp

(
i,Np − 1

)]T
(11)

denote the vector of received signal at pilot subcarriers of
the ith OFDM symbol after FFT. Denote the pilot signal of
the ith OFDM symbol by Xp(i, j), j = 0, 1, . . . ,Np − 1. The
channel estimate at pilot subcarriers based on least square
(LS) criterion is given by

H̃p,ls(i) =
[
H̃p,ls(i, 0) H̃p,ls(i, 1) · · · H̃p,ls

(
i,Np − 1

)]T

=
[
Yp(i, 0)

Xp(i, 0)

Yp(i, 1)

Xp(i, 1)
· · · Yp(i,Np − 1)

Xp(i,Np − 1)

]T

.

(12)
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The LMMSE estimator at pilot subcarriers is given by [6]

H̃p,lMMSE(i)

=
[
H̃p,lMMSE(i, 0) H̃p,lMMSE(i, 1) · · · H̃p,lMMSE

(
i,Np − 1

)]

= RHpHp

(
RHpHp +

β

SNR
I

)−1

H̃p,ls(i),

(13)

where RHpHp is channel autocorrelation matrix at pilot
subcarriers and is defined by RHpHp = E{HpHH

p }, where

(·)H denotes Hermitian transpose. It is easy to verify that
the matrix RHpHp is circulant, the rank of RHpHp is equal to
L, and the rank of RHpHp + σ2

wI is equal to Np. The signal-

to-noise ratio (SNR) is defined by SNR = E|Xp(k)|2/σ2
w,

and β = E|Xp(k)|2E|1/Xp(k)|2 is a constant depending
on the signal constellation. For 16QAM modulation β =
17/9 and for QPSK and BPSK modulation β = 1. If
the channel autocorrelation matrix RHpHp and SNR are

known in advance, RHpHp(RHpHp + (β/SNR)I)−1needs to be
calculated only once. However, the autocorrelation matrix

RHpHp and SNR are often unknown in advance and time
varying. Therefore the LMMSE channel estimator becomes
unavailable in practice. To solve the problem, we propose the
fast LMMSE channel estimation algorithm. The algorithm
can be divided into three steps. The first step is to obtain
the estimate of channel autocorrelation matrices RHpHp and

R̃HpHp . Firstly, we obtain the least square (LS) channel

estimation at pilot subcarriers in time domain, h̃p.ls(i, k), and
it is given by

h̃p.ls(i, k) = 1
Np

Np−1∑

n=0

H̃p,ls(i,n) exp

{
j2πnk
Np

}
,

k = 0, 1, . . . ,Np − 1.

(14)

Secondly, the most significant taps (MSTs) algorithm [21]
has been proposed to obtain the refined channel estimation
in time domain. The MST algorithm deals with each OFDM
symbol by reserving the most significant L′ paths in terms of
power and setting the other taps to be zero. The algorithm
can reduce the influence of AWGN and other interference
significantly, compared with the LS method. However, the
algorithm may choose the wrong paths and omit the
right paths because of the influence of AWGN and other
interference. Thus, we will improve the algorithm of [21]
by processing several adjacent OFDM symbols jointly. We
calculate the average power of each tap for NMST adjacent
OFDM symbols, PLS(k), and it is given by

PLS(k) = 1
NMST

NMST−1∑

i=0

∣∣∣h̃p,ls(i, k)
∣∣∣

2
, k = 0, 1, . . . ,Np − 1.

(15)
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Then we choose the L′ most significant taps from PLS(k) and
reserve the indeces of them into a set α′. Finally, the refined

channel estimation in time domain, h̃p,MST, is given by

h̃p,MST(i, k)

=

⎧
⎪⎨
⎪⎩

h̃p,ls(i, k), if k ∈ α′,

0, if k /∈α′,

k = 0, 1, . . . ,Np − 1, i = 0, 1, . . . ,NMST − 1.

(16)

Denote the first row of the matrix R̃HpHp by Ã. Then Ã can be
given from (7) by

Ã = Np · IFFTNp[PMST], (17)

where PMST is a 1 by Np vector with each entry

PMST(k) =
⎧
⎨
⎩
PLS(k), if k ∈ α′,

0, if k /∈α′,

k = 0, 1, . . . ,Np − 1.

(18)

Since the matrix R̃HpHp is circulant, R̃HpHp can be acquired by

circle shift of Ã. The second step is to obtain the estimate of
SNR. The estimate of SNR, �SNR, is given by

�SNR =
∑

k PMST(k)∑
k PLS(k)−∑k PMST(k)

. (19)

The third step is to obtain the estimate of the matrix

RHpHp(RHpHp + (β/SNR)I)−1, R̃HpHp(R̃HpHp + (β/�SNR)I)
−1

.

We refer to the matrix RHpHp(RHpHp + (β/SNR)I)−1 as the
LMMSE matrix in this paper. Since RHpHp is a circulant

matrix and (RHpHp + (β/SNR)I)−1 is a circulant matrix,

the product of RHpHp and (RHpHp + (β/SNR)I)−1 is also a
circulant matrix. Therefore, we need only to compute the
estimate of the first row of the LMMSE matrix. Denote the
first row of LMMSE matrix by B. The estimate of B, B̃, is
given by (see Appendix B)

B̃= IFFTNp

⎡
⎣ PMST(0)

PMST(0) +
(
β/Np�SNR

) PMST(1)

PMST(1) +
(
β/Np�SNR

)

· · ·
PMST

(
Np − 1

)

PMST

(
Np − 1

)
+
(
β/Np�SNR

)

⎤
⎦

(20)

where IFFTNp(•) denotes Np points IFFT operation.

Therefore the estimated LMMSE matrix R̃HpHp(R̃HpHp+

(β/�SNR)I)
−1

can be obtained from circle shift of B̃. The
channel estimation in frequency domain at pilot subcarriers
for the ith OFDM symbol can be given by

H̃p,fast lMMSE(i) = R̃HpHp

(
R̃HpHp +

β
�SNR

I

)−1

H̃p,ls(i),

i = 0, 1, . . . ,NMST − 1.

(21)
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RHpHp , A.

The proposed fast LMMSE algorithm avoids the matrix
inverse operation and can be very efficient since the algo-
rithm only uses the FFT and circle shift operation. The
proposed fast LMMSE algorithm can be summarized as
follows.

Step 1. Obtain the LS channel estimation of pilot signal in

time domain, h̃p.ls(i, k), by formula (14).

Step 2. Calculate the average power of each tap for NMST

OFDM symbols, PLS(k), by formula (15). Then, we choose
the L′ most significant taps from PLS(k) and reserve it as
PMST(k), by formula (18).

Step 3. Obtain the estimate of SNR, �SNR, by formula (19).

Step 4. Obtain the estimate of the first row of the LMMSE
matrix, B̃, by formula (20).

Step 5. Obtain the estimation of the LMMSE matrix,

R̃HpHp(R̃HpHp + (β/�SNR)I)
−1

, by circle shift of B̃. Then, the
channel estimation in frequency domain at pilot subcarriers
can be obtained by formula (21).

It is noted that the estimation of the LMMSE matrix
requires only Np points FFT operation and circle shifting
operation, which reduce the computational complexity
significantly compared with the conventional LMMSE esti-
mator since it requires the inverse operation of a large
dimension matrix.

4. Analysis of theMean Square Error of
the Proposed Fast LMMSE Algorithm

In this section, we will present the mean square error (MSE)
of the proposed fast LMMSE algorithm. Firstly, we present
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the MSE of LMMSE algorithm for comparison. We study
two cases. One case is the MSE analysis for matched SNR,
that is, the designed SNR is equal to the true SNR, and the
other one is the MSE analysis for mismatched SNR. Secondly,
we present the MSE of the proposed fast LMMSE algorithm.
Similarly, we study two cases. One is for matched SNR, and
the other is for mismatched SNR.

4.1. MSE Analysis of the Conventional LMMSE Algorithm.
Denote the MSE of LMMSE algorithm by ϕMSE(SNR,
SNRdesign), where SNR is the true SNR, and SNR design is
the designed SNR.

(i) MSE Analysis for Matched SNR. The MSE of LMMSE
algorithm at pilot subcarriers for matched SNR can be
derived as [22]

ϕMSE(SNR, SNR)

= 1
Np

Np−1∑

k=0

E
∣∣∣H̃p,lMMSE(i, k)−Hp(i, k)

∣∣∣
2

= 1− A ·
((

RHpHp

)H
+

β

SNR
I

)−1

· AH ,

(22)

where A is the first row of the matrix RHpHp , and (·)H denotes
Hermitian transpose.

(ii) MSE Analysis for Mismatched SNR. The MSE of LMMSE
algorithm on pilot subcarriers for mismatched SNR can be
derived as [22]

ϕMSE

(
SNR, SNRdesign

)

= 1
Np

Np−1∑

k=0

E
∣∣∣H̃p,lMMSE(i, k)−Hp(i, k)

∣∣∣
2

= 1 + A ·
(
RHpHp +

β

SNRdesign
I

)−1

·
(
RHpHp +

β

SNR
I

)

·
((

RHpHp

)H
+

β

SNRdesign
I

)−1

· AH

− 2A ·
((

RHpHp

)H
+

β

SNRdesign
I

)−1

· AH ,

(23)

where A is the first row of the matrix RHpHp , and (·)H denotes
Hermitian transpose.

4.2. MSE Analysis for the Proposed Fast LMMSE Algorithm.
Let us denote the MSE of the proposed fast LMMSE
algorithm by φMSE(SNR, �SNR), where SNR is the true SNR,
and �SNR is the estimated SNR or the designed SNR.
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(i) MSE for Matched SNR. The MSE of the proposed fast
LMMSE algorithm is given by

φMSE(SNR, SNR)

= E

⎡
⎣ 1
Np

Np−1∑

k=0

∣∣∣H̃p,fast lMMSE(i, k)−Hp(i, k)
∣∣∣

2

⎤
⎦

= E
[∣∣∣H̃p,fast lMMSE(i, 0)−Hp(i, 0)

∣∣∣
2
]

= E

⎡
⎣

∣∣∣∣∣∣

Np−1∑

k=0

⎧
⎨
⎩

1
Np

Np−1∑

l=0

γ(l) exp

{
j

2π
Np

lk

}
H̃p,ls(i, k)

⎫
⎬
⎭

−Hp(i, 0)

∣∣∣∣∣∣

2
⎤
⎥⎦

= E

⎡
⎣

∣∣∣∣∣∣

Np−1∑

l=0

γ(l)

⎧
⎨
⎩

1
Np

Np−1∑

k=0

exp

{
j

2π
Np

lk

}
H̃p,ls(i, k)

⎫
⎬
⎭

− Hp(i, 0)

∣∣∣∣∣∣

2
⎤
⎥⎦

= E

⎡
⎢⎣

∣∣∣∣∣∣

Np−1∑

l=0

γ(l)h̃p,ls(i, l)−Hp(i, 0)

∣∣∣∣∣∣

2
⎤
⎥⎦

= E

⎡
⎢⎣

∣∣∣∣∣∣

Np−1∑

l=0

γ(l)h̃p,ls(i, l)−
Np−1∑

j=0

hp(i, j)

∣∣∣∣∣∣

2
⎤
⎥⎦,

(24)

where γ(l) = (PMST(l))/(PMST(l) + (β/(NpSNR))), l =
0, 1, . . . , Np−1. If the number of the chosen OFDM symbol
to obtain the estimated average power for each tap, NMST, is
large, we can replace γ(l) with E(γ(l)) in (24), then, (24) can
be further derived as

φMSE(SNR, SNR)

= E

⎡
⎢⎣

∣∣∣∣∣∣

Np−1∑

l=0

E[γ(l)]h̃p,ls(i, l)−
Np−1∑

j=0

hp(i, j)

∣∣∣∣∣∣

2
⎤
⎥⎦

≈ E

⎡
⎢⎢⎣

∣∣∣∣∣∣∣∣

Np−1∑

l=0

E
(∣∣∣h̃p,MST(l)

∣∣∣
2
)

E
(∣∣∣h̃p,MST(l)

∣∣∣
2
)

+
(
β/
(
Np · SNR

)) h̃p,ls(i, l)

−
Np−1∑

j=0

hp(i, j)

∣∣∣∣∣∣

2
⎤
⎥⎦.

(25)

If the improved MST algorithm chooses L′(L′ ≥ L) paths,
where L is number of resolvable paths of the dispersive
channel, and the chosen L′ paths contain all the L channel
paths without omission, then (25) can be further written as
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Figure 6: NMSE of LMMSE algorithm with matched SNR and
mismatched SNRs versus SNR, by simulation and numerical
method, respectively.

φMSE(SNR, SNR)

= E

⎡
⎢⎢⎣

∣∣∣∣∣∣∣∣

Np−1∑

j=0

E
(∣∣∣h̃p,MST( j)

∣∣∣
2
)

E
(∣∣∣h̃p,MST( j)

∣∣∣
2
)

+
(
β/
(
Np · SNR

))

×h̃p,ls(i, j)−
Np−1∑

j=0

hp(i, j)

∣∣∣∣∣∣

2
⎤
⎥⎦

= 1 +
L−1∑

l=0

∣∣γ1(τl)
∣∣2

(
σ2
l +

1
SNR ·Np

)

+ (L′ − L)

⎛
⎝

(
1/(SNR ·Np)

)

(
1/(SNR ·Np)

)
+
(
β/(SNR ·Np)

)

⎞
⎠

2

× 1
SNR ·Np

− 2
L−1∑

l=0

γ1(τl)σ2
l

= 1 +
L−1∑

l=0

∣∣γ1(τl)
∣∣2

(
σ2
l +

1
SNR ·Np

)

+ (L′ − L)

(
1/SNR

(1/SNR) +
(
β/SNR

)
)2

1
SNR ·Np

− 2
L−1∑

l=0

γ1(τl)σ2
l ,

(26)
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where τl is the channel delay of the lth resolvable path, and
σ2
l is the power of the lth path,

γ1(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
l +

(
1/
(

SNR ·Np

))

σ2
l +

(
1/
(

SNR ·Np

))
+
(
β/
(

SNR ·Np

)) ,

if i ∈ α,

1/SNR
(1/SNR) +

(
β/SNR

) , if i /∈α,

α = {τl : l = 0, 1, . . . ,L− 1}.
(27)

(ii) MSE for Mismatched SNR. Similarly, the MSE of the
proposed fast LMMSE algorithm for mismatched SNR is
given by

φMSE

(
SNR, �SNR

)

= E

⎡
⎣
∣∣∣∣∣

Np−1∑

l=0
γ′(l)h̃p,ls(i, l)−

Np−1∑

j=0
hp(i, j)

∣∣∣∣∣

2⎤
⎦

= 1 +
L−1∑

l=0

∣∣γ2(τl)
∣∣2

(
σ2
l +

1
SNR ·Np

)

+ (L′ − L)

⎛
⎝ 1/SNR

(1/SNR) +
(
β/�SNR

)

⎞
⎠

2
1

SNR ·Np

− 2
L−1∑

l=0

γ2(τl)σ2
l ,

(28)

where γ′(l) = PMST(l)/(PMST(l) + (β/(Np�SNR))), l =
0, 1, . . . , Np − 1. τl is the channel delay of the lth resolvable
path, and σ2

l is the power of the lth path,

γ2(i) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

σ2
l +

(
1/
(

SNR ·Np

))

σ2
l +

(
1/
(

SNR ·Np

))
+
(
β/
(
�SNR ·Np

)) ,

if i ∈ α,

1/SNR

(1/SNR) +
(
β/�SNR

) , if i /∈α,

α = {τl : l = 0, 1, . . . ,L− 1}.
(29)

It is noted that since the channel is assumed to be nor-
malized, the MSE of the proposed fast LMMSE algorithm
and the MSE of the conventional LMMSE are equal to their
normalized mean square errors (NMSEs), respectively. In
addition, for the sake of performance comparison between
the above analysis of NMSE and the NMSE obtained by
computer simulation, we define the NMSE obtained by
simulation as follows:

NMSEsimu =
∑K−1

i=0

∑Np−1
j=0

∣∣∣H̃p(i, j)−Hp(i, j)
∣∣∣

2

∑K−1
i=0

∑Np−1
j=0

∣∣∣Hp(i, j)
∣∣∣

2 , (30)
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Figure 7: NMSE of the proposed fast LMMSE algorithm with
matched SNR and mismatched SNRs versus SNR, by simulation and
numerical method, respectively.

where H̃p(i, j) denotes the channel estimate at the jth pilot
subcarrier in the ith OFDM symbol, obtained by LMMSE
algorithm or the proposed fast LMMSE algorithm, and K
denotes the number of OFDM symbols in the simulation.

5. Numerical and Simulation Results

Both computer simulation and numerical method have been
deployed to investigate the performance of the proposed fast
LMMSE algorithm for channel estimation. In the simulation,
we employ the channel model of COST207 [23] having 6
numbers of paths, that is, L = 6, and the maximum delay
spread of 2.5 microseconds. The channel power intensity
profile is listed in Table 1. The number of the subcarriers of
the OFDM system, N , is equal to 2048, and the CP length
is equal to 128 sample points. The bandwidth of the system
is 20 MHz so that one OFDM symbol period Ts = 102.4
microseconds and the CP period TCP = 6.4 microseconds >
2.5 microseconds. The number of the total pilots Np is equal
to 128, and the pilot gap R is 16. The transmitted signal is
BPSK modulated, and the Doppler shift is 100 Hz.

5.1. Channel Autocorrelation Matrix under Different SNRs.
Figure 3 shows the magnitude of the first row of the
channel autocorrelation matrix RHpHp , A. Since the channel
autocorrelation matrix is circulant, it is enough to show
the first row of the channel autocorrelation matrix. Observe
that the magnitude of A varies approximately periodically,
and the period is 13 pilot subcarriers. Since the channel
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power intensity profile is negative exponential distributed,
the period of the first row of the channel autocorrelation
matrix is decided by the delay of the second path. The delay
of the second path is 0.5 microseconds, that is, 10 sample
points. According to (7), the period is Np/τ1 = 128/10 =
12.8. It is noted that the parameter N should be replaced
by Np in (7). Therefore, the period is about 13, as shown
in Figure 3. Figure 4 shows the magnitude of the first row of
the LMMSE matrix RHpHp(RHpHp + (β/SNR)I)−1 with SNR of
5 dB, 10 dB, and 20 dB, respectively. Since the LMMSE matrix
is also circulant, it is sufficient to depict the first row of the
LMMSE matrix. Observe that the value of the first row of the
LMMSE matrix is symmetry, and the center point is 64. The
first row of the LMMSE matrix is approximately periodic,
and the period is about 13 pilot subcarriers. Observe that
the value of the first row of the LMMSE matrix varies
insignificantly when SNR changes from 5 dB to 20 dB. In
addition, the local maximum values of the curves correspond
to strong correlation between pilot subcarriers, and the local
minimum values correspond to weak correlation between
pilot subcarriers.

5.2. Normalized Mean Square Error (NMSE) Comparison
of Channel Estimation between LMMSE Algorithm and the
Proposed Fast LMMSE Algorithm. Figure 5 shows the NMSE
of channel estimation of LMMSE algorithm versus that of
the proposed fast LMMSE algorithm by computer simu-
lation and numerical method, respectively. The numerical
results of LMMSE algorithm and the proposed fast LMMSE
algorithm are obtained by (22) and (26), respectively. The
simulation results are obtained by (30). We replace H̃p

in (30) with H̃p,LMMSE for LMMSE algorithm and replace

H̃p with H̃p,fast LMMSE for the proposed LMMSE algorithm,
respectively. For the proposed fast LMMSE algorithm, the
number of OFDM symbols chosen to obtain the average
power of each tap, NMST, is 20, and the number of chosen
paths, L′, is 10. The number of OFDM symbols in the
simulation, K , is 5000, for both LMMSE algorithm and the
proposed fast LMMSE algorithm. Observe that the NMSE of
the proposed fast LMMSE algorithm is very close to that of
LMMSE algorithm in theory over the SNR range from 0 dB
to 25 dB. In addition, for LMMSE algorithm the numerical
result is verified by the simulation. For the proposed fast
LMMSE algorithm, the simulation result approaches the
numerical result well, except that the simulation result
is a little higher than the numerical result at low SNR.
Observe that both the proposed fast LMMSE algorithm
and LMMSE algorithm are superior to LS algorithm. For
instance, the LMMSE algorithm has about 16 dB gain over
the LS algorithm, at the same MSE over the SNR range from
0 dB to 25 dB.

Figure 6 shows the normalized mean square error
(NMSE) of LMMSE algorithm with matched SNR and
mismatched SNRs versus SNR, by simulation and numerical
method, respectively. Firstly, we give a necessary illustration
of the curves obtained by numerical method. For the curves
with matched SNR, we use (22) to calculate the MSEs under
different SNRs, by numerical method. For the curves with

Table 1: Channel Power Intensity Profile.

Tap Delay (us) Gain (dB) Doppler
Spectrum

1 0 0.0 Clarke [24]

2 0.5 −6.0 Clarke

3 1.0 −12.0 Clarke

4 1.5 −18.0 Clarke

5 2.0 −24.0 Clarke

6 2.5 −30.0 Clarke
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Figure 8: Bit error rate (BER) of the LS, LMMSE, the proposed fast
LMMSE, and perfect channel estimation versus SNR.

mismatched SNRs, that is, designed SNRs, we use (23)
to obtain the results, by numerical method. Secondly, for
the curves with mismatched SNRs obtained by computer
simulation, we use the designed SNR (predetermined and
invariable) instead of the true SNR in (13) to obtain the
channel estimation of pilot subcarriers. Observe that the
analysis results are verified by computer simulation well, for
the designed SNR of 5 dB, 10 dB, and 20 dB, respectively. For
the case of the designed SNR of 5 dB, the MSE approaches
the curve of matched SNR well within the range from 0 dB
to about 10 dB. However, when the SNR increases, an MSE
floor of about 2 × 10−3 occurs. Similar trend can be found
for the case of designed SNR of 10 dB. Observe that the curve
of designed 20 dB approaches the curve with matched SNR
well within the SNR range from 0 dB to 25 dB. Therefore,
if we only know the channel autocorrelation matrix RHpHp

and do not know the SNR, the above results suggest that we
use a higher designed SNR in (13) when performing channel
estimation.

Figure 7 shows the NMSE of the proposed fast LMMSE
algorithm with matched SNR and mismatched SNRs versus
SNR, by simulation and numerical method respectively.
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Figure 9: BER comparison between LMMSE channel estimation
with matched SNR and LMMSE channel estimation with designed
SNRs.
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Figure 10: BER comparison between the proposed fast LMMSE
channel estimation with estimated SNR and the proposed fast
LMMSE channel estimation with designed SNRs.

Firstly, we give a brief illustration of the curves obtained
by numerical method. For the curve with matched SNR,
we use (26) to obtain the results. For the curves with
mismatched SNRs, that is, designed SNR, we use (28) to
obtain the numerical results. To verify the numerical results,
we perform computer simulation for each case with different
designed SNR. In the computer simulation, step 3 in the
proposed fast LMMSE algorithm is modified by letting the
estimated SNR, �SNR, be the designed SNR. For instance, if

we choose the designed SNR to be 10 dB, �SNR will be set to
be 10 dB in step 3 of the proposed fast LMMSE algorithm
instead of using formula (19) to obtain �SNR. For the
computer simulation, the number of OFDM symbols chosen
to obtain the average power of each tap, NMST, is 20, and the
number of chosen paths, L′, is 10. The number of OFDM
symbols in the simulation, K , is 5000. Observe that the
analysis results are verified by computer simulation well, for
the designed SNR of 5 dB, 10 dB, and 20 dB, respectively. For
the case of the designed SNR of 5 dB, the MSE approaches
the curve of matched SNR well within the range from 0 dB
to about 10 dB. However, when the SNR increases, an MSE
floor of about 2 × 10−3 occurs. Similar trend can be found
for the case of designed SNR of 10 dB. Observe that the curve
of designed 20 dB approaches the curve of matched SNR well
within the SNR range from 0 dB to 25 dB.

5.3. Bit Error Rate (BER) Comparison between LMMSE
Algorithm and the Proposed Fast LMMSE Algorithm. Figure 8
shows the BER of LS, LMMSE, the proposed fast LMMSE,
and perfect channel estimation, respectively. We adopt linear
interpolation to obtain the channel frequency response at
all subcarriers after the channel frequency response at pilot
subcarriers is obtained by LS, LMMSE, and the proposed fast
LMMSE estimator. Once the channel frequency response is
obtained, we use maximum likelihood detection to obtain
the estimated signal X̃(i, k). In addition, the perfect channel
estimation refers to that the channel frequency response is
known by the receiver in advance. Observe that the BERs of
LMMSE estimator is very close to that of the proposed fast
LMMSE estimator over the SNR range from 0 dB to 25 dB.
And they are about 1 dB worse than the perfect channel
estimator, over the SNR ranging from 0 dB to 25 dB. The
LMMSE estimator and the proposed LMMSE estimator are
about 3-4 dB better than the LS estimator at the same BER
over the SNR ranging from 0 dB to 25 dB.

Figure 9 shows the BER performance of the LMMSE
channel estimation with matched SNR and the LMMSE
channel estimation with designed SNRs. The LMMSE
channel estimator with designed SNR refers to that we
use a predetermined and unchanged SNR in (13) instead
of the true SNR. Observe that the BERs of the LMMSE
with designed SNR of 5 dB, 10 dB, and 20 dB are almost
overlapped with each other within the lower SNR range from
0 dB to 15 dB. However, when SNR increases from 15 dB
to 25 dB, the BER of the LMMSE estimator with higher
designed SNR is better than that of the lower designed
SNR. The results are consistent with the NMSEs in Figure 4.
Therefore, a design for higher SNR is preferable as for
mismatch in SNR.

Figure 10 shows the BER of the proposed fast LMMSE
estimator with estimated SNR and the proposed fast LMMSE
estimator with designed SNRs. It is noted that the proposed
fast LMMSE estimator with estimated SNR refers to our
proposed algorithm summarized in Section 3. The proposed
fast LMMSE estimator with designed SNR refers to that we
modify the step 3 of the proposed algorithm by using a
predetermined and unchanged SNR instead of using formula
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(19) to obtain the estimated SNR. Observe that the BERs of
the proposed fast LMMSE estimator with designed SNR of
5 dB, 10 dB, and 20 dB are almost overlapped with each other
within the lower SNR range from 0 dB to 15 dB. However,
when SNR increases from 15 dB to 25 dB, the BER of the
proposed fast LMMSE estimator with higher designed SNR
is better than that of the lower designed SNR. Thus, a design
for higher SNR is preferable as for mismatch in SNR.

6. Conclusion

In this paper, a fast LMMSE channel estimation method
has been proposed and thoroughly investigated for OFDM
systems. Since the conventional LMMSE channel estimation
requires the channel statistics, that is, the channel auto-
correlation matrix in frequency domain and SNR, which
are often unavailable in practical systems, the application
of the conventional LMMSE channel estimation is limited.
Our proposed method can efficiently estimate the channel
autocorrelation matrix by the improved MST algorithm and
calculate the LMMSE matrix by Kumar’s fast algorithm and
exploiting the property of the channel autocorrelation matrix
so that the computation complexity can be reduced signifi-
cantly. We present the MSE analysis for the proposed method
and the conventional LMMSE method and investigate the
MSE thoroughly under two cases, that is, the matched SNR
and the mismatched SNR. Numerical results and computer
simulation show that a design for higher SNR is preferable as
for mismatch in SNR.

Appendices

A.

In this appendix, we will prove that the rank of RHH is equal
to L and the rank of RHH + σ2

wI is equal to N . We can obtain
from (7) and (9) that

λk =
N−1∑

n=0

RHH(0,n) exp
{
− j2πnk

N

}

=
N−1∑

n=0

L−1∑

l=0

σ2
l exp

{
j2πτln
N

}
exp

{
− j2πnk

N

}

=

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

0, for k /∈α,

N
L−1∑

l=0

σ2
l , for k ∈ α,

=
⎧
⎨
⎩

0, for k /∈α,

N , for k ∈ α,

(A.1)

where α = {τl | l = 0, 1, . . . ,L − 1}, τl is the delay of
the lth path, and L is the number of resolvable paths. Thus,
the number of nonzero eigenvalues of RHH is equal to L.

Denote the eigenvalues of the matrix RHH + σ2
wI by μk, k =

0, 1, . . . ,N − 1. We can obtain that

[
μ0 μ1 · · · μN−1

]

=
[

FFTN
(
RHH(0, 0) + σ2

w RHH(0, 1) · · · RHH(0,N − 1))
]

=
[
λ0 + σ2

w λ1 + σ2
w · · · λN−1 + σ2

w

]
.

(A.2)

Therefore the number of nonzero eigenvalues of the matrix
RHH + σ2

wI is N and the rank of the matrix RHH + σ2
wI is N .

B.

In this appendix, we will show the derivation of (20).
Since the matrix R̃HpHp + (β/�SNR)I is circulant, the inverse

matrix (R̃HpHp + (β/�SNR)I)
−1

can be obtained by Kumar’s

fast algorithm [25]. Denote the first row of R̃HpHp +(β/�SNR)I
by C, and we have

C =
[
R̃HpHp(0, 0) +

β
�SNR

R̃HpHp(0, 1) · · · R̃HpHp

(
0,Np − 1

)]
.

(B.3)

Kumar’s fast algorithm can be summarized as follows.

Step 1. Compute Np points FFT of the vector C and we
obtain

D =
[
d0 d1 · · · dNp−1

]
= FFTNp(C). (B.4)

Step 2. E can be obtained from (B.4) as

E =
[

1
d0

1
d1

· · · 1
dNp−1

]
. (B.5)

Step 3. Denote the first row of the matrix (R̃HpHp + (β/

�SNR)I)
−1

by F, and F can be given by computing Np points
IFFT of the vector E:

F = IFFTNp(E). (B.6)

The above three steps can be combined as

F = IFFTNp

(
1 ·
[

diag
{

FFTNp(C)
}]−1

)
, (B.7)

where 1 = [ 1 1 ··· 1 ]1×Np
, and diag{•} denotes diagonal-

ization operation. The matrix (R̃HpHp + (β/�SNR)I)
−1

can be
acquired from the 1 by Np vector F by circle shift. Denote
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the first row of the matrix R̃HpHp(R̃HpHp + (β/�SNR)I)
−1

by B̃,

the first column of the matrix (R̃HpHp + (β/�SNR)I)
−1

by G̃. It
follows that

B̃
(
j
) =

Np−1∑

i=0

Ã(i)G̃
((
i− j

)
mod Np

)
, j = 0, 1, . . . ,Np − 1,

(B.8)

where B̃(i), Ã(i), and G̃(i) are the ith elements of the vector B̃,
Ã, and G̃, respectively. Ã is the first row of the matrix R̃HpHp .

Since G̃ = FH and G̃(i) = G∗(Np − i), where (•)∗ denote

conjugate, (•)H denotes Hermitian transpose, and (B.8) can
be equivalently written as

B̃
(
j
) =

Np−1∑

i=0

Ã(i)F
((

j − i
)

mod Np

)
, j = 0, 1, . . . ,Np − 1.

(B.9)

Or equivalently,

B̃ = Ã⊗ F, (B.10)

where ⊗ denotes circulant convolution, and F(i) is the ith
entry of the vector F. Using the property of DFT, (B.10) can
be written as

B̃ = Ã⊗ F

= IFFTNp

{
FFTNp

[
Ã · 1 ·

[
diag

{
FFTNp(F)

}]−1
}
.

(B.11)

Using (17), (B.3), and (B.7), (B.11) can be further written as

B̃ =

IFFTNp

⎡
⎣ PMST(0)

PMST(0) +
(
β/
(
Np�SNR

)) PMST(1)

PMST(1) +
(
β/
(
Np�SNR

))

· · ·
PMST

(
Np − 1

)

PMST

(
Np − 1

)
+
(
β/
(
Np�SNR

))

⎤
⎦.

(B.12)
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