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In this paper, we study the problem of random field estimation with wireless sensor networks. We consider two encoding strategies,
namely, Compress-and-Estimate (C&E) and Quantize-and-Estimate (Q&E), which operate with and without side information at
the decoder, respectively. We focus our attention on two scenarios of interest: delay-constrained networks, in which the observations
collected in a particular timeslot must be immediately encoded and conveyed to the Fusion Center (FC); delay-tolerant (DT)
networks, where the time horizon is enlarged to a number of consecutive timeslots. For both scenarios and encoding strategies,
we extensively analyze the distortion in the reconstructed random field. In DT scenarios, we find closed-form expressions of the
optimal number of samples to be encoded in each timeslot (Q&E and C&E cases). Besides, we identify buffer stability conditions
and a number of interesting distortion versus buffer occupancy tradeoffs. Latency issues in the reconstruction of the random field
are addressed, as well. Computer simulation and numerical results are given in terms of distortion versus number of sensor nodes
or SNR, latency versus network size, or buffer occupancy.

1. Introduction

In recent years, research Wireless Sensor Networks (WSNs)
has attracted considerable attention. This is in part motivated
by the large number of applications in which WSNs are
called to play a pivotal role, such as parameter estimation
(i.e., moisture, temperature), event detection (leakage of
pollutants, earthquakes, fires), or localization and tracking
(e.g., border control, inventory tracking), to name a few [1].

Typically, a WSN consists of one Fusion Center (FC)
and a potentially large number of sensor nodes capable of
collecting and transmitting data to the FC over wireless
links. In many cases, the underlying phenomenon being
monitored can be modeled as a spatial random field. In these
circumstances, the set of sensor observations are correlated,
with such correlation being typically a function of their
spatial locations (see, e.g., [2]). By effectively handling
correlation in the data encoding process, substantial energy
savings can be achieved.

In a source coding context, the work in [3] constitutes
a generalization to sensor trees of Wyner-Ziv’s pioneering
studies [4]. The authors propose two coding strategies,
namely Quantize-and-Estimate (Q&E) and Compress-and-
Estimate (C&E), and analyze their performance for vari-
ous networks topologies. The Q&E encoding scheme is a
particularization of Wyner-Ziv’s to scenarios with no side
information at the decoder. Consequently, each sensor obser-
vation is encoded (and decoded) independently. Conversely,
C&E turns out to be a successive Wyner-Ziv-based coding
scheme and, for this reason, it is capable of exploiting spatial
correlation.

In a context of random field estimation with WSNs,
the pioneering work of [5] introduced the so-called “bit-
conservation principle”. The authors prove that, for spatially
bandlimited processes, the bit budget per Nyquist-period can
be arbitrarily reallocated along the quantization precision
and/or the space (by adding more sensor nodes) axes,
while retaining the same decay profile of the reconstruction
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error. In [6] and, again, for bandlimited processes with
arbitrary statistical distributions, the authors propose a
mathematical framework to study the impact of the random
sampling effect (arising from the adoption of contention-
based multiple-access schemes) on the resulting estimation
accuracy. For Gaussian observations, [7] presents a feedback-
assisted Bayesian framework for adaptive quantization at the
sensor nodes.

From a different perspective but still in a context of
random field estimation, [2] proposes a novel MAC protocol
which minimizes the attempts to transmit correlated data. By
doing so, not only energy but also bandwidth is preserved.
Besides, in [8], the authors investigate the impact of random
sampling, as opposed to deterministic sampling (i.e., equally-
spaced sensors) which is difficult to achieve in practice, in
the reconstruction of the field. The main conclusion is that,
whereas deterministic sampling pays off in the high-SNR
regime, both schemes exhibit comparable performances in
the low-SNR regime.

Contribution. In this paper, we address the problem of
(nonnecessarily bandlimited) random field estimation with
wireless sensor networks. To that aim, we adopt the Q&E and
C&E encoding schemes of [3] and analyze their performance
in two scenarios of interest: delay-constrained (DC) and
delay-tolerant (DT) sensor networks. In DC scenarios, the
observations collected in a particular timeslot must be
immediately encoded and conveyed to the FC. In DT
networks, on the contrary, the time horizon is enlarged to
L consecutive timeslots. Clearly, this entails the use of local
buffers but, in exchange, the distortion in the reconstructed
random field is lower. To capitalize on this, we derive
closed-form expressions of the distortion attainable in DT
scenarios (unlike in [2, 6, 8], we explicitly take into account
quantization effects). From this, we determine the optimal
number of samples to be encoded in each of the L timeslots
as a function of the channel conditions of that particular
timeslot. This constitutes the first original contribution
of the paper. Along with that, we identify under which
circumstances buffers are stable (i.e., buffer occupancy does
not grow without bound) and, besides, we study a number
of distortion versus buffer occupancy tradeoffs. To the best
of our knowledge, such analysis has not been conducted
before in a context of random field estimation. Comple-
mentarily, we analyze the latency in the reconstruction of n
consecutive realizations (i.e., those collected in one timeslot)
of the random field, this being an original contribution,
as well.

The paper is organized as follows. First, in Section 2, we
present the signal and communication models, and provide a
general framework for distortion analysis. Next, in Section 3,
we focus on delay-constrained scenarios and particularize
the aforementioned distortion analysis. In Sections 4 and 5
instead, we address delay-tolerant scenarios and analyze the
behavior of the Q&E and C&E encoding schemes, respec-
tively. Next, Section 6 investigates latency issues associated
with DT networks. In Section 7, we present some computer
simulations and numerical results and, finally, we close the
paper by summarizing the main findings in Section 8.
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Figure 2: Sensing and transmission phases.

2. Signal Model

Let Y(s) be a one-dimensional random field defined in the
range s ∈ [0,d], with s denoting the spatial variable. As
in [2, 8, 9], we adopt a stationary homogeneous Gaussian
Markov Ornstein-Uhlenbeck (GMOU) model [10] to char-
acterize the dynamics and spatial correlation of Y(s). GMOU
random fields obey the following linear stochastic differential
equation

dY(s) = θY(s)ds + σW(s), (1)

where, by definition, Y(s) ∼ N (0, σ2
y) with σ2

y = σ/2θ, W(s)
denotes Brownian Motion with unit variance parameter,
and θ, σ are constants reflecting the (spatial) variability
of the field and its noisy behaviour, respectively. According
to this model, the autocorrelation function is given by
RY (s1, s2) = σ2

y e
−θ|s2−s1| and, hence, the process is not

(spatially) bandlimited.
The random field is uniformly sampled by N sensor

nodes, with intersensor distance given by d/(N − 1) �
d/N (see Figure 1). The spatial samples can thus be readily
expressed as follows [11]:

yk = Y
(
k
d

N

)
= e−θ(d/2N)yk−1 + nk, k = 1, . . . ,N , (2)

where nk ∼ N (0, σ2
y(1− e−θ(d/N))).

2.1. Communication Model. As shown in Figure 2, each
time slot is composed of two distinctive phases namely,
the sensing phase and the transmission phase. In the for-
mer, each sensor collects and stores in a local buffer a
large block of n independent and consecutive observations
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{y(i)
k }ni=1 = {y(1)

k , . . . , y(n)
k }. Next, in the transmission

phase, {y(i)
k }ni=1 is block-encoded into a length-n codeword

{u(i)
k (vk)}ni=1 in codebook C at a rate of Rk bits per sample.

The encoding (quantization) process is modeled through the
auxiliary random variable uk = yk + zk with zk standing for
memoryless Gaussian noise with variance σ2

zk and statistically
independent of yk(for the ease of notation, we drop the
sample index.) . The corresponding codeword index vk ∈
{1, . . . , 2nRk}; k = 1 . . . N is then conveyed to the FC, in
a total of m/N channel uses, over one of the Northogonal
channels (for other encoding schemes, such as Compress-
and-Estimate in Section 3.2, vk denotes the index of the bin to
which the codeword belongs to. For further details, see [3]).
The codeword can only be reliably decoded at the FC if the
encoding rate Rk satisfies

nRk ≤ m

N
log2

(
1 + SNRγk

)
[b/s], (3)

where SNR stands for the average signal-to-noise ratio
experienced in the sensor-to-FC channels, and γ1, . . . , γN
denote the corresponding channel squared gains. In the
sequel, such gains will be modeled as independent and
exponentially-distributed unit-mean random variables (i.e.,
Rayleigh-fading channels) and independent over time slots
(block fading assumption).

From the set of decoded codewords, the FC reconstructs
the random field Y(s) for all s ∈ [0,d]. As a result of the spa-
tial sampling process and the channel bandwidth constraint,
the reconstructed field Ŷ(s) is subject to some distortion
which, throughout this paper, will be characterized by the
following metric

D(s) = E
[∣∣∣Ŷ(s)− Y(s)

∣∣∣2
]

; ∀s ∈ [0,d]. (4)

2.2. Distortion Analysis: A General Framework. For the
distortion metric given by (4), the optimal estimator turns
out to be the posterior mean given all the codewords u =
[u1, . . . ,uN ]T ; that is, the MMSE estimator [12, Chapter 10]

Ŷ(s) = E[Y(s) | u]; ∀s ∈ [0,d]. (5)

For mathematical tractability, however, only the two closest
decoded codewords, namely uk−1 and uk, will be used to
reconstruct Y(s) for all the corresponding intermediate
spatial points (in noiseless scenarios, that is, σ2

zk = 0 for
all k, this approach turns out to be optimal due to the
Markovian property of GMOU processes. For the general
case, yet suboptimal, it capitalizes on the codewords which
retain more information on the random field at the spatial
point s) (see Figure 1), that is

Ŷ(s) = E[Y(s) | uk−1,uk], ∀s ∈
[

(k − 1)
d

N
, k

d

N

]
. (6)

For the ease of notation and without loss of generality, in the
sequel, we assume k = 1 and, hence, the interval between

observations reads s ∈ [0,d/N]. From [12, Chapter 10], the
distortion associated to the estimator (6) is given by

Dk(s) = σ2
Y(s)|uk−1,uk = σ2

Y(s)|uk−1
− Cov2(Y(s),uk | uk−1)

σ2
uk|uk−1

.

(7)

For our signal model and after some algebra, the various
terms in the expression above can be computed as

σ2
Y(s)|uk−1

=
(

1
σ2
y

+
e−θs

(1− e−θs)σ2
y + σ2

zk−1

)−1

,

Cov(Y(s),uk | uk−1) = E[(Y(s)− E[Y(s) | uk−1] | uk−1)

×(uk − E[uk | uk−1] | uk−1)]

=
√
e−θ(d/N−s)σ2

Y(s)|uk−1
,

σ2
uk|uk−1

= e−θ(d/N−s)σ2
Y(s)|uk−1

+
(

1− e−θ(d/N−s)
)
σ2
y + σ2

zk .

(8)

It is worth noting that the variance of the quantization noise
σ2
zk−1

and σ2
zk are determined by the encoding strategy in use

at the sensor nodes.

3. Delay-ConstrainedWSNs

In delay-constrained (DC) networks, the n samples collected
in the sensing phase of a given timeslot must be necessarily
encoded and transmitted to the FC in the corresponding
transmission phase. Bearing this in mind, we particular-
ize the analysis of Section 2.2 and compute the average
distortion for the cases of Delay-Constrained Quantize-
and-Estimate (QEDC) and Compress-and-Estimate (CEDC)
encoding strategies.

3.1. Quantize-and-Estimate: Average Distortion. Here, each
sensor encodes its observation regardless of any side infor-
mation that could be made available to the FC. From [13],
the following inequality holds for the rate at the output of
the kth encoder (quantizer)

Rk ≥ I
(
yk;uk

) [
b/sample

]
, (9)

with I(·; ·) standing for the mutual information. As dis-
cussed before, the encoding (quantization) process is mod-
eled through the auxiliary variable uk = yk + zk with zk ∼
N (0, σ2

zk ) and statistically independent of yk (see, e.g., [3, 14]
for further details). The minimum rate per sample can be
expressed as follows:

I
(
yk;uk

)=H(uk)−H
(
uk | yk

) = log

(
1 +

σ2
y

σ2
zk

)[
b/sample

]
.

(10)

From (3), (9), and (10) we have that, necessarily,

m

N
log2

(
1 + SNR · γk

) ≥ n log2

(
1 +

σ2
y

σ2
zk

)
. (11)
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By taking equality in (11), the variance of the quantization
noise yields

σ2
zk =

σ2
y(

1 + SNRγk
)W/N − 1

, k = 1, . . . ,N , (12)

with W = m/n standing for the sample-to-channel uses
ratio. By replacing (12) into (7), the distortion in an arbitrary
spatial point s in the kth segment reads

DQEDC
k (s)

=
⎛⎝ 1
σ2
Y(s)|uk−1

+
e−θ(d/N−s)

((
1+SNRγk(i)

)W/N−1
)

((
1+SNRγk(i)

)W/N−1
)

(1−e−θ(d/N−s))σ2
y +σ2

y

⎞⎠−1

,

(13)

with

σ2
Y(s)|uk−1

=
⎛⎝ 1
σ2
y

+
e−θs

((
1 + SNRγk(i)

)W/N − 1
)

((
1 + SNRγk(i)

)W/N − 1
)

(1− e−θs)σ2
y + σ2

y

⎞⎠−1

.

(14)

The average distortion (over the spatial variable s) in the kth
network segment can be computed as

D
QEDC
k = N

d

∫ d/N

0
DQEDC

k (s)ds, (15)

and, from this, the average distortion (over channel realiza-
tions) follows:

D
QEDC = Eγ1,...,γN

⎡⎣ 1
N − 1

N−1∑
k=1

D
QEDC
k+1

⎤⎦. (16)

3.2. Compress-and-Estimate: Average Distortion. In Com-
press-and-Estimate encoding, the FC incorporates some side
information into the decoding process. This extent can be
exploited by the sensors in order to encode their observations
more efficiently. For simplicity, we assume that only the
codeword sent by the adjacent sensor, uk−1 will be used
as side information for decoding codeword uk(alternatively,
we could use all the sensor observations but due to the
spatial Markov property of the random field model, this is
not expected to substantially decrease the encoding rate).
Accordingly, the minimum rate per sample can be expressed
as follows:

Rk ≥ I
(
yk;uk | uk−1

) = H(uk | uk−1)−H
(
uk | yk,uk−1

)
= H

(
yk + zk | uk−1

)−H
(
yk + zk | yk

)
= log2

⎛⎝1 +
σ2
yk|uk−1

σ2
zk

⎞⎠[b/sample
]
,

(17)

where the second equality is due to the fact that, again, uk ↔
yk ↔ uk−1 form a Markov chain. Clearly, the codeword can
be reliably transmitted if and only if

m

N
log2

(
1 + SNR · γk

) ≥ n log2

⎛⎝1 +
σ2
yk|uk−1

σ2
zk

⎞⎠. (18)

By taking equality in (18), the minimum variance of the
quantization noise σ2

zk follows:

σ2
zk =

σ2
yk|uk−1(

1 + SNRγk
)W/N − 1

, k = 1, . . . ,N , (19)

where σ2
yk|uk−1

can be easily computed as:

σ2
yk|uk−1

= e−θ(d/N−s)σ2
Y(s)|uk +

(
1− e−θ(d/N−s)

)
σ2
y . (20)

From (7), the distortion at an arbitrary spatial point s reads:

DCEDC
k (s) =

σ2
yσ

2
Y(s)|uk−1

(
eθ(d/N−s) − 1

)
σ2
y(eθ(d/N−s) − 1) + σ2

Y(s)|uk−1

+
σ4
Y(s)|uk−1

(
1 + SNRγk

)−W/N

σ2
y(eθ(d/N−s) − 1) + σ2

Y(s)|uk−1

.

(21)

with

σ2
Y(s)|uk−1

=
⎛⎝ 1
σ2
y

+
e−θs

((
1 + SNRγk(i)

)W/N − 1
)

((
1 + SNRγk(i)

)W/N− 1
)

(1− e−θs)σ2
y +σ2

yk−1|uk−2

⎞⎠−1

.

(22)

The average distortion for each network segment can be
computed as follows:

D
CEDC
k = N

d

∫ d/N

0
DCEDC

k (s) (23)

and, finally, the average distortion (over the channel realiza-
tions and network segments) yields:

D
CEDC = Eγ1,...,γN

⎡⎣ 1
N − 1

N−1∑
k=1

D
CEDC
k+1

⎤⎦. (24)

4. Delay-TolerantWSNs with
Quantize-and-Estimate Encoding

Here, we impose a long-term delay constraint: the Ln samples
collected in L consecutive timeslots must be conveyed to the
FC in such L timeslots. In other words, sensors have now
the flexibility to encode and transmit a variable number of
samples in each time slot (according to channel conditions)
and, by doing so, attain a lower distortion.
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Let nk(i) = αk(i)n be the number of samples encoded
in m/N channel uses by sensor k in time-slot i. As in the
previous section, we have that

m

N
log2

(
1 + SNR · γk(i)

) ≥ αk(i)nlog2

(
1 +

σ2
y

σ2
zk

)
;

k = 1, . . . ,N.

(25)

By replacing σ2
zk from (25) into (7), the distortion per

timeslot yields

DQEDT
k,αk(i) (s)

=
⎛⎝ 1
σ2
Y(s)|uk−1

+
e−θ(d/N−s)

((
1+SNRγk(i)

)W/Nαk(i)−1
)

((
1+SNRγk(i)

)W/Nαk(i)−1
)

(1−e−θ(d/N−s))σ2
y +σ2

y

⎞⎠−1

.

(26)

In order to minimize the average distortion over the L
timeslots at an arbitrary spatial point s, we need to solve the
following optimization problem, implicitly, we are assuming
that sensor (k−1)th encodes at a constant rate over timeslots.
This extent will be verified later on in this section:

min
αk(1),...,αk(L)

1
L

L∑
i=1

αk(i)DQEDT
k,αk(i) (s),

s.t.
L∑
i=1

αk(i)n = Ln,

(27)

where the constraint in (27) is introduced to ensure the
stability of the system. Unfortunately, a closed-form solution
for αk(1), . . . ,αk(L) cannot be obtained for this problem.
Instead, we attempt to solve an approximate problem in
which we assume that only codeword uk will be used
by the FC to reconstruct the random field Y(s) in s ∈
[(k− 1)(d/N), k(d/N)]. Yet, suboptimal (the FC will actually
use both codewords, namely uk and uk−1), this solution
outperforms those obtained in delay-constrained scenarios
(see computer simulations section). Bearing all this in mind,
the new cost function which follows from (26) can be readily
expressed as

ĎQEDT
k,αk(i) (s) = σ2

Y(s)|uk

= σ2
y

(
1− e−θs

)
+ σ2

y e
−θs(1 + SNRγk(i)

)−W/Nαk(i)
.

(28)

Clearly, only the second term in the summation of the cost
function ĎQEDT

k,αk(i) (s) is relevant to the optimization problem,
which can be rewritten as

min
αk(1),...,αk(L)

1
L

L∑
i=1

αk(i)
(
1 + SNRγk(i)

)−W/Nαk(i)

s.t.
1
L

L∑
i=1

αk(i) = 1.

(29)

It is straightforward to show that this problem is convex.
Hence, one can construct the lagrangian as follows:

L(λ,αk(1), . . . ,αk(L)) = 1
L

L∑
i=1

αk(i)
(
1 + SNRγk(i)

)−W/Nαk(i)

+ λ

⎛⎝ 1
L

L∑
i=1

αk(i)− 1

⎞⎠,

(30)

where λ is the Lagrange multiplier. By setting the first
derivative of (30) w.r.t. αk(i) to zero we obtain

α∗k (i) = W

N

ln
(
1 + SNRγk(i)

)
1− ω−1(λ∗/e)

, (31)

with ω−1(·) denoting the negative real branch of the Lambert
function [15]. As for the computation of λ∗, the future
channel gains (γk(i + 1), . . . , γk(L)) would be needed, in
principle. However, as L → ∞ this noncasuality requirement
vanishes: by the law of large numbers, we have that

lim
L→∞

1
L

L∑
i=1

α∗k (i) = W

N

Eγ
[
ln
(
1 + SNRγ

)]
1− ω−1(λ/e)

(32)

and, hence, λ∗ can be readily obtained by replacing this last
expression into the constraint of (29), namely

λ∗ = −σ2
y

(
W

N
R ln(2) + 1

)
e−(W/N)R ln(2) (33)

where we have defined

R � Eγ

[
log2

(
1 + SNRγ

)]
. (34)

Finally, replacing λ∗ into (31) yields

α∗k (i) = log2

(
1 + SNRγk(i)

)
R

; i = 1, . . . ,L, k = 1, . . . ,N ,

(35)

and, by using α∗k (i) into (40), the quantization noise for the
kth sensor node reads:

σ2
z = σ2

zk =
σ2
y

2(W/N)R − 1
; i = 1, . . . ,L, k = 1, . . . ,N.

(36)

which evidences that the encoding rate is constant over
timeslots (as initially assumed) and over sensors too.

4.1. Average Distortion in the Reconstructed Random Field. By
inserting α∗k (i) into the original cost function of (26), the
distortion for an arbitrary point in the kth network segment
reads

DQEDT
k,αk(i) (s) = DQEDT

k (s)

=
⎛⎝ 1
σ2
Y(s)|uk−1

+
e−θ(d/N−s)

(
2(m/n)R−1

)
(

2(m/n)R−1
)

(1−e−θ(d/N−s))σ2
y +σ2

y

⎞⎠−1

.

(37)
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Interestingly, distortion is not a function of the channel
gain experienced by the kth sensor in timeslot i (i.e.,
distortion does not depend on α∗k (i)). As a result and unlike
in QEDC encoding, the distortion experienced in every
timeslot i = 1, . . . ,L is identical. This can be useful in
applications where a constant distortion level is needed.

After some tedious manipulations, the average distortion
in the entire reconstructed random field can be expressed as

D
QEDT = 1

N − 1

N−1∑
k=1

N

d

∫ d/N

0
DQEDT

k+1 (s)ds

=

((
σ2
y + σ2

z

)2
eθd/N + σ4

y

)
θd/N((

σ2
y + σ2

z

)2
eθd/N − σ4

y

)
θd/N

−
2σ4

y

(
σ2
y + σ2

z

)(
eθd/N − 1

)
((

σ2
y + σ2

z

)2
eθd/N − σ4

y

)
θd/N

(38)

4.2. Buffer Stability Considerations. In order to derive a
closed-form solution of the optimal number of samples to be
encoded in each time slot (α∗k (i)), in (32) we let the number
of timeslots L grow to infinity. Clearly, this might lead to a
situation were buffer occupancy grows without bound, that
is, to buffer unstability. To avoid that, we will encode and
transmit a (slightly) higher number of samples per timeslot,
namely

α′k(i)n = log2

(
1 + SNRγk(i)

)
R− δ

n > α∗k (i)n, (39)

with 0 < δ < R. By doing so, one can prove (see the
appendix) that buffers are stable. Unsurprisingly, this come
at the expense of an increased distortion in the estimates (see
computer simulation results in Section 7).

5. Delay-TolerantWSNs with
Compress-and-Estimate Encoding

As in previous section, we let nk(i) = αk(i)n be the number
of samples encoded in m/N channel uses (i.e., one timeslot).
Again, the rate at the output of the C&E encoder must satisfy

m

N
log2

(
1 + SNR · γk(i)

) ≥ αk(i)n log2

⎛⎝1 +
σ2
yk|uk−1

σ2
zk

⎞⎠.
(40)

To stress that expression (40) differs from (25) in that the
C&E encoder assumes that the FC will use uk−1 to decode uk
and, hence, σ2

yk has been replaced by σ2
yk|uk−1

. Therefore, from

(7) and the definition of σ2
yk|uk−1

in (20), we have that for the
current block of αk(i)n samples the distortion reads

DCEDT
k,αk(i) (s) =

σ2
yσ

2
Y(s)|uk−1

(
eθ(d/N−s) − 1

)
σ2
y(eθ(d/N−s) − 1) + σ2

Y(s)|uk−1

+
σ4
Y(s)|uk−1

(
1 + SNRγk)(i)

)−m/αk(i)n

σ2
y(eθ(d/N−s) − 1) + σ2

Y(s)|uk−1

.

(41)

By averaging over L timeslots, the following optimization
problem results:

min
αk(1),...,αk(L)

1
L

L∑
i=1

αk(i)DCEDT
k,αk(i) (s), (42)

s.t.
L∑
i=1

αk(i)n = Ln. (43)

Solving this problem leads to a closed-form solution that is
identical to that of the QEDT case, namely,

α∗k (i) = log2

(
1 + SNRγk(i)

)
R

. (44)

Finally, replacing α∗k (i) into (40) yields

σ2
zk =

σ2
yk|uk−1

2(W/N)R − 1
; i = 1, . . . ,L, k = 1, . . . ,N , (45)

that is, the encoding rate in CEDT networks is constant over
sensors and timeslots, as implicitly assumed in the score
function (43). To remark, the stability analysis of Section 4.2
also applies here.

5.1. Average Distortion in the Reconstructed Random Field. By
inserting α∗k (i) into the original cost function of (43), the
distortion for an arbitrary point in the kth segment reads

DCEDT
k,αk(i) (s) =

σ2
yσ

2
Y(s)|uk−1

(
eθ(d/N−s) − 1

)
σ2
y(eθ(d/N−s) − 1) + σ2

Y(s)|uk−1

+
σ4
Y(s)|uk−1

2−(W/N)R

σ2
y(eθ(d/N−s) − 1) + σ2

Y(s)|uk−1

.

(46)

As in the QEDT case, distortion is not a function of the
channel gain experienced by the kth sensor in timeslot i.
Hence, the distortion experienced in every timeslot i =
1, . . . ,L is identical. Therefore, the average distortion for
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each network segment can be computed in a closed form as
follows:

D
CEDT
k = N

d

∫ d/N

0
DCEDT

k (s)

=
((

σ2
y + σ2

zk−1

)(
σ2
y + σ2

zk

)
eθd/N + σ4

y

)
θd/N((

σ2
y + σ2

zk−1

)(
σ2
y + σ2

zk

)
eθd/N − σ4

y

)
θd/N

−
σ4
y

(
2σ2

y + σ2
zk−1

+ σ2
zk

)(
eθd/N − 1

)
((

σ2
y + σ2

zk−1

)(
σ2
y + σ2

zk

)
eθd/N − σ4

y

)
θd/N

.

(47)

Finally, the average distortion in the whole reconstructed
random field yields

D
CEDT = 1

N − 1

N−1∑
k=1

D
CEDT
k+1 . (48)

6. Latency Analysis

In delay-tolerant networks, each sensor encodes and trans-
mits a variable number of samples per timeslot. As a result,
the time elapsed until the FC receives the first n samples
from all the N sensors in the network (which allows for the
reconstruction of the first n realizations of the random field)
is unavoidably larger than in delay-constrained networks. In
this section, we attempt to characterize such latency. To that
aim, we start by analyzing the time needed for one sensor to
transmit n consecutive samples of the random field. Next,
we derive the latency of the QEDT and CEDT encoding
strategies, respectively.

6.1. Latency Analysis for a Single Sensor Node. Let n∗k (i) =
α∗k (i)n� be the number of samples encoded in m/N channel
uses in timeslot i. The probability that l = 0, . . . ,n−1 samples
are encoded in arbitrary timeslot i can be expressed as

pl = Pr
(
n∗k (i) = l

)
(49)

= Pr
(
l

n
≤ α∗k (i) <

l + 1
n

)
; l = 0, . . . ,n− 1. (50)

Besides, we define

pn = Pr
(
n∗k (i) ≥ n

)
(51)

= Pr
(
α∗k (i) ≥ 1

)
. (52)

On that basis, we model our system as an absorbing Markov
chain [16, Chapter 8] with n transient states (S1, . . . , Sn−1)

and one absorbing state (Sn) defined as follows (see,
Figure 3):

Sl =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l samples have been transmitted

in previous timeslots,

l = 0, . . . ,n− 1,

nor more samples have been transmitted

in previous timeslots,

l = n.

(53)

The transition matrix P of an absorbing Markov chain has
the following canonical form:

P =
[
Q r
0T 1

]
, (54)

where Q denotes the (n + 1)× (n + 1) transient matrix and r
is a (n+ 1)× 1 nonzero vector (otherwise the absorbing state
could never be reached from the transient states). The entries
of the matrix Q can be computed as follows:

ql, j =
⎧⎨⎩0 j < l,

pj−l otherwise.
(55)

The entries of the (n + 1) × 1 r vector, which denote the
probability of absorbtion from each transient states, are given
by

rl = 1−
n−1∑
j=0

ql, j ; l = 0, . . . ,n− 1. (56)

Our goal is to characterize the time elapsed until the
absorbing state is reached or, in other words, the time needed
to transmit n consecutive samples of the local observation
of the random field at sensor k (i.e., sensor latency). For
an absorbing Markov chain, the time to absorbtion, τ, is a
random variable which obeys the so-called Discrete Phase-
type (DPH) distribution. From [17], the probability mass
and cumulative distribution functions can be expressed as:

fτ(t) = Pr(τ = t) = πTQt−1r; t = 1, . . . ,∞ (57)

Fτ(t) = Pr(τ ≤ t) = 1− πTQt1; t = 1, . . . ,∞ (58)

where the (n + 1) × 1 vector π is used to define the initial
conditions. Since we assume that initally no samples have
been transmitted, this yields

πT = [1, 0, . . . , 0]T . (59)

From all the above, the average time to absorbtion reads:

E[τ] =
∞∑
t=1

t fτ(t). (60)

Alternatively, from [16, Chapter 8], one can compute

u = (I−Q1)−11 (61)
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q1,2 = p1q0,1 = p1

S0 S1 Sn−1 Sn

1qn−1,n−1 = p0q1,1 = p0q0,0 = p0

rn−1

r0

Transient states Absorbing state

· · ·

...
...

...
...

Figure 3: An absorbing Markov chain.

the elements of which account the average time to absorbtion
from state S0 . . .Sn. Consequently, the average sensor latency
is given by its first element, namely, E[τ] = u(1).

Finally, we need to derive a closed-form expression for
the set of probabilities {p0, p1, . . . , pn} defined in (50) and
(52). From (35), we have that

α∗k (i) = log2

(
1 + SNRγk(i)

)
R

. (62)

with R = Eγ[log2(1 + γSNR)] and, hence,

pl = Pr
(
l

n
≤ α∗k (i) <

l + 1
n

)

= Pr
(
l

n
R ≤ log2

(
1 + SNRγk(i)

)
<
l + 1
n

R
)

= Fγ

(
2((l+1)/n)R − 1

SNR

)
− Fγ

(
2(l/n)R − 1
SNR

) (63)

for l = 0, . . . ,n − 1 and pn = 1 − Fγ((2R − 1)/SNR). For
Rayleigh-fading channels, the CDF of the channel gain is
given by Fγ(x) = 1− e−x.

6.2. Latency Analysis for QEDT Encoding. At this point, the
interest lies in characterizing the time elapsed until the N
sensors in the network encode and transmit their first n
samples of the random field. Let Ψ be a random variable
which accounts for QEDT latency, namely

Ψ = max
k=1,...,N

τk, (64)

where τk stands for the latency associated to the individual
sensor k as defined in the previous section. Since, on the
one hand, sensors experience i.i.d fading channels and, on
the other, codewords from different sensors are decoded
independently, then τ1, . . . , τN turn out to be i.i.d. DPH
random variables with marginal pmf ’s and CDFs given by

(57) and (58), respectively. From all the above, the CDF of
the latency associated to QEDT encoding reads

FΨ(t) = Pr(Ψ ≤ t) = Pr
(

max
k

τk ≤ t
)

= Pr(τ1 ≤ t, τ2 ≤ t, . . . , τN ≤ t)

= FN
τ (t) =

(
1− πTQt1

)N
, t = 1, . . . ,∞.

(65)

The probability mass function can be computed as

fΨ(t) = Pr(Ψ = t)

= FΨ(t)− FΨ(t − 1)

=
(

1− πTQt1
)N − (1− πTQt−11

)N
, t = 1, . . . ,∞.

(66)

and, from this last expression, the average latency yields

E[Ψ] =
∞∑
t=1

t fΨ(t). (67)

Intuitively, latency is a monotonically increasing function in
the number of sensors (the more sensors, the larger the time
needed to collect all samples). This extent will be verified in
Section 7 (Simulation and numerical results).

6.3. Latency Analysis for CEDT Encoding. The latency anal-
ysis for CEDT strategies if far more involved due to the
successive encoding of data that C&E schemes entail. In
general, this does not allow for the derivation of closed-form
expressions and, thus, we will resort to an approximate (yet
accurate) model.

In order for the FC to successfully decode the codeword
received from sensor k, the codeword sent by the adjacent
sensor k− 1 must have been decoded first. Consequently, the
codeword sent by the Nth sensor will be the last one to be
decoded. Since sensors experience i.i.d. fading channels (and,
thus, the number of observations received from different
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(N − 1)c0n

u1
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T
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e
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Sensors

Decoded
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n

2c0n
c0n

uN−2 uN−1 uN

Figure 4: Approximate CEDT decoding for latency analysis.

sensors are not time-aligned), when the first n samples sent
by sensor N are ready to be decoded, a total of n + con >
n samples from sensor N − 1 have already been decoded
on average. Accordingly, a total of n + (N − 1)con samples
from sensor #1 have already been decoded too (see Figure 4).
Hence, the first n realizations of the entire random field can
be reconstructed if, equivalently, n+ (N − 1)con samples sent
by the first sensor have already been decoded by the FC. The
encoding/decoding process for the first sensor is identical in
C&E and Q&E schemes and, hence, in order to compute the
latency for the reconstruction of the random field, it suffices
to compute the time to absorbtion for an individual sensor
(sensor #1) as we did in Section 6.1. The only change with
respect to the model given in (54) is that the Markov chain
has now a total of n + (N − 1)con states (instead of n) and,
hence, the size and elements of matrix Q and vectors π and r
in (57) and (58) must be adjusted accordingly.

As for parameter co, which exclusively depends on the pdf
of the sensor-to-FC channel gains, it can only be determined
empirically (see next section).

7. Simulations and Numerical Results

Figure 5 depicts the (pertimeslot) distortion in the recon-
structed random field for both the QEDC and QEDT
encoding strategies and different SNR values. For the QEDC
strategy, we show the average value along with the ±σ
confidence interval (to recall that, unlike in the QEDT
case, the distortion in QEDC encoding varies from timeslot
to timeslot). Several conclusions can be drawn. First, for
each curve there exists an optimal operating point; that
is, a network size for which distortion can be minimized.
The intuition behind this fact is that, despite that spatial
variations of the random field are better captured by a denser
grid of sensors, for a total bandwidth constraint the available
rate per sensor progressively diminishes, this resulting into
a more rough quantization of the observations. Thus, the
optimal trade-off between these two effects needs to be
identified. Second, the distortion associated to delay-tolerant
strategies is, as expected, lower than for delay-constrained
ones. Moreover, the lower the average SNR in the sensor-to-
FC channels (namely, sensors with lower transmit power),

2.2 dB
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Figure 5: Average distortion versus network size N (W = 150, θd =
10).
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Figure 6: Average buffer occupancy versus time (SNR = 0 dB).

the higher the gain (up to 3 dB for SNR = 0 dB). Third,
guaranteing buffer stability in the QEDT scheme only results
into a marginal penalty in distortion, as shown in the curves
labeled with δ = 0 and δ = 0.1. Complementarily, in
Figure 6, we depict buffer occupancy for several values of
δ. For δ = 0, the system is clearly unstable. Conversely, by
letting δ take positive values, for example, for δ = 0.1 as
in Figure 5, the average buffer occupancy can be kept under
control (with a relatively small average buffer occupancy of
3n samples, in this case). Clearly, increasing δ has a two-
fold effect: the average buffer occupancy diminishes but,
simultaneously, the resulting distortion increases.

The rate at which distortion decreases for the QEDC
and QEDT schemes (evaluated at their respective optimal
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Figure 8: QEDT encoding: average distortion versus network size
(W = 150, θd = 10).

operating points) for an increasing SNR is shown in Figure 7.
For intermediate distortion values, the gap is approximately
4 dB. That is, for a prescribed distortion level, the energy
consumption in delay-constrained networks is 2.5 times
higher.

Figure 8 illustrates the average distortion in the recon-
structed random field for the CEDC and CEDT encod-
ing strategies. As in quantize-and-estimate encoding, there
exists an optimal number of sensors nodes. Finding such
N∗ reveals particularly useful for random fields with low
SNR per sensor, since the curve is sharper in this case.
The gap between the minimum distortion attainable by
the CEDC and CEDT schemes (which results from an
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adequate exploitation of channel fluctuation in the delay-
tolerant approach) is approximately 2-3 dB. Concerning
buffer occupancy-distortion tradeoffs, the same comments as
in the quantize-and-estimate case apply.

Next, in Figure 9, we compare the distortion attained
by QEDT/CEDT encoding strategies for random fields with
low and high spatial variabilities (θd = 1, θd = 10, resp.).
Due to the fact that CEDT is capable of exploiting spatial
correlation, it always outperforms QEDT. Moreover, the
higher the spatial correlation (θd = 1), the larger the gap
between the curves.

Finally, in Figures 10 and 11 we depict the average
latency for the QEDT and CEDT strategies, respectively.
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Interestingly, there exists a trade-off in terms of attainable
distortion versus latency. Whereas in CEDT encoding latency
exhibits a linear increase in the number of sensors, in QEDT
encoding latency grows logarithmically (i.e., more slowly).
However, CEDT schemes attain a lower distortion than
QEDT ones. Besides, in Figure 10 it is also worth noting
the perfect match between simulations and numerical results
and, unsurprisingly, that the higher the average SNR, the
lower the latency. Also, Figure 11 reveals that by using an
appropriate value of co (i.e., co = 0.6), the latency associated
to the approximate model described in Section 6.3 matches
the actual one.

8. Conclusions

In this paper, we have extensively analyzed the problem of
random field estimation with wireless sensor networks. In
order to characterize the dynamics and spatial correlation
of the random field, we have adopted a stationary homo-
geneous Gaussian Markov Ornstein-Uhlenbeck model. We
have considered two scenarios of interest: delay-constrained
(DC) and delay-tolerant (DT) networks. For each scenario,
we have analyzed two encoding schemes, namely, quantize-
and-estimate (QE) and compress-and-estimate (CE). In all
cases (QEDC, QEDT, CEDC and CEDT), we have carried out
an extensive analysis of the average distortion experienced in
the reconstructed random field. Moreover, for the QEDT and
CEDT strategies we have derived closed-form expressions
of (i) the average distortion in the estimates, and (ii) the
optimal number of samples of the random field to be
encoded in each timeslot (under some simplifying assump-
tions). Interestingly, the resulting pertimeslot distortion in
DT scenarios is deterministic and constant whereas, in DC
scenarios, it ultimately depends on the fading conditions
experienced in each timeslot. Next, we have focused on the
latency associated to the QEDT and CEDT strategies. We

have modeled our system as an absorbing Markov chain and,
on that basis, we have fully characterized the pdf, CDF, and
the average latency for the QEDT case. For CEDT encoding,
we have identified an approximate system model suitable for
the computation of the average latency. Simulation results
reveal that, under a total bandwidth constraint, there exists
an optimal number of sensors for which the distortion in
the reconstructed random field can be minimized (QEDC,
QEDT, CEDC and CEDT cases). This constitutes the best
trade-off in terms of, on the one hand, the ability to
capture the spatial variations of the random field and, on
the other, the persensor channel bandwidth available to
encode observations. Besides, the distortion associated to
delay-tolerant strategies is, as expected, lower than for delay-
constrained ones: some 2-3 dB for both the QE and CE
encoding schemes. Moreover, buffer occupancy can be kept
at very moderate levels (3 timeslots) with a marginal penalty
in terms of distortion (less than 0.3 dB). We also observe that
CE schemes effectively exploit the spatial correlation and, by
doing so, attain a lower distortion than their QE counterparts
(DC and DT scenarios). As far as latency is concerned, we
have empirically shown that CEDT exhibits a linear increase
in the number of sensors whereas in QEDT encoding latency
grows logarithmically (i.e., more slowly). However, CEDT
schemes attain a lower distortion than QEDT ones. Besides,
for the QEDT case, there is a perfect match between simu-
lations and the theoretical model and, for the CEDT case,
latency can be accurately represented by adequately parame-
terizing the aforementioned approximate system model.

Appendix

Buffer Stability Analysis

We want to prove that buffers are stable (i.e., their occupancy
is bounded) for large L. Let bk(i) denote the number of
samples in the buffer of the kth sensor in time slot i, with
initial conditions given by bk(0) = L0n. After L timeslots, the
increase in the number of samples stored in the buffer can be
expressed as

bk(L)− bk(0) = Ln−
L∑
i=1

α′k(i)n, (A.1)

where Ln accounts for the number of samples generated in
those L timeslots, and

∑L
i=1 α

′
k(i)n with

α′k(i) = log2

(
1 + SNRγk(i)

)
R− δ

> α∗k (i), (A.2)

stands for the actual number of samples encoded and
transmitted by the kth sensor node. The probability of
experiencing an increase greater than εn in the number of
samples stored reads

Pr(bk(L)− bk(0) ≥ εn) = Pr

⎛⎝Ln− L∑
i=1

α′k(i)n ≥ εn
⎞⎠

= Pr

⎛⎝ L∑
i=1

α′k(i) ≤ L− ε
⎞⎠.

(A.3)
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for any ε > 0. Replacing (A.2) into this last expression yields:

Pr(bk(L)− bk(0) ≥ εn)

= Pr

⎛⎝ L∑
i=1

log2

(
1 + SNRγk(i)

)
R− δ

≤ L− ε
⎞⎠

= Pr

⎛⎝ L∑
i=1

log2

(
1 + SNRγk(i)

)− LR ≤ (ε − L)δ − εR
⎞⎠

= Pr

⎛⎝ L∑
i=1

log2

(
1 + SNRγk(i)

)− R√
LVar(R)

≤ (ε − L)δ − εR√
LVar(R)

⎞⎠,

(A.4)

where we have defined

Var(R) � Eγ

[(
log2

(
1 + SNRγ(i)

)− R
)2
]
. (A.5)

For large L, we can resort to the central limit theorem by
which

Z =
L∑
i=1

log2

(
1 + SNRγk(i)

)− R√
LVar(R)

∼ N (0, 1). (A.6)

Hence, as long as δ takes strictly positive values (δ > 0), we
have that

lim
L→∞

Pr(bk(L)− bk(0) ≥ εn)

= lim
L→∞

Pr

(
Z ≤ (ε − L)δ − εR√

LVar(R)

)
= 0.

(A.7)

This result states that, as long as we encode a slightly
higher number of samples per timeslot (which depends on
parameter δ) the probability that the increase in buffer
occupancy exceeds εn samples (for a finite value of ε) can be
made arbitrary small for large L. That is, buffers are stable.
Conversely, δ = 0 yields

lim
L→∞

Pr(bk(L)− bk(0) ≥ εn)
δ=0= 1

2
, (A.8)

this meaning that, even for arbitrarily large values of ε, the
probability that buffer occupancy increases beyond ε n is
unavoidably 1/2 (i.e., unstable buffers).

In addition to this main result, the probability for buffers
to drain after L timeslots can be expressed as

pdrain = Pr(bk(L) = 0)

= Pr

⎛⎝ L∑
i=1

α′k(i)n ≥ (L + L0)n

⎞⎠

= Pr

⎛⎝ L∑
i=1

log2

(
1 + SNRγk(i)

)
R− δ

≥ L + L0

⎞⎠.
(A.9)

By resorting again to the central limit theorem, we have that
for any positive value of δ

lim
L→∞

pdrain = lim
L→∞

Pr

(
Z ≥ L0R− (L + L0)δ√

LVar(R)

)
= 1, (A.10)

and, thus, buffers will drain with probability one after a
sufficiently large number of timeslots.
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