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We consider the problem of throughput-optimal scheduling in wireless networks subject to interference constraints. We model
the interference using a family of K-hop interference models, under which no two links within a K-hop distance can successfully
transmit at the same time. For a given K , we can obtain a throughput-optimal scheduling policy by solving the well-known
maximumweighted matching problem.We show that for K > 1, the resulting problems are NP-Hard that cannot be approximated
within a factor that grows polynomially with the number of nodes. Interestingly, for geometric unit-disk graphs that can be used to
describe a wide range of wireless networks, the problems admit polynomial time approximation schemes within a factor arbitrarily
close to 1. In these network settings, we also show that a simple greedy algorithm can provide a 49-approximation, and the
maximal matching scheduling policy, which can be easily implemented in a distributed fashion, achieves a guaranteed fraction
of the capacity region for “all K .” The geometric constraints are crucial to obtain these throughput guarantees. These results are
encouraging as they suggest that one can develop low-complexity distributed algorithms to achieve near-optimal throughput for
a wide range of wireless networks.

1. Introduction

Scheduling link transmissions in a wireless network so as
to optimize one or more of the performance objectives
(e.g., throughput, delay, or energy) has been the topic of
paramount interest over the past several decades. In their
seminal work, Tassiulas and Ephremides [1] characterized
the capacity region of constrained queuing systems, such
as a wireless network. They developed a queue length-
based scheduling scheme that is throughput-optimal, that
is, it stabilizes the network if the user rates fall within the
capacity region of the network. Unlike wireline networks,
where all links have fixed capacities, the capacity of a
wireless link can be influenced by channel variation due
to fading, changes in power allocation or routing, changes
in network topology, and so forth. Thus, the capacity
region of a wireless network can vary due to changes
in power allocation or routing. To efficiently utilize the
wireless resources, one must therefore develop algorithms

that can perform jointly routing, link scheduling, and
power control under possibly varying channel conditions
and network topology. This has spurred recent interest in
developing cross-layer optimization algorithms (see, e.g., [2–
5]).

Motivated by the works on fair resource allocation in
wireline networks [6, 7], researchers have also incorporated
congestion control into the cross-layer optimization frame-
work [8–10]. The congestion control component controls the
rate at which users inject data into the network to ensure that
the user rates fall within the capacity region.

Most of the above cross-layer optimization problems
have been shown to exhibit a mathematical decomposition
[2, 8]. To elaborate, the cross-layer optimization problem can
be decomposed into multiple subproblems, where each sub-
problem corresponds to optimization across a single layer.
The subproblems are loosely coupled through parameters
that correspond to congestion prices or queue lengths at the
individual links.
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The main component of all these cross-layer optimiza-
tion schemes is the optimal scheduler that solves a very
difficult global optimization problem of the form:

maximize
∑

l∈L
plrl

subject to r ∈ Λ,

(1)

where L denotes the set of wireless links; r is the vector of
link rates rl, l ∈ L; pl is the congestion price or possibly
some function of queue length at link l ∈ L;Λ is the capacity
region of the network.

The main difficulty in solving the above optimization
problem is that the capacity region Λ depends on the
network topology and, in general, has no easy representation
in terms of the power constraints at the individual links or
nodes. The above optimization problem is, in general, NP-
Complete and Nonapproximable.

In this paper, we consider a class of scheduling problems
that we term Maximum Weighted K-Valid Matching Prob-
lems (MWKVMPs). These problems arise as simplifications
to the scheduling problem specified by (1). The basic idea is
to limit the interference to only K hops, where K is a positive
integer. By varying K , one can capture the interference
characteristics of a broad range of wireless networks.

The rest of the paper is organized as follows. The model,
problem formulation, related works, motivation, and main
contributions of this work are presented in the next section.
Some hardness and approximability results for the class
of scheduling problems that we consider are presented in
Section 3. We then restrict our attention to geometric unit-
disk graphs that naturally model the connectivity graph
of wireless networks, and develop approximation schemes
for our scheduling problems in Section 4. By focusing on
the throughput performance in Section 5, we reduce the
complexity of scheduling schemes further, and show that a
distributed maximal matching algorithm achieves a provable
throughput guarantee. The geometric constraints of graphs
remain crucial to obtain the throughput guarantees. Finally,
we provide concluding remarks in Section 6.

2. SystemModel and Problem Formulation

We consider a set V of wireless nodes, each communi-
cating over a single wireless interface. We assume that
all transmissions are carried out over the same wireless
channel, and therefore interfere with each other. We assume
that all transmissions from a node are carried out at the
same power level (which can be different for different
nodes). We connect two nodes with an (undirected) edge
if each of them can successfully receive from the other,
provided no other node in the network transmits at the
same time. The set of (undirected) edges so formed is
denoted by E. Note that the existence of an edge between
two nodes depends on the power allocated to the nodes,
noise variances, as well as coding and modulation schemes.
Our emphasis on bidirectional edges stems from the fact
that most network and transport layer protocols assume
bidirectional communications between the nodes. We also

note that our main results can easily be extended to settings
where directed edges are allowed between the nodes.

We next introduce the class of scheduling problems we
consider in this paper. We first introduce some notation. Let
G = (V ,E) be an undirected graph (connectivity graph of a
wireless network, in our case) having V as the set of vertices
(nodes) and E as the set of edges (link). A matching is a set
of edges no two of which share a common vertex. We now
generalize this concept of matching to K-valid matchings for
an integer K ≥ 1.

Let dh(x, y) denote the minimum number of hops
between vertices x, y ∈ V . Letting N denote the set of
nonnegative integers, we define a distance function d :
(E,E) → N as follows: for two edges eu = u1u2, ev = v1v2 ∈
E, let

d(eu, ev) � min
i, j∈{1,2}

dh
(
ui, vj

)
. (2)

We call a set of edges M a “K-valid matching” if for all
e1, e2 ∈ M with e1 /= e2, we have d(e1, e2) ≥ K . Observe
that the concept of matching discussed before is equivalent
to the concept of 1-Valid matching in this new terminology.
Let SK denote the set of K-Valid matchings of the graph G.
We consider the following scheduling problems:

(MWKVMP) maximize
∑

e∈M
we

subject to M ∈ SK ,

(3)

where we denotes the weight of edge e ∈ L. Note that the
weight of each edge e is a positive, but otherwise arbitrary,
number that can possibly depend on many factors (e.g.,
congestion price, supported rate, queue length). The above
class of problems will henceforth be referred to as Maximum
Weighted K-Valid Matching Problems (MWKVMPs). When
all edge weights are set to unity, we obtain the following class
of problems:

(MKVMP) maximize |M|
subject to M ∈ SK ,

(4)

where |M| denotes the cardinality of the setM. In the sequel,
we refer to these problems as Maximum K-Valid Matching
Problems (MKVMPs).

We note that the scheduling problems specified by (3) are
natural simplifications of the complex scheduling problem
specified by (1). This is because for a given K , by satisfying
the K-hop interference constraints one can guarantee a
certain fixed data rate at a given edge. The weight of each
edge can then be determined as some function of the
rate it supports and the congestion price at the edge. The
scheduling problem specified by (1) then corresponds to
MWKVMP for that particular value of K . For simplicity of
notation, we did not explicitly show the dependence of edge
weights on K in (3).

From the above discussion, it is not surprising to see that
MWKVMPs can represent the scheduling problem specified
by (1) under a wide variety of interference models. Below
we discuss two widely used interference models that can be
obtained as special cases of the interference constraints in (3).
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Figure 1: The 2-hop interference set of a given edge for RTS/CTS
based communication model of IEEE 802.11 DCF.

Node-Exclusive (or Primary) Interference Model. This is
a commonly used model for Bluetooth and FH-CDMA
networks [11, 12]. Under this model, the set of edges
that transmit simultaneously must constitute a matching.
Then the scheduling problems specified by (3) and (4)
correspond to the classical Maximum Weighted Matching
Problem (MWMP) and the Maximum Matching Problem
(MMP), respectively. Both these problems can be solved in
polynomial time [13].

IEEE 802.11-Based Interference Model. This is a commonly
used model for IEEE 802.11-based wireless networks [9, 14],
under which the chosen set of edges must constitute a 2-
Valid matching. It models the communication under the
RTS/CTS-based scheme of IEEE 802.11 DCF (see Figure 1).
Note that the sender and the receiver exchange RTS and
CTS messages preventing their neighboring nodes from
participating in a communication, which is equivalent to
saying that the chosen set of communicating node pairs must
constitute a 2-Valid matching.

In general, we use the term “K-hop interference model,”
under which a scheduler should provide a K-valid matching.
The node-exclusive and IEEE 802.11-based interference
models correspond to the K-hop interference model with
K = 1 and K = 2, respectively.

2.1. Related Work. The 1-hop interference model has been
studied in many different contexts due to its simplicity [1, 4,
8, 12, 15–17]. A polynomial time link scheduling algorithm
has been developed in [12], and distributed schemes that
guarantee a throughput within a constant factor of the
optimal have been developed in [8, 15]. Recently, a class
of throughput-optimal scheduling policies, called pick-and-
compare, has been proposed [16, 17]. Although they achieve
the throughput-optimality with a low complexity, they result
in causing significantly long queue lengths, which in turn
results in high delays, and for practical buffer sizes, can result
in low throughput performance [18].

In [9], the performance of maximal scheduling schemes
has been studied under the 2-hop interference model. It has

been shown that the maximal scheduling schemes achieve
a throughput within a factor of (Nε + 1) of the capacity
region, where Nε denotes the maximum link degree. In [15],
the maximal scheduling schemes are shown to achieve at
least a factor of ΔK (G) of the optimal throughput, where
ΔK (G) is the interference degree of the connectivity graph
(see Definition 11). It also has been shown in [19, 20] that
random access scheduling policies can achieve comparable
performance.

The MKVMP for K = 2 is often known as the
induced matching problem, which has been shown to be
NP-Hard [21]. The work of [14] is closest in spirit to our
work. The authors consider the induced matching problem
from the perspective of carrying out maximum number of
simultaneous transmissions. They study the approximability
of the induced matching problem for general as well as
specific kinds of graphs, and develop a distributed constant
factor Polynomial-Time Approximation Scheme (PTAS) for
the induced matching problem under geometric unit-disk
graphs.

However, most previous studies are limited to the 1-hop
or 2-hop interference model. It has been observed through
simulations in [22] that, under different network settings, the
K-hop interference model with K > 2 can better capture the
network interference constraints. For the detailed results, we
refer to our technical report [22].

2.2. Main Contributions. From a theoretical perspective, we
provide several results on the hardness and approximability
of MWKVMP and MKVMP for K > 1. Although some
of these results have previously been obtained for K = 2,
to the best of our knowledge no prior work has studied
MWKVMP or MKVMP for K > 2. Since weighted matching
problems arise in a variety of contexts, these results might
find applications in other fields (e.g., VLSI) as well.

From a wireless networking perspective, we provide
a Polynomial-Time Approximation Scheme (PTAS) for
MWKVMP restricted to geometric unit-disk graphs, which
can be used to represent the connectivity graph of a wide
range of wireless networks. We also characterize the perfor-
mance of “natural” greedy scheme under the same class of
graphs. Although it has been known that the greedy scheme
yields a constant factor approximation to MWKVMP, we
are more interested in specific performance bounds of the
scheme for all K . We note that both PTAS and the greedy
algorithm can be used to construct scheduling policies that
achieve a constant fraction of the capacity region under
K-hop interference models, but they can be implemented
in a limited class of wireless networks (e.g., wireless mesh
networks) due to high complexity and requirement for
centralized control.

We complement the results by showing that the maximal
scheduling policy that can be implemented in a distributed
manner with a low complexity achieves a guaranteed fraction
of the capacity region. These results are encouraging as
they indicate that one can develop distributed algorithms to
achieve near optimal throughput in case of a wide range of
wireless networks. Finally, we observe that the topological
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constraints of the underlying graphs play a critical role
to guarantee the throughput performance, and that the
maximal scheduling policy can achieve an arbitrarily small
fraction of the capacity region in general network graphs.

3. Hardness and Approximability Results

We now formulate the decision problems KVMP and
WKVMP corresponding toMKVMP andMWKVMP, respec-
tively, and prove that they are NP-Complete. We also show
that MKVMP and MWKVMP cannot be approximable
within Θ(|V |1/6) in polynomial time while we can approx-
imate them within Θ(|E|/(log |E|)2). We begin with the
following definitions.

Definition 1. For a given graph G and number m, KVMP is
a decision process that determines whether G has a K-valid
matching of sizem.

Definition 2. For a given graph G, number m, and weight
WM ,WKVMP is a decision process that determines whether
G has a K-valid matching of sizem and total weightWM .

The following theorem shows thatWKVMP∈ NP, which
also implies that KVMP ∈ NP.

Theorem 3. WKVMP ∈ NP for all K .

Proof. Given a certificate in the form of a list of edges, it
can easily be verified in polynomial time whether that list
corresponds to a set of m edges that are at a distance of K
or more from each other and have a total weight of WM

or not. Thus, whether the set of edges constitute a K-valid
matching of sizem with a total weight ofWM can be verified
in polynomial time. Hence,WKVMP ∈ NP.

We next show thatKVMP is NP-Hard, which implies that
the decision problemWKVMP is NP-Hard as well.

Theorem 4. KVMP is NP-Hard for K ≥ 2.

Proof. The proof uses a novel technique reducing 3-CNF-
SAT problem to KVMP [23]. Since their result is stronger,
MKVMP, and hence KWMVMP, are Nonapproximable for
K ≥ 2.

We now analyze the approximability ofMKVMP for K ≥
2. We have the following result.

Theorem 5. Let η be a constant such that (|V | + K|E|)η =
Θ(|V |). Then, MKVMP (and hence, MWKVMP) for K ≥ 2 is
not approximable within |V |η/2−ε for any ε > 0, unless NP =
P. Further, it is not approximable within |V |η−ε for any ε > 0,
unless NP is equivalent to Zero-error Probabilistic Polynomial
time (ZPP) problems [24].

Before we prove Theorem 5, we introduce some termi-
nology. Consider a graph G = (V ,E). A subset of vertices
is termed “independent” provided that no two vertices in
the set have an edge between them. The classical Maximum
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Figure 2: A graph G along with the graph G′ constructed as
specified in the proof of Theorem 5 for K = 4.

Independent Set Problem (MISP) is to find an independent
subset of vertices of maximum possible cardinality. Note that
we can easily convert MKVMP (4) to MISP by mapping
an edge to a vertex and connecting two vertices when
corresponding two edges are within K-hop distance. Hastad
[25] has shown that MISP is not approximable within
|V |1/2−ε for any ε > 0 unless NP = P, and it is not
approximable within |V |1−ε for any ε > 0 unless NP = ZPP.
We are now ready to prove Theorem 5.

Proof. We show that given a graph G = (V ,E), we can
construct a graph G′(V ′,E′) in polynomial time such that
a K-valid matching of G′ has cardinality no smaller than
that of the maximum independent set of G. Then we show
that both |V ′| and |E′| are Θ(|V | + K|E|), which is equal
to O(|V ||E|). Finally, we will show that given a K-valid
matching inG′, one can obtain an independent set of vertices
in G with the same cardinality in polynomial time.

Suppose that MKVMP admits a polynomial time ρ-
approximation scheme (PTAS). Given a graph G, one
can construct the corresponding graph G′ in polynomial
time, and use the PTAS for MKVMP to obtain a K-valid
matching of size at least 1/ρ times the cardinality of any
maximum independent set of G. Then we can map it
back to an independent set of vertices in G with the same
cardinality, in polynomial time. This would then result in a
ρ-approximation scheme for MISP of G, which, in view of
the results in [25], would imply Theorem 5.

We next discuss how to construct the graph G′ from G in
polynomial time. We first consider even K .

(1) For each vertex v in V , we place a pair of vertices
v f , vb, and connect them with an edge.

(2) For each edge uv in E, we connect the vertices
u f , v f through a sequence of K/2 edges and
(K − 2)/2 vertices. Let the vertices be denoted by
Vu,v(1), . . . ,Vu,v((K − 2)/2), with Vu,v(1) being the
vertex adjacent to vertex u.

We denote the resultant graph as G′. Figure 2 illustrates an
example of a graph G along with the constructed graph G′

when K = 4. It is straightforward to see that the graphG′ can
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be constructed in polynomial (in |V | and |E|) time. Also, we
have

∣∣V ′∣∣ = 2|V | +
(
K − 2
2

)
|E| = O(|E||V |),

∣∣E′
∣∣ = |V | +

(
K

2

)
|E| = O(|E||V |).

(5)

Now, suppose that {v1, v2, . . . , vm} constitutes an indepen-
dent set of vertices in G. It is then clear that {vibvif }i=1,2,...,m
constitutes a K-valid matching in G′. To see this, observe
that since {v1, v2, . . . , vm} constitutes an independent set
of vertices in G, we have dh(vi, v j) ≥ 2 for all i, j ∈
{1, 2, . . . ,m} with i /= j. Hence, by the construction of G′, we
have d(vibv

i
f , v

j
bv

j
f ) ≥ 2(K/2) = K for i /= j. Then it follows

that the graph G′ has a K-valid matching of cardinality not
smaller than the cardinality of themaximum independent set
of G.

It remains to show that given a K-valid matching M in
G′, one can, in polynomial time, obtain an independent set
of vertices in G with the same cardinality. To this end, we
propose a systematic construction method in Algorithm 1.

It is easy to see that the running time of Algorithm 1
is bounded above by a polynomial in |V | and |E|. We
check that the resulting set L from Algorithm 1 is indeed an
independent set in G. It suffices to show that dh(u, v) ≥ 2 for
all v,u ∈ L. Suppose that there exist two vertices u, v ∈ L
such that dh(u, v) = 1. It then follows that there must exist
edges e1, e2 ∈ M such that d(e1, e2) ≤ K/2 + 2((K − 2)/4) <
K , which contradicts our assumption that M is a K-valid
matching.

Next, we discuss how to construct the graphG′ for K ≥ 5
and odd. We make a minor change in the construction of the
graph. In the first step, instead of placing a pair of vertices for
each vertex v ∈ V , we now place a triplet of vertices v f , vb, vr
(see Figure 3), and connect the pairs of vertices v f , vb and
vb, vr with an edge. In the second step, for each edge uv ∈ E,
we connect the vertices u f , v f through a sequence of (K−1)/2
edges and (K − 3)/2 vertices. We denote the resulting graph
as G′. We now have

∣∣V ′∣∣ = 3|V | +
(
K − 3
2

)
|E| = O(|E||V |),

∣∣E′
∣∣ = 2|V | +

(
K − 1
2

)
|E| = O(|E||V |).

(6)

Similarly, we can check that the graph G′ has a K-valid
matching of cardinality no smaller than the cardinality of
the maximum independent set ofG. Suppose {v1, v2, . . . , vm}
constitutes an independent set of vertices in G. We have
dh(vi, v j) ≥ 2 for all i, j ∈ {1, 2, . . . ,m} with i /= j in G.

Then by the construction of G′, we have d(vibv
i
r , v

j
bv

j
r ) ≥

2 + 2((K − 1)/2) = K + 1 > K for all i /= j, and the result
follows.

We show that given a K-valid matching in G′, we can
obtain an independent set of vertices in G with the same
cardinality in polynomial time. The construction algorithm
is the same as Algorithm 1, except for the following three
lines:

(1) L←∅
(2) while M /=∅ do
(3) Pick an edge e ∈M
(4) if e is of the form vbv f then
(5) L← L∪ v
(6) else if e is of the form uVu,v(1) then
(7) L← L∪ u
(8) else if e is of the form Vu,v((K − 2)/2)v then
(9) L← L∪ v
(10) else if e is of the form Vu,v(i)Vu,v(i + 1) then
(11) if i ≤ (K − 2)/4 then
(12) L← L∪ u
(13) else
(14) L← L∪ v
(15) end if
(16) end if
(17) M ←M − e
(18) end while

Algorithm 1: Constructing an independent set L in G from a K-
valid matchingM in G′, when K is even (G′ = (V ′,E′),M,L).

(i) Line 4: if e is of the form vbv f or vrvb then

(ii) Line 8: else if e is of the form Vu,v((K − 3)/2)v then

(iii) Line 11: if i ≤ (K − 3)/4 then

We check that the resulting set L is an independent set
in G as follows. Suppose that L is not an independent set.
Then there exist two vertices v,u ∈ L such that dh(u, v) = 1.
Then by the construction of G′, there must exist two edges
e1, e2 ∈ M such that d(e1, e2) ≤ max((K − 1)/2 + 2((K −
3)/4), (K − 1)/2 + 2) < K for K ≥ 5, which contradict our
assumption thatM is a K-valid matching. The running time
of the algorithm is also bounded above by a polynomial in
|V | and |E|.

For K = 3, we can construct the graph G′ as in K =
4 case, and prove the corresponding results accordingly. We
omit the details.

From K = O(|V |) and |E| = O(|V |2) in the above proof,
the following result follows from Theorem 5.

Corollary 6. MKVMP (and hence, MWKVMP) for K ≥ 2 is
not approximable within |V |1/6−ε for any ε > 0, unless NP =
P. Further, it is not approximable within |V |1/3−ε for any ε > 0,
unless NP = ZPP.

Corollary 6 gives a lower bound on the approximation
ratio of any polynomial time approximation algorithm for
MWKVMP or MKVMP. The next result we have is opposite
in flavor: it shows that there exists a polynomial time
algorithm for MWKVMP whose approximation ratio is no
worse than Θ(|E|/(log |E|)2).

Theorem 7. MWKVMP can be approximated within a factor
of Θ(|E|/(log |E|)2).
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Figure 3: A graph G along with the graph G′ constructed as
specified in the proof of Theorem 5 for K = 5.

The following Corollary is an immediate consequence of
Theorem 7.

Corollary 8. MKVMP can be approximated within a factor of
Θ(|E|/(log |E|)2).

We define the Vertex Weighted Maximum Independent
Set Problem (VWMISP), which is the following varia-
tion of the Maximum Independent Set Problem (MISP).
Let w(v) denote the weight of vertex v. VWMISP is to
find an independent set L of vertices that maximizes∑

v∈L w(v). It is shown in [26] that VWMISP is approximable
within Θ(|V |/(log |V |)2). We now proceed to the proof of
Theorem 7.

Proof. Given a network graph G = (V ,E), we construct a
graph G′ from G in polynomial time, and approximately
solve VWMISP in G′ using the results of [26]. We can then
obtain the corresponding K-valid matching in G′ from the
independent set in G.

We first construct G′ = (V ′,E′) from G = (V ,E) as
follows. For each edge e ∈ E, we generate a vertex ve in V ′

with weight w(ve) = w(e). If two edges e1, e2 ∈ E satisfy
d(e1, e2) ≤ K − 1, we connect the corresponding vertices
ve1 , ve2 with an edge. The resulting graph G′ is often called
the conflict graph of G. Clearly, we have |V ′| = |E|, and we
can construct the conflict graph in polynomial time. From
the construction, it is clear that for a K-valid matching in G,
there exists an independent set of vertices inG′ with the same
weighted sum, and vice versa.

Now, using the results of [26], we can approximate
VWMISP in polynomial time and obtain an independent
set in G′ with weight at least Θ((log |V ′|)2/|V ′|) times the
weight of an optimal independent set. From the independent
set in G′, we can reconstruct a K-valid matching in G with
the same weight due to |V ′| = |E|, in polynomial time.

4. MWKVMP for Geometric Unit-Disk Graphs

In this section, we focus on the MWKVMP problem for
an important class of network graphs. In particular, we are
interested in geometric unit-disk graphs, under which the
connectivity and the interference constraints are determined

by the location of vertices. Specifically, the vertices are placed
on a plane, two vertices are connected if and only if their
distance is no greater than 1, and also interfere with each
other if and only if their distance is no greater than K .
Geometric graphs have been used extensively in the literature
to model the connectivity of wireless networks [27, 28]. In
this section, we show that MWKVMP can be approximated
within a constant factor in case of unit-disk graphs. We also
note that the results can also be extended to some other
geometric graphs including the quasi-unit-disk graphs [29].

We start with redefining K-valid matching in geometric

graphs. Let d̃S(u, v) denote the Euclidean distance between
two nodes u, v ∈ V . We define the distance between edges
and K-valid matching accordingly as (2), for ea = u1u2, eb =
v1v2 ∈ E, we let

d̃(ea, eb) � min
i, j∈{1,2}

d̃S
(
ui, vj

)
. (7)

A set of edges M is said to be a “K-valid matching” if for all

ea, eb ∈M with ea /= eb, we have d̃(ea, eb) > K . We also denote
the set of K-valid matchings of the graph G by SK .

4.1. PTAS for MWKVMP. Several NP-complete problems
are known to admit PTAS when restricted to planar or
geometric graphs. In [30], PTASs are developed for various
NP-complete problems restricted to planar graphs. NC-
approximation schemes for various NP-Hard and PSPACE-
Hard problems restricted to geometric graphs are developed
in [31]. Following the approach in [31], we now show that
MWKVMP and, therefore,MKVMP admits a constant factor
PTAS when restricted to geometric graphs. We present the
polynomial time approximation algorithm for the complete-
ness.

Consider a geometric graph G = (V ,E) with r = 1,
specified using the coordinates of its vertices in the plane. We
now present an algorithm that yields aK-validmatching with
weight at least (1 + ε)−1 times the weight of an optimal K-
valid matching in polynomial time, where ε > 0 is a constant,
and can be chosen to be arbitrarily small.

The basic technique is the following. Given any ε > 0, we
calculate the smallest possiblem that satisfies ((m+1)/m)2 ≤
1 + ε. We divide the plane into grids of width (K + 2) and
height (K + 2), and denote each grid by Rx,y as shown in
Figure 4. Each grid is left (top) closed and right (bottom)
open. For each i ∈ {0, 1, . . . ,m}, we partition the set of
edges E into si ≥ 1 disjoint sets Ei,1, . . . ,Ei,si by removing
edges whose two end-vertices are within Rx,y∗ such that
y∗ mod (m + 1) = i. For 1 ≤ j ≤ si, let Vi, j be the smallest
subset of V such that all edges in Ei, j are of the form uv for
some u, v ∈ Vi, j . Also, let Gi, j = (Vi, j ,Ei, j), 1 ≤ j ≤ si,

and let Gi � ⋃si
j=1Gi, j . For each subgraph Gi, j , we find a

K-valid matching of size at least m/(m + 1) times the size of
the optimal K-valid matching inGi, j . Observe that since each
subgraph has been separated by (K +1), the union of K-valid
matchings for subgraphs Gi,1, . . . ,Gi,si is a K-valid matching
for the graphG. Using arguments similar to [31, 32], we then
show that each iteration returns a K-valid matching with
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(1) Find the smallestm such that ((m + 1)/m)2 ≤ 1 + ε.
(2) Divide the plane into grids of width (K + 2) and height (K + 2). Each grid is denoted by Rx,y .
(3) for i = 0 tom do
(4) Partition E into si disjoint sets {Ei,1,Ei,2, . . . ,Ei,si} by removing edges whose two end-vertices are within Rx,y∗ such

that y∗ mod (m + 1) = i.
(5) Let Gi, j(Vi, j ,Ei, j) denote the subgraph induced by Ei, j with j ∈ {1, 2, . . . , si}, and let Gi �

⋃si
j=1 Gi, j .

(6) for j = 1 to si do
(7) for p = 0 tom do
(8) Partition Ei, j into si, j disjoint sets {Ep,1

i, j ,E
p,2
i, j , . . . ,E

p,si, j
i, j } by removing edges whose two end-vertices are within

Rx∗ ,y such that x∗ mod (m + 1) = p.
(9) Let G

p,q
i, j (V

p,q
i, j ,E

p,q
i, j ) denote the subgraph induced by E

p,q
i, j with q ∈ {1, 2, . . . , si, j}, and let G

p
i, j � ⋃si, j

q=1 G
p,q
i, j .

(10) for q = 0 to si, j do
(11) Obtain an optimal K-valid matching KVM(G

p,q
i, j ).

(12) end for
(13) KVM(G

p
i, j)←

⋃
1≤q≤si, j KVM(G

p,q
i, j )

(14) end for

(15) KVM(Gi, j)← KVM(G
p∗
i, j ), where p

∗ = argmax0≤p≤mw(KVM(G
p,q
i, j ))

(16) end for
(17) KVM(Gi)←

⋃
1≤ j≤si KVM(Gi, j)

(18) KVM(G)← KVM(Gi∗), where i∗ = argmax0≤i≤mw(KVM(Gi))
(19) end for
(20) M ← KVM(G)

Algorithm 2: A (1+ε)-approximation scheme forMWKVMP (G′ = (V ,E),M).

R0,0 R1,0

R0,1K + 2

K + 2

Rx∗ ,y Rx∗ ,y Rx∗ ,y

s.t. y∗mod

(m + 1) = i

Rx,y

Rx,y∗

Rx,y∗

Gi, j G
p,q
i, j

s.t. x∗mod (m + 1) = p

Figure 4: Graph partition at iteration i in Algorithm 2.

weight at least (m/(m+1))2 times the weight of an optimalK-
valid matching inG. Our algorithm is is described in detail in
Table 2, and achieves (1+ε) of the optimal performance. For
the detailed analysis, we refer to our technical report [22].

Algorithm 2 has complexity of |V |O(m2) (see [22]).
Hence, even for a small m, the complexity is likely to be a
high-order polynomial of |V | and becomes a major obstacle
to its implementation in practice. In the next subsection, we

show that a natural greedy algorithmwith a lower complexity
can approximate MWKVMP within a constant factor under
geometric unit-disk graphs.

4.2. Greedy Approach for MWKVMP. We study the per-
formance of the greedy scheduling scheme illustrated in
Algorithm 3. Note that the algorithm is greedy in the sense
that it schedules links in decreasing order of the weight.
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(1) Arrange edges of E in descending order of weight as
e1, e2, . . . , e|E|

(2) M ← φ
(3) for i = 1 to |E| do
(4) if M ∪ ei is a K-valid matching then
(5) M ←M ∪ ei
(6) end if
(7) end for

Algorithm 3: Greedy weighted K-valid matching algorithm (G =
(V ,E),w : E → R,M).

Some other works uses the term “greedy” for a simpler
scheme that schedules a set of links that no other links can
be added to without violating the interference constraints.
In this paper, we denote such a scheme by “maximal
scheduling”, and differentiate from our greedy algorithm.
It is well known that this greedy approach yields a 2-
approximation algorithm for MWMP in general network
graphs under the 1-hop interference model [33], and a con-
stant approximation algorithm in planar graphs under the 2-
hop interference model [34]. However, the performance can
be much worse for K > 2. In this section, we characterize the
performance of the greedy approach in geometric unit-disk
graphs by providing a lower bound for “all K .” We begin with
some definitions.

Definition 9. The K-hop interference set of an edge e ∈ E,

denoted by IK (e), is the set of edges l ∈ E such that d̃(e, l) ≤
K .

Definition 10. The K-hop interference degree of an edge e ∈
E, denoted by ΔK (e), is defined as

ΔK (e) � max
M∈SK

|M ∩ IK (e)|. (8)

Definition 11. The K-hop interference degree of the graph
G = (V ,E), denoted by ΔK (G), is defined as

ΔK (G) � max
e∈E

ΔK (e). (9)

The following is the main result of this subsection.

Theorem 12. The weight of the matching returned by
Algorithm 3 is always within a factor ΔK (G) of the weight of
an optimal matching. Further, there exists a graph G for which
the above ratio is tight.

Proof. Let e1 be the edge added to the matching during the
first step by the greedy algorithm. Then, we have w(e1) ≥
w(e) for all e ∈ E. Now, the optimal matching can contain at
most ΔK (G) edges belonging to IK (e1), each with a weight no
larger than w(e1). Let e2 be the edge added to the matching
during the second step by the greedy algorithm. Then, we
have w(e2) ≥ w(e) for all e ∈ E \ IK (e), where A \ B
denotes the set consisting of elements of A that are not in B.
Moreover, the optimal matching can contain at most ΔK (G)

e

n
branches

n
branches

K − 1 edges

(a) A matching returned by the
greedy algorithm

e

n
branches

n
branches

K − 1 edges

(b) An optimal matching

Figure 5: Comparison between a matching returned by the greedy
algorithm and an optimal matching. All links in the graph have the
same weight, and links included in each matching are marked in
red. The greedy algorithm may schedule link e at the center of the
graph while it is possible to schedule n links at the same time.

edges belonging to IK (e2) \ IK (e1), each with a weight no
larger than w(e2).

For i ≥ 1, let LK (ei) = IK (e1) ∪ · · · ∪ IK (ei). Arguing
as above, it can be shown that during the ith step, the greedy
algorithm adds an edge ei to the matching that satisfies

w(ei) = max
e∈E\LK (ei−1)

w(e), (10)

and the optimal matching contains no more than ΔK (G)
edges belonging to IK (ei) \ LK (ei−1). Let em denote the last
edge added to the matching by the greedy algorithm, and let
O denote the optimal matching. From the above discussion,
it is clear that for 1 ≤ i ≤ m, we have

∑

e∈O∩IK (ei)\LK (ei−1)
w(e) ≤ ΔK (G)w(ei). (11)

Note that by convention LK (e0) = ∅. Summing over i, we
obtain that

∑

e∈O
w(e) ≤ ΔK (G)

m∑

i=1
w(ei), (12)

proving the first part of Theorem 12.
To prove the second part, we consider a network graph

G as shown in Figure 5. Let e denote the link at the center.
In this example, we have ΔK (G) = ΔK (e) = 2n. One
possible matching obtained using the greedy algorithm is
shown in Figure 5(a). Note that the weight of this matching
is 1. However, the weight of an optimal matching is 2n as
shown in Figure 5(b). Thus, the greedy algorithmmay return
a matching whose weight is off by a factor of ΔK (G) in
comparison to the weight of an optimal matching.

Clearly, Figure 5 shows that ΔK (G) can be of the order of
|E| in general graphs, and correspondingly, the performance
of Algorithm 3 can be arbitrarily small when compared with
the optimal performance. However, if the network graphs
are governed by some geometric constraints, we can show
that Algorithm 3 approximates the optimal scheduler by a
constant.

Theorem 13. The weight of the matching returned by
Algorithm 3 is within a factor of 49 of the weight of an optimal
matching in case of geometric unit-disk graphs.
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D0

D1

e e1

D2

e2

K + 1
2 � K2 �

1
2 � K2 �

1
2 � K2 �

Figure 6: For an edge e ∈ E, we draw a large disk D0 of radius
K + (1/2)�K/2 centered at e. Then for each edge ex ∈ M∗ ∩ IK (e),
where M∗ is a K-valid matching, we can draw a small disjoint disk
Dx of radius (1/2)�K/2. By counting the number of small disks
within D0, we can estimate a bound on the K-hop interference
degree ΔK (e).

Proof. From Theorem 12, it suffices to show that ΔK (G) ≤ 49
for any geometric unit-disk graphG = (V ,E). To this end, we
show that ΔK (e) ≤ 49 for all edges e ∈ E.

At a time slot, let M∗ denote a K-valid matching chosen
by Algorithm 3. We consider the set of edgesM∗ ∩ IK (e) for
an edge e ∈ E. For each edge ex ∈M∗∩IK (e), we draw a disk
Dx of radius (1/2)�K/2 centered at the mid-point of ex. Let
ei, ej denote two edges inM∗∩IK (e) with i /= j. If there are no
such pair of edges, then we have ΔK (e) ≤ 1. Otherwise, it is
clear from d(ei, ej) > K , two disks Di and Dj do not intersect
with each other as shown in Figure 6.

Now we consider a large diskD0 of radius K +(1/2)�K/2
centered at the mid-point of e. Since we have d(e, ex) ≤ K for
all edges ex ∈ M∗ ∩ IK (e), all disks Dx should be contained
in D0. However, since no two disks intersect, the number of
disks Dx in D0 is bounded by

π(K + (1/2)�K/2)2
(π/4)�K/22 ≤ 49, (13)

for all K ≥ 2. Hence, we have |M ∩ IK (e)| ≤ 49 for all edge
e ∈ E, which implies that ΔK (G) ≤ 49.

Note that Algorithm 3 has complexity of O(|E|) and can
be implemented in a distributed manner [35].

Remark 14. The above results imply that PTAS of
Algorithm 2 and the greedy algorithm of Algorithm 3
achieves a guaranteed fraction of weights. Let Sγ denote a
class of scheduling policies such that at each time slot, the

weight of chosen schedule is no less than γ
∑

e∈O w(e). Then
Algorithms 2 and 3 belong to Sγ with γ = (m/(m + 1))2

and γ = 1/ΔK (G) ≥ 1/49, respectively. This property needs
to be highlighted since distributed rate control algorithms
that can deliver the performance of Sγ scheduling policy to
end-users have been recently developed [8].

5. Throughput Guarantees of
Scheduling Policies

Polynomial time algorithms developed in the earlier section
can be used to construct scheduling policies that achieve a
constant fraction of the capacity region. For example, it can
be easily shown that a scheduling policy that belongs to Sγ
achieves at least γΛ, where Λ denotes the capacity region of
the underlying network graph.

Although PTAS and the greedy algorithm achieve a
guaranteed fraction of the capacity region, they require
centralized control and/or a high complexity, which restrict
their practical implementation within a limited class of
wireless networks. In this section, we focus on throughput
performance of scheduling policies. We show that even
simpler scheduling policies that can be easily implemented in
a distributed fashion have a provable throughput guarantee.
Specifically, we show that the maximal scheduling policy of
[8, 15] which is an S0 scheduling policy can also achieve a
guaranteed fraction of the capacity region in geometric unit-
disk graphs, when all transmissions are carried out at certain
fixed rates (i.e., rate control is not exercised).

5.1. Distributed Implementation for Geometric Unit-Disk
Graphs. We start with the following definition of the max-
imal scheduling policy.

Definition 15. A subset M of edges is a maximal schedule if
each edge e ∈ M either has an empty queue, or satisfies
M ∩ IK (e) /=φ. A scheduling policy is said to be a maximal
scheduling policy if it chooses one of the maximal schedules
for transmission at each time slot.

In words, the maximal scheduling policy ensures that
if there are any packets waiting to be transmitted over an
edge e, then either e or one of edges that interfere with e is
scheduled for transmission. Note that an optimal solution
to MWKVMP and the greedy algorithm are one of maximal
scheduling policies while PTAS of Algorithm 2 is not a
maximal scheduling policy.

Now we consider a network with single-hop fixed-rate
sessions. Let Λ denote the capacity region of the network,
that is, the set of session arrival rates for which the network
can be stabilized under some scheduling policy. We have the
following theorem.

Theorem 16. In geometric unit-disk graphs under the K-hop
interference model, any maximal scheduling policy can stabilize
the network system for any set of session arrival rates within
(1/49)Λ.
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Proof. It has been shown in [15] that anymaximal scheduling
policy achieves at least 1/ΔK (G) fraction of the capacity
region. In other words, it stabilizes the network system for
any set of arrival rates within Λ/ΔK (G). From Theorem 13,
we have that ΔK (G) ≤ 49 in geometric unit-disk graphs, and
hence, the result follows.

Note that a simple distributedmaximal scheduling policy
can be developed by extending the randomized maximal
scheduling of [8] to the K-hop interference model. In this
case, the complexity of the policy will be O((log |V |)K ).

Remark 17. Theorem 16 implies that the maximal schedul-
ing policy can achieve (1/49)Λ in the sense of time average. It
can be contrasted with the results of PTAS and the greedy
algorithm provided in Section 4, where they guarantee a
constant fraction of weights at each time slot. Their average
performance can be higher than the guaranteed fraction of
weights. For example, it has been recently shown that the
greedy algorithm achieves (1/6)Λ [36].

5.2. Throughput Guarantees in Nongeometric Network Graphs.
The results provided in the previous section are encouraging
as they indicate that one can develop simple distributed
algorithms whose worst-case throughput is a nonvanishing
fraction of the capacity region. Note that the results are
obtained by admitting an arbitrarily small fraction of weights
at a time slot, on the basis of geometric properties of unit-
disk graphs. Although we have shown in Corollary 6 that
MWKVMP cannot be approximated within a constant factor
in general network graphs, it still remains unclear whether
a simple distributed algorithm like the maximal scheduling
policy can achieve a constant fraction of the capacity region
in general network graphs. In the following, we show that
the geometric constraints are indeed crucial to achieve the
constant fraction of capacity region. To elaborate, we show
that the greedy algorithm (and thus, the maximal scheduling
policy as well) can achieve an arbitrarily small fraction of the
capacity region in general network graphs.

We begin with some definitions. For a graph G = (V ,E),
we consider a subset of edges L ⊂ E, and denote the set of
all possible matching matchings on L by ML. Also let Co(A)
denote the convex hull of set A, that is,

Co(A) �
⎧
⎨
⎩
∑

i

βi�αi | βi ≥ 0,
∑

i

βi = 1,�αi ∈ A

⎫
⎬
⎭. (14)

Recently, it has been shown in [36, 37] that for a vector
�ν ∈ Co(ML) and all ε > 0, we can construct an arrival

rate �λ = (1 + ε)�ν such that the queues of all edges in L
keep increasing under the greedy scheduling algorithm of
Algorithm 3. Note that the optimal scheduler can serve the

arrival rate�λ if�λ ∈ Co(ML). Therefore, in order to show that
the greedy algorithm achieves no greater than 1/σ , it suffices
to find a subset L and two vectors �μ,�ν ∈ Co(ML) such that

σ�μ � �ν, where �a � �b implies a component-wise inequality,
that is, ai ≥ bi for all i.

Now we provide a systematic construction of network
graphs such that we can find a subset of edges L and two

vectors �μ,�ν ∈ Co(ML) satisfying (1/σ)�μ = �ν with σ ≥ 3.
Once we find those two vectors, we have the upper bound
1/σ of the performance of the greedy algorithm.

Lemma 18. There is a network graph GK
σ = (V ,E) under the

K-hop interference model with K ≥ 2 such that two vectors
�μ,�ν ∈ Co(ML) with L ⊂ E satisfy (1/σ)�μ ��ν for σ ≥ 3.

Proof. We first describe our systematic construction of a
graph, and then find two vectors in a subset of edges of
the constructed network graph. Note that these two vectors
should be a combination of maximal matchings in the subset
of edges and one must be component-wise greater than the
other by a factor of σ .

We construct the network graph GK
σ with K ≥ 2 and σ ≥

3 as follows.

Phase 1 (horizontal edges; see Figure 7(a) for an example of
K = 2 and σ = 3). (1) Start with N = 2σK (or 2σ(K + 1) if
K is odd) vertices. Place vertices on a cycle and name them
in counter-clockwise order as {n11,n12, . . . ,n1N}. Connect each
vertex n1i to its immediate neighbor n1i⊕1 for 1 ≤ i ≤ N , where
⊕ represents a modular addition by N + 1.

(2) Make the circle a centerless wheel by connecting each
vertex n1i to the opposite vertex n

1
i⊕(N/2+1) for 1 ≤ i ≤ N/2. All

vertices can be connected because N is an even number. Let
W1 denote the constructed wheel graph.

(3) Connect n1i and n1i⊕(K+�K/2�) using �K/2-hop edges
for 1 ≤ i ≤ N . That is, for each i, add (�K/2 − 1) vertices
between n1i and n1i⊕(K+�K/2�), say {ni(1),ni(2), . . . ,ni(�K/2 −
1)}, and connect them in sequence with edges ni(k)ni(k + 1)
for 1 ≤ k ≤ �K/2 − 2. Also, add edges n1i ni(1) and
ni(�K/2 − 1)n1i⊕(K+�K/2�). If K = 2 or 3, connect n1i and
n1i⊕(K+�K/2�) directly.

(4) Repeat (3) with n1i and n
1
i⊕( jK+�K/2�) for 1 ≤ j ≤ σ −2.

(5) Construct another wheel graph WK by duplicating
W1, and name vertices on the wheel ofWK accordingly with
superscript K .

Phase 2 (vertical edges; see Figure 7(b) for an example of
K = 2 and σ = 3). (1) Connect n1i and nKi using (K − 1)-
hop edges for all 1 ≤ i ≤ N . That is, for each i, add vertices
{n2i ,n3i , . . . ,nK−1i } between n1i and nKi , and connect themwith
edges nki n

k+1
i for 1 ≤ k ≤ K − 1.

(2) Repeat (1) with n1i and nKi⊕ jK for 1 ≤ j ≤ σ − 2.
As an example, all horizontal edges and a part of vertical
edges of G2

3 are shown in Figures 7(a) and 7(b).

Let L ⊂ E be the set of edges inside two wheels, that is,
L = {n1i n1i+N/2,nKi nKi+N/2 for 1 ≤ i ≤ N/2}. Let L1 = L ∩W1

and L2 = L∩W2. Links in L are presented as solid black lines
in Figure 7(a). Note that edges constructed in (3) and (4) of
Phase 1 and in (1) and (2) of Phase 2 are designed to control
interference among edges within and between wheels. If an
edge l is active in L1 (or in LK ), then edges constructed by
(3) and (4) of Phase 1 allow at most (σ − 1) other edges
to be active in L1 (or in L2). Hence, we can activate at most
σ edges in each wheel (see Figure 7(c)). However, the inter-
wheel interference by vertical edges may reduce the number
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Figure 7: Example of network graph and matchings under the K-hop interference model, in which the greedy algorithm achieves no greater
than 1/σ of the optimal performance (K = 2 and σ = 3). The subset L are the edges inside the cycles. (Solid black edges in (a).) An instance
of maximal matching for �μ is shown in (c). Active edges are marked in red. By circulating the active edges in (c), we can obtain similar
maximal matchings. Assume that �μ consists of those maximal matching with an identical weight. Similarly we can construct�ν frommaximal
matchings like (d). Note that both �μ and�ν serve all edges in L for the same amount of time, but a maximal matching of �μ has 3 times more
active edges than a maximal matching of �ν. Hence, it can be shown that (1/σ)μi ≥ νi for all i ∈ L. To make sure that the schedule of (d) is
maximal, we color vertices interfered by the active edge in the upper wheel in black, and vertices interfered by the active edge in the lower
wheel in gray.

of active edges. In (1) and (2) of Phase 2, we have constructed
(σ − 1) vertical edges per each vertex of each wheel. Since
the vertical edges have (K − 1)-hop, an active edge in L1 can
interfere with (σ − 1) edges in LK and vice versa. Assume
that edges l11 and lK1 are active in L1 and LK , respectively. We
can have at most (σ − 1) more active edges in each wheel,
that is, {l12, . . . , l1σ} in L1 and {lK2 , . . . , lKσ } in LK . However, if
we choose edges l11 and lK1 such that l11 interferes with all
edges of {lK2 , . . . , lKσ } in LK , and lK1 interferes with all edges
of {l12, . . . , l1σ} in L1, then we have only two active edges as
a maximal matching in L, that is, l11 and lK1 (two red lines
in Figure 7(d)). We design the network graph carefully such
that a maximal matching can include from 2σ active edges to
two active edges.

Now, we find two convex combinations of maximal
matchings in L that one is component-wise greater than the
other by σ . Consider two sets of maximal matchings; one
with maximal matchings of 2σ active edges and the other
with maximal matchings of 2 active edges. We first let �μ =∑K

i=1 βiMi where βi = 1/K and each maximal matching Mi

with 1 ≤ i ≤ K includes σ active edges n1i⊕ jKn
1
(i+N/2)⊕ jK

and nK(i+1)⊕ jKn
K
(i+1+N/2)⊕ jK for all 0 ≤ j ≤ σ − 1. For the

other vector, let �ν = ∑N/2
k=1 vkMk where vk = 2/N and each

maximal matching Mk with 1 ≤ k ≤ N/2 includes only two
edges n1kn

1
k+N/2 and nKk⊕(σ−1)Kn

K
(k+N/2)⊕(σ−1)K . Note that Mi’s

and Mk’s are valid maximal matchings in L. All active edges
in L are either activated or interfered, and all active edges
satisfy the interference constraints. Figures 7(c) and 7(d)
illustrate an instance ofMi andMk in G2

3, respectively. Active

edges are colored in red. To clearly show the interference in
Figure 7(d), we color a vertex in black if it is interfered by the
active edge in the upper wheel, and in gray if it is interfered
by the active edge in the lower wheel.

Using the scheduling of �μ or �ν, each edge in L is served
exactly once during a unit time for 1/K by �μ or for 2/N by
�ν. Since N = 2σK (or 2σ(K + 1) if K is odd), we obtain that
(1/σ)μj ≥ ν j for all edge ej ∈ L and thus, (1/σ)�μ ��ν.

Lemma 18 immediately implies the following proposi-
tion.

Proposition 19. Under the K-hop interference model,
Algorithm 3 can achieve an arbitrarily small fraction of the
optimal throughput.

Proof. From Lemma 18 and the techniques of [37], we can

find a traffic arrival with �λ = (1 + ε)�ν for all ε > 0
such that the system is unstable under the greedy scheduling
algorithm. However, the optimal scheduling policy can
support �μ � (1/σ)�ν, which follows that the achievable rate
of the greedy algorithm is not greater than 1/σ . Since σ
can be arbitrarily large from our graph construction, the
performance ratio can be arbitrarily small.

Proposition 19 lets us know that it is hard, if possible, to
characterize the performance limits of the greedy algorithm
(and thus the maximal scheduling policy as well) in arbitrary
network graphs under the K-hop interference model.
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6. Concluding Remarks

We consider the problem of throughput-optimal scheduling
in wireless networks subject to interference constraints,
which are modeled using a family of K-hop interference
models. Under the assumption that each node transmits at a
fixed power level (which can be different for different nodes),
the optimal scheduling problems are shown to be weighted
matching problems with constraints determined by the K-
hop interference model. These weighted matching problems
are termed MaximumWeighted K-Valid Matching Problems
(MWKVMPs).

For K = 1, MWKVMP corresponds to the well-studied
Maximum Weighted Matching Problem (MWMP) in the
literature, which can be solved in polynomial time. We show
thatMWKVMP is NP-Hard for allK ≥ 2 and provided upper
and lower bounds on its approximability.

By restricting the problem to geometric unit-disk graphs,
under which connectivities are determined by geometric
distance between nodes, we show that MWKVMP admits a
PTAS within a factor arbitrarily close to 1, and the “natural”
greedy matching algorithm yields a 49-approximation to the
optimal solution for allK . We emphasize that both PTAS and
the greey scheduling schemes achieve a guaranteed fraction
ofweights at every time slot. Combining these with the results
in [8], it follows that both can be used to develop a joint
solution of scheduling and rate control with provable (end-
to-end) performance guarantees with multihop traffics.

However, since PTAS and the greedy algorithm have a
polynomial time complexity and require centralized control,
their implementations in practice are restricted within a
limited class of wireless networks. We complement these
results by further focusing on the throughput performance
of scheduling policies. Specifically, we show that the maximal
scheduling policy that is amenable to distributed implemen-
tation achieves 1/49 fraction of the capacity region under a
setting with single-hop traffic and fixed rate transmissions.
These results are encouraging as they indicate that one
can develop simple distributed algorithms whose worst-
case throughput is a nonvanishing fraction of the optimal
throughput in the case of a wide class of wireless networks.
Finally, we highlight that the geometric constraints are
crucial for the maximal scheduling policy to achieve the
throughput guarantees. We show that even the greedy
scheduling algorithm, in the worst case, can result in an
arbitrarily small efficiency without these constraints.
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