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Foliage clutter, which can be very large and mask targets in backscattered signals, is a crucial factor that degrades the performance
of target detection, tracking, and recognition. Previous literature has intensively investigated land clutter and sea clutter, whereas
foliage clutter is still an open-research area. In this paper, we propose that foliage clutter should be more accurately described by
a log-logistic model. On a basis of pragmatic data collected by ultra-wideband (UWB) radars, we analyze two different datasets
by means of maximum likelihood (ML) parameter estimation as well as the root mean square error (RMSE) performance. We
not only investigate log-logistic model, but also compare it with other popular clutter models, namely, log-normal, Weibull, and
Nakagami. It shows that the log-logistic model achieves the smallest standard deviation (STD) error in parameter estimation, as
well as the best goodness-of-fit and smallest RMSE for both poor and good foliage clutter signals.

1. Introduction andMotivation

Detection and identification of military equipment in a
strong clutter background, such as foliage, soil cover, or
building has been a long-standing subject of intensive study.
It is believed that solving the target detection through
foliage environment will significantly benefit sense-through-
wall and many other subsurface sensing problems. However,
to this date, the detection of foliage-covered targets with
satisfied performances is still a challenging issue. Recent
investigations in environment behavior of tree canopies have
shown that both signal backscattering and attenuation are
significantly influenced by tree architecture [1]. Therefore
using the return signal from foliage to establish the clutter
model that accounts for environment effects is of great
importance for the sensing-through-foliage radar detection.

Clutter is a term used to define all unwanted echoes
from natural environment [2]. The nature of clutter may
necessarily vary on a basis of different applications and
radar parameters. Most previous studies have investigated
land clutter or sea clutter, and some conclusions have
been reached. For example, log-normal, Weibull, and K-
distributions have been proven to be better suited for the
clutter description other than Rayleigh and Rician models in

high-resolution radar systems. Fred did statistical compar-
isons and found that sea clutter at low-grazing angles and
high range resolution is spiky based on the data measured
from various sites in Kauai and Hawaii [3]. David generalized
radar clutter models using noncentral chi-square density by
allowing the noncentrality parameter to fluctuate according
to the gamma distribution [4]. Furthermore, Leung et al.
used a Neural-Network-based approach to predict the sea
clutter model [5, 6].

However, as far as clutter modeling in forest is concerned,
it is still of great interest and will be likely to take some time
to reach any agreement. A team of researchers from MIT [7]
and U. S. Army Research Laboratory (ARL) [8, 9] have mea-
sured ultra-wideband (UWB) backscatter signals in foliage
for different polarizations and frequency ranges. The mea-
surements show that the foliage clutter is impulsively cor-
rupted with multipath fading, which leads to inaccuracy of
the K-distributions description [10]. The US Air Force Office
of Scientific Research (AFOSR) has conducted field mea-
surement experiment concerning foliage penetration radar
since 2004 and noted that metallic targets may be more easily
identified with wideband than with narrowband signals.

In this investigation, we will apply ultra-wideband
(UWB) radar to model the foliage clutter. UWB radar
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emissions are at a relatively low frequency typically between
100 MHz and 3 GHz. Additionally, the fractional bandwidth
of the signal is very large (greater than 0.2). Such a radar
sensor has exceptional range resolution, as well as the ability
to penetrate many common materials (e.g., walls). Law
enforcement personnel have used UWB ground-penetrating
radars (GPRs) for at least a decade. Like the GPR, sensing-
through-foliage radar takes advantage of UWB’s very fine
resolution (time gating) and the low frequency of operation.

In our work, we investigate the log-logistic distribution
(LLD) to model foliage clutter and illustrate the goodness-
of-fit to real UWB clutter data. Additionally, we compare
the goodness-of-fit of LLD with existing popular models,
namely, log-normal, Weibull, and Nakagami by means of
maximum likelihood estimation (MLE) and the root mean
square error (RMSE). The result shows that log-logistic
model provides the best fit to the foliage clutter. Our
contribution is not only the new proposal on the foliage
clutter model with detailed parameter estimation, but also
providing the criteria and approaches based on which the
statistical analysis is obtained. Further, based on LLD the
theoretical study about the probability of detection as well
as the probability of false alarm are discussed.

The rest of this paper is organized as follows. Section 2
provides a review on statistical models of log-logistic, log-
normal, Weibull, and Nakagami, and discusses their applica-
bility for foliage clutter modeling. Section 3 summarizes the
measurement and the two sets of clutter data that are used
in this paper. Section 4 discusses estimation on parameters
and the goodness-of-fit for log-logistic, log-normal, Weibull
and Nakagami models, respectively. Section 5 analyzes the
performance of radar detection in the presence of foliage
clutter. Finally, Section 6 concludes this paper and describes
some future research topics.

2. Clutter Models

Many radar clutter models have been proposed in terms
of distinct statistical distributions; most of which describe
the characteristics of clutter amplitude or power. Before
detailed analysis on our measurement, we would like to
discuss the properties and applicability of log-logistic, log-
normal, Weibull, and Nakagami statistic distributions, which
are designated as “curve-fit” models in Section 4, since they
are more likely to provide good fit to our collections of
pragmatic clutter data. Detailed explanations would be given
in the following subsections.

2.1. Log-Logistic Model. Recently Log-logistic model has
been applied in hydrological analysis. This distribution is
a special case of Burr’s type-XII distribution [11] as well
as a special case of the kappa distribution proposed by
Mielke andJohnson [12]. Lee et al. employed the log-logistic
distribution (LLD) for frequency analysis of multiyear
drought durations [13], whereas Shoukri et al. employed
LLD to analyze extensive Canadian precipitation data [14],
and Narda and Malik used LLD to develop a model of
root growth and water uptake in wheat [15]. In spite of its
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Figure 1: Log-logistic distribution PDF for μ = 0.5 and σ = 0.5,
μ = 0.5 and σ = 1, μ = 2 and σ = 0.5, μ = 2 and σ = 1.

intensive application in precipitation and stream-flow data,
the log-logistic distribution (LLD) [16] statistical model,
to the best of our knowledge, has never been applied to
radar foliage clutter. The motivation for considering log-
logistic model is based on its higher kurtosis and longer tails,
as well as its probability density function (PDF) similarity
to log-normal and Weibull distributions. It is intended to
be employed to estimate how well the model matches our
collected foliage clutter statistics.

Here we apply the two-parameter distribution with
parameters μ and σ . The PDF for this distribution is given
by

f (x) = e((ln x−μ)/σ)

σx
(
1 + e((ln x−μ)/σ)

)2 , x > 0, σ > 0, (1)

where μ is a scale parameter and σ is a shape parameter. The
mean of the LLD is

E{x} = eμΓ(1 + σ)Γ(1− σ). (2)

The variance is given by

Var{x} = e2μ
{
Γ(1 + 2σ)Γ(1− 2σ)− [Γ(1 + σ)Γ(1− σ)]2

}
,

(3)

while the moment of order k is

E
{
xk
}
= σeμB(kσ , 1− kσ), k <

1
σ

, (4)

where

B(m,n) =
∫ 1

0
xm−1(1− x)n−1dx. (5)

The PDFs for LLD for selected μ’s and σ ’s are illustrated in
Figure 1.
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Figure 2: Log-normal distribution PDF for μ = 0.5 and σ = 0.5,
μ = 0.5 and σ = 1, μ = 2 and σ = 0.5, μ = 2 and σ = 1.

2.2. Log-Normal Model. The log-normal distribution is most
frequently used when the radar sees land clutter [17] or sea
clutter [18] at low-grazing angles (≤5 degrees) since log-
normal has a long tail. However, it has been reported that the
log-normal model tends to overestimate the dynamic range
of the real clutter distribution [19]. Furthermore, whether
it is applicable to model foliage clutter still requires detailed
analysis.

The log-normal distribution [20] is also a two-parameter
distribution with parameters μ and σ . The PDF for this
distribution is given by

f (x) = 1
xσ
√

2π
e−(ln x−μ)2/2σ2

, x > 0, σ > 0, (6)

where μ is a scale parameter and σ is a shape parameter.
The mean, variance, and the moment of order k are given,
respectively, by

E{x} = eμ+(σ2/2),

Var{x} =
(
eσ

2 − 1
)
e2μ+σ2

,

E
{
xk
}
= ekμ+((k2σ2)/2).

(7)

The PDFs for selected μ’s and σ ’s for log-normal distribution
are shown in Figure 2.

2.3. Weibull Model. The Weibull distribution, which is
named after Waloddi Weibull, can be made to fit clutter
measurements that lie between the Rayleigh and log-normal
distribution [21]. It has been applied to land clutter [22, 23],
sea clutter [24, 25] and weather clutter [26]. However, in very
spiky sea and foliage clutter, the description of the clutter
statistics provided by Weibull distributions may not always
be sufficiently accurate [27].
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Figure 3: Weibull distribution PDF for a = 2 and b = 1, a = 4 and
b = 1, a = 2 and b = 4, a = 4 and b = 4.

The Weibull distribution is also a two-parameter dis-
tribution with parameters a and b. The PDF for this
distribution is given by

f (x) = ba−bxb−1e−(x/a)b , x > 0, a > 0, b > 0, (8)

where b is the shape parameter and a is the scale parameter.
The mean, variance, and the moment of order k are given,
respectively, by

E{x} = aΓ
(

1 +
1
b

)
,

Var{x} = a2

{

Γ
(

1 +
2
b

)
−
[
Γ
(

1 +
1
b

)]2
}

,

E
{
xk
}
= akΓ

(
1 +

k

b

)
.

(9)

The PDFs for selected a’s and b’s for Weibull distribution are
shown in Figure 3.

2.4. Nakagami Model. In the foliage penetration setting, the
target returns suffer from multipath effects corrupted with
fading. As Nakagami distribution is used to model scattered
fading signals that reach a receiver by multiple paths, it
is natural to investigate how well it fits the foliage clutter
statistics.

The PDF for Nakagami distribution is given by

f (x) = 2
(
μ

ω

)μ 1
Γ
(
μ
) x(2μ−1) e−(μ/ω)x2

, x > 0, ω > 0, (10)

where μ is the shape parameter and ω is the scale parameter.
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The mean, variance, and the moment of order k of Nakagami
distribution are given, respectively by

E{x} = Γ
(
μ + (1/2)

)

Γ
(
μ
)

(
ω

μ

)1/2

,

Var{x} = ω

⎡

⎣1− 1
μ

(
Γ(μ + (1/2))

Γ(μ)

)2
⎤

⎦,

E
{
xk
}
= Γ

(
μ + (k/2)

)

Γ
(
μ
)

(
ω

μ

)k/2

.

(11)

The PDFs for selected μ’s and ω’s for the Nakagami
distribution are illustrated in Figure 4.

3. Experiment Setup and Data Collection

The foliage penetration measurement effort began in August
2005 and continued through December 2005. Working in
August through the fall of 2005, the foliage measured
included late summer foliage and fall and early winter foliage.
Late summer foliage, because of the limited rainfall, involved
foliage with decreased water content. Late fall and winter
measurements involved largely defoliated but dense forest. A
picture of experiment site is shown in Figure 5.

The principle pieces of equipment are

(i) Dual antenna mounting stand,

(ii) Two antennas,

(iii) A trihedral reflector target,

(iv) Barth pulse source (Barth Electronics, Inc. model 732
GL) for UWB,

(v) Tektronix model 7704 B oscilloscope,

(vi) Rack system,

(vii) HP signal Generator,

(viii) IBM laptop,

(ix) Custom RF switch and power supply,

(x) Weather shield (small hut).

A bistatic UWB radar (individual transmit and receive
antennas) was used (see Figure 6) as it was believed that
circulators did not exist for wideband signals at that time.
The foliage clutter was a round trip distance of 600 feet from
the bistatic antennas (300 feet one way).

An 18-foot distance between antennas was chosen to
reduce the signal coupling between transmitter and the
receiver [28]. The radar was constructed on a seven-ton man
lift, which had a total lifting capacity of 450 kG. The limit
of the lifting capacity was reached during the experiment
as essentially the entire measuring apparatus was placed on
the lift (as shown in Figure 7). Throughout this work, a
Barth pulse source (Barth Electronics, Inc., model 732 GL)
was used. The pulse generator uses a coaxial reed switch to
discharge a charge line for a very fast rise-time pulse outputs.
The model 732 pulse generator provides pulses of less than
50 picoseconds (ps) rise time, with amplitude from 150 V
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Figure 4: Nakagami distribution PDF for μ = 0.5 and ω = 0.5,
μ = 0.5 and ω = 4, μ = 2 and ω = 0.5, μ = 2 and ω = 4.

Figure 5: A picture of foliage.

Foliage

Receiver Transmitter

Figure 6: Illustration for the experimental radar antennas.

to greater than 2 kV into any load impedance through a
50 ohm coaxial line. The generator is capable of producing
pulses with a minimum width of 750 ps and a maximum
of 1 microsecond. This output pulse width is determined by
charge line length for rectangular pulses, or by capacitors for
1/e decay pulses.

For the return data we used in this paper, each sample
is spaced at 50 picoseconds interval, and 16.000 samples
were collected for each collection for a total time duration
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Figure 7: This figure shows the lift with the experiment. The
antennas are at the far end of the lift from the viewer under the
roof that was built to shield the equipment from the elements. This
picture was taken in September with the foliage largely still present.
The cables coming from the lift are a ground cable to an earth
ground and one of 4 tethers used in windy conditions.

of 0.8 microseconds at a rate of approximately 20 Hz. We
considered two sets of data from this experiment. Initially,
the Barth pulse source was operated at lower amplitude
and 35 pulses of clutter signals were obtained at each site
but different time. These pulses have been averaged to
remove the random noise. Data have been collected from
10 different sites. one collection of transmitted pulse and
received backscattering are shown in Figures 8(a) and 8(b),
respectively. The unit of clutter amplitude in this paper is “V”.
Although pulse-to-pulse variability was noted for collections
of received echoes, the decay profiles of returned signals are
quite similar. These data are referred to as dataset I.

Later, additional improvements were made in the mea-
surement procedure, including the improved isolation of
transmit and receive antennas, the addition of a log-periodic
antenna (Antenna Research Associates LPC-2010-C) as a
transmit antenna, and the EMCO ridged waveguide horn
(Microwave horn, EMCO 3106). Echoes for dataset II were
collected using this higher-amplitude transmitted pulses.
Two collections at different site with 100 pulses average have
been obtained; one of which is shown in Figure 8(c). To
make them clearer to readers, we provide expanded views of
received traces from samples 10.000 to 12.000 in Figure 9.

4. Statistical Analysis of the Foliage Clutter

4.1. Maximum Likelihood Estimation. Using the collected
clutter data mentioned above, we apply Maximum Likeli-

hood Estimation (MLE) approach to estimate the parameters
of the log-logistic, log-normal, Weibull, and Nakagami
models. MLE is often used when the sample data are known
and parameters of the underlying probability distribution are
to be estimated [29, 30]. It is generalized as follows.

Let y1, y2, . . . , yN be N independent samples drawn from
a random variable Y with m parameters θ1, θ2, . . . , θm, where
θi ∈ θ, then the likelihood function expressed as a function
of θ conditional on Y is

LN (Y | θ) =
N∏

k=1

fY |θ
(
yk | θ1, θ2, . . . , θm

)
. (12)

The maximum likelihood estimate of θ1, θ2,. . ., θm is the set
of values θ̂1, θ̂2, . . . , θ̂m that maximize the likelihood function
LN (Y | θ).

As the logarithmic function is monotonically increasing,
maximizing LN (Y | θ) is equivalent to maximizing ln(LN (Y |
θ)). Hence, it can be shown that a necessary but not sufficient

condition to obtain the ML estimate θ̂ is to solve the
likelihood equation

∂

∂θ
ln(LN (Y | θ)) = 0. (13)

Note that the amplitude of foliage clutter faded with
the increase of sample time. Even at the same sample, it
varies for different collections. In order to better analyze its
randomness, we studied each collection. Using the collected
clutter radar mentioned above, we apply MLE to obtain μ̂

and σ̂ for log-logistic, μ̂ and σ̂ for the log-normal, â and b̂ for
the Weibull, and μ̂ and ω̂ for the Nakagami. The estimation
results for dataset I are listed in Table 1. We also explore
the standard deviation (STD) error of each parameter. These
descriptions are shown in Table 1 in the form of εx, where x
denotes different parameter for each model. We also calculate
the average values of estimated parameters and their STD
errors in Table 2.

From Tables 1 and 2, it can be easily seen that STD errors
for log-logistic and log-normal parameters are less than 0.02
and the estimated parameters for these two models vary little
from data to data compared to parameters of Weibull and
Nakagami. It is obvious that log-logistic model provides the
smallest STD error for all the 10 collections compared to log-
normal. Although accurate shape parameter estimation can
be achieved by both Weibull and Nakagami models, their
scale parameters are not acceptable.

The estimation results for dataset II are shown in Table 3.
Due to the improvement on this set of signal, STD error for
log-logistic and log-normal parameters have been reduced
compared to those in dataset I. However, for Weibull and
Nakagami, it is a different case, which implies that log-
logistic and log-normal are much more accurate to model
foliage clutter.

In view of smaller error in parameter estimation, log-
logistic model fits the collected data best compared to log-
normal, Weibull, and Nakagami. Log-normal model is also
acceptable.
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Table 1: Estimated parameters for dataset I.

PDF Log-Logistic Log-normal Weibull Nakagami

Data 1

μ̂ = 7.24161 μ̂ = 7.0455 â = 2975.33 μ̂ = 0.177062

σ̂ = 1.06483 σ̂ = 2.20761 b̂ = 0.594979 ω̂ = 9.09663e + 007

εμ = 0.0141212 εμ = 0.0174527 εa = 41.6157 εμ = 0.00150615

εσ = 0.00724181 εσ = 0.0123415 εb = 0.00356925 εω = 1.70907e + 006

Data 2

μ̂ = 6.9716 μ̂ = 6.72573 â = 2285.13 μ̂ = 0.162375

σ̂ = 1.2126 σ̂ = 2.33617 b̂ = 0.563747 ω̂ = 7.4776e + 007

εμ = 0.014747 εμ = 0.0184691 εa = 33.7127 εμ = 0.00137422

εσ = 0.00773723 εσ = 0.0130602 εb = 0.00337485 εω = 1.46679e + 006

Data 3

μ̂ = 7.00554 μ̂ = 6.76262 â = 2341.52 μ̂ = 0.164695

σ̂ = 1.10741 σ̂ = 2.31258 b̂ = 0.57073 ω̂ = 7.46366e + 007

εμ = 0.0145728 εμ = 0.0182825 εa = 34.1207 εμ = 0.001395

εσ = 0.0076303 εσ = 0.0129283 εb = 0.00341448 εω = 1.45459e + 006

Data 4

μ̂ = 7.03055 μ̂ = 6.80711 â = 2395.85 μ̂ = 0.167391

σ̂ = 1.07858 σ̂ = 2.25973 b̂ = 0.579381 ω̂ = 7.4926e + 007

εμ = 0.0142027 εμ = 0.0178647 εa = 34.4066 εμ = 0.0014916

εσ = 0.00741556 εσ = 0.0126329 εb = 0.00345156 εω = 1.44727e + 006

Data 5

μ̂ = 7.16226 μ̂ = 6.95712 â = 2806.76 μ̂ = 0.17112

σ̂ = 1.10132 σ̂ = 2.26592 b̂ = 0.577823 ω̂ = 9.03298e + 007

εμ = 0.014605 εμ = 0.0179137 εa = 40.4226 εμ = 0.00145265

εσ = 0.00750067 εσ = 0.0126675 εb = 0.00347389 εω = 1.72749e + 006

Data 6

μ̂ = 7.01527 μ̂ = 6.77515 â = 2360.33 μ̂ = 0.165292

σ̂ = 1.10123 σ̂ = 2.30286 b̂ = 0.572749 ω̂ = 7.50824e + 007

εμ = 0.0144902 εμ = 0.0182057 εa = 34.2753 εμ = 0.00140035

εσ = 0.00758568 εσ = 0.012874 εb = 0.00342376 εω = 1.46145e + 006

Data 7

μ̂ = 7.14523 μ̂ = 6.94201 â = 2753.69 μ̂ = 0.170964

σ̂ = 1.09486 σ̂ = 2.25621 b̂ = 0.578948 ω̂ = 8.80474e + 007

εμ = 0.0145132 εμ = 0.0178369 εa = 39.585 εμ = 0.00145125

εσ = 0.00745994 εσ = 0.0126132 εb = 0.00347442 εω = 1.68382e + 006

Data 8

μ̂ = 6.95411 μ̂ = 6.71591 â = 2250.66 μ̂ = 0.162448

σ̂ = 1.11486 σ̂ = 2.31898 b̂ = 0.564989 ω̂ = 7.31436e + 007

εμ = 0.0146774 εμ = 0.0183331 εa = 33.1387 εμ = 0.00137488

εσ = 0.00768003 εσ = 0.0129641 εb = 0.0033763 εω = 1.4338e + 006

Data 9

μ̂ = 7.18561 μ̂ = 6.9715 â = 2840.72 μ̂ = 0.172324

σ̂ = 1.09854 σ̂ = 2.27088 b̂ = 0.581219 ω̂ = 8.97304e + 007

εμ = 0.0145483 εμ = 0.0179529 εa = 40.6593 εμ = 0.00146348

εσ = 0.00749265 εσ = 0.0126952 εb = 0.0034984 εω = 1.70923e + 006

Data 10

μ̂ = 7.192 μ̂ = 6.99196 â = 2869.65 μ̂ = 0.173572

σ̂ = 1.0866 σ̂ = 2.23975 b̂ = 0.584803 ω̂ = 9.01631e + 007

εμ = 0.0144166 εμ = 0.0177067 εa = 40.837 εμ = 0.0014747

εσ = 0.0073916 εσ = 0.0125211 εb = 0.00351294 εω = 1.71142e + 006

Table 2: Averaged estimated parameters for dataset I.

PDF Log-Logistic Log-normal Weibull Nakagami

Average

μ̂ = 7.0904 μ̂ = 6.8695 â = 2588 μ̂ = 0.1687

σ̂ = 1.1061 σ̂ = 2.2771 b̂ = 0.5769 ω̂ = 8.218e + 007

εμ = 0.0145 εμ = 0.0180 εa = 37.4316 εμ = 0.0014

εσ = 0.0075 εσ = 0.0127 εb = 0.0035 εω = 1.4905e + 006
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Figure 8: Clutter data: (a) transmitted pulse before antenna amplification, (b) an example of received echoes from dataset I, and (c) an
example of received echoes from dataset II.

4.2. Goodness-of-Fit in Curve and RMSE. We may also
observe the extent to which the PDF curve of the statistic
model matches that of clutter data by calculating the
averaged root mean square error (RMSE) for each dataset.
Let i (i=1, 2, . . . ,n) be the sample index of clutter amplitude;
ci is the corresponding PDF value whereas ĉi is the PDF value
of the statistical model with estimated parameters by means
of MLE. The RMSE is obtained by

RMSE = 1
k

∑

k

√
√
√√ 1
n

n∑

i=1

(ci − ĉi)
2. (14)

Here we apply n =100 for each model and k is the number of
data collections for each set.

In Figures 10 and 11, we use one collection from dataset I
and II, respectively to illustrate the goodness-of-fit in curve.
Also, we calculate the averaged RMSE of each model for both
collected dataset I and II. The PDF of absolute amplitude
of one collection of clutter data is presented by means
of histogram bars. In Figure 10, it can be seen obviously
that log-logistic model with MLE parameters provides the
best goodness-of-fit compared to other models, since it
provides the most suitable kurtosis, slope and tail. As for
the maximum PDF value, the log-logistic is about 1 × 10−3,
while those of other models are over 1.2×10−3. For the slope
part, which connects the kurtosis and the tail, and is in the
range from 0.1 × 104 to 0.5 × 104 by x axes, the log-logistic
model provides the smallest skewness whereas Nakagami
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Table 3: Estimated and averaged parameters for dataset ii.

PDF Log-Logistic Log-normal Weibull Nakagami

Data 1

μ̂ = 7.76868 μ̂ = 7.79566 â = 4901.07 μ̂ = 0.239587

σ̂ = 0.786511 σ̂ = 1.41771 b̂ = 0.743223 ω̂ = 1.16839e + 008

εμ = 0.0107792 εμ = 0.011208 εa = 55.3011 εμ = 0.00207912

εσ = 0.00521601 εσ = 0.00792559 εb = 0.00434465 εω = 1.88719e + 006

Data 2

μ̂ = 7.78096 μ̂ = 7.8046 â = 4942.48 μ̂ = 0.240593

σ̂ = 0.787426 σ̂ = 1.41855 b̂ = 0.745233 ω̂ = 1.17237e + 008

εμ = 0.0107917 εμ = 0.0112147 εa = 55.6114 εμ = 0.00208848

εσ = 0.0052213 εσ = 0.00793033 εb = 0.0043612 εω = 1.88953e + 006

Average

μ̂ = 7.7748 μ̂ = 7.7881 â = 4921.8 μ̂ = 0.2401

σ̂ = 0.7870 σ̂ = 1.4181 b̂ = 0.7442 ω̂ = 1.1704 + 008

εμ = 0.0108 εμ = 0.0112 εa = 55.4565 εμ = 0.0021

εσ = 0.0052 εσ = 0.0079 εb = 0.0044 εω = 1.8884 + 006
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Figure 9: Expanded view from clutter samples 10.000 to 12.000 (a) from dataset I, and (b) from dataset II.

provides the largest. Examination of these tails shows that
log-logistic and log-normal provide very similar-valued tails,
while tails of the Weibull and the Nakagami are lager than the
collected data. Meanwhile, we obtain that RMSElog-logistic =
2.5425×10−5, RMSElog-normal = 3.2704×10−5, RMSEWeibull =
3.7234× 10−5, and RMSENakagami = 5.4326× 10−5. This also
illustrates that the log-logistic model is more accurate than
the other three models.

Similarly, in Figure 11 histogram bars denote the PDF of
the absolute amplitude of one collection of clutter data from
set II. Compared to Figure 10, the log-logistic and the log-
normal provide similar extent of goodness-of-fit. Weibull is
worse since it cannot fit well in either kurtosis or tail, while
Nakagami is the worst and unacceptable. Also, we obtain
RMSElog-logistic = 2.739 × 10−5, RMSElog-normal = 3.1866 ×
10−5, RMSEWeibull = 3.6361 × 10−5, and RMSENakagami =

4.4045 × 10−5. This illustrates that for clutter backscattering
dataset II, the log-logistic model still fits the best.

5. Target Detection Performance

One of the primary goals for a radar is target detection; there-
fore based on clutter models that have been investigated in
the previous sections, we apply a special case of the Bayesian
criterion named Neyman-Parson criterion to analyze the
target detection performance in the foliage environment.

If the received sample signal is R, then the two hypotheses
are shown as follows.

H0 : R = C + n,

H1 : R = S + C + n,
(15)
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Figure 10: Clutter model comparison from dataset I: (a) log-logistic versus log-normal, (b) log-logistic versus Weibull, and (c) log-logistic
versus Nakagami. RMSElog-logistic = 2.5425 × 10−5, RMSElog-normal = 3.2704 × 10−5, RMSEWeibull = 3.7234 × 10−5, and RMSENakagami =
5.4326× 10−5.

where C and n represent the random variable of clutter and
noise, respectively. C follows log-logistic model with both
parameters μ and σ , and n is Gaussian noise with zero mean
and variance ν2. S is the target signal, which assumes to be a
constant for simplicity.

Therefore f (R | H0) and f (R | H1) mean that

(i) f (R | H0) = PDF of R given that a target was not
present,

(ii) f (R | H1) = PDF of R given that a target was present.

They can be denoted as follows.

f (R | H0) =
∫∞

0

e(ln r−μ)/σ

σr
(
1 + e(ln r−μ)/σ

)2 ×
1√
2πν

e−(R−r)2/2ν2
dr,

(16)

f (R | H1) =
∫∞

0

e((ln(r−s)−μ)/σ)

σ(r − s)
(
1 + e((ln(r−s)−μ)/σ)

)2

× 1√
2πν

e−(R−s−r)2/2ν2
dr.

(17)
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Figure 11: Clutter model comparison from dataset II: (a) log-Logistic versus log-normal, (b) log-logistic versus Weibull (c), and log-logistic
versus Nakagami. RMSElog−logistic = 2.739 × 10−5, RMSElog−normal = 3.1866 × 10−5, RMSEWeibull = 3.6361 × 10−5, and RMSENakagami =
4.4045× 10−5.

If the probability that a target was not present is P(H0)
whereas the probability that a target was present is P(H1),
then PDF of R is

f (R) = P(H0) f (R | H0) + P(H1) f (R | H1). (18)

To decide whether there is a target or not, Neyman-Pearson
detection rule is shown as

f (R | H0)
f (R | H1)

H0

≷
H1

P(H1)
P(H0)

. (19)

In case of P(H1) = P(H0), (20) is simplified as

f (R | H0)
H0

≷
H1

f (R | H1) , (20)

which actually is

e[((s2−2s(R−r))/2ν2)+(ln((r/r−s))/σ)]

(r/(r − s))
[(

1 + e((ln r−μ)/σ)
)
/
(
1 + e((ln(r−s)−μ)/σ)

)]2

H0

≷
H1

1.

(21)
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Figure 12: Probability of detection.
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Figure 13: Probability of false alarm.

It is easy to obtain the decision threshold T in terms of the
above function:

T =−ν2

s
ln

[
1+e((ln r−μ)/σ)

1+e((ln(r−s)−μ)/σ)

]2

+
ν2[ln(r/(r − s))− σ]

sσ
+

s

2
+r.

(22)

Under hypothesis H0, a false alarm occurs anytime R > T ,
therefore the probability of false alarm is

PFA =
∫∞

T
f (R | H0)dR

= 1√
2πσν

∫∞

T

∫∞

0

e[−((R−r)2/2ν2)+((ln r−μ)/σ)]

(
1 + e((ln r−μ)/σ)

)2
r

dr dR.

(23)

Similarly, under hypothesis H1, when R > T , the target is
detectable. Therefore the probability of detection is

PD =
∫∞

T
f (R | H1)dR,

= 1√
2πσν

∫∞

T

∫∞

0

e[−((R−r−s)2/2ν2)+(ln(r−s)−μ)/σ]

(
1 + e((ln(r−s)−μ)/σ)

)2
(r − s)

dr dR.

(24)

Figure 12 shows the probability of detection for a
fluctuating radar target using Monte Carlo simulation. The
“no clutter” curve describes the situation when there are
only radar echoes and noise. Swerling II model is applied
for the detection [31]. “SCR” stands for signal-to-clutter
ratio, where log-logistic clutter model is used, and “SNR” is
the signal to noise ratio. These curves show that, no matter
what SCR is, the clutter generally reduces the probability of
detection. When SCR increases, the probability of detection
will become more close to the value of “no clutter” case
along with the increase of SNR. Similarly, Figure 13 illustrates
the probability of false alarm, which shows that the clutter
tremendously increase the probability of false alarm.

6. Conclusion

On a basis of two sets of foliage clutter data collected by a
UWB radar, we show that it is more accurate to describe the
amplitude of foliage clutter using log-logistic statistic model
rather than log-normal, Weibull, or Nakagami. Log-normal
is also acceptable. The goodness-of-fit for Weibull is worse
whereas that of Nakagami is the worst. Our contribution
is not only the new proposal on the foliage clutter model
with detailed parameters, but also providing the criteria
and approaches based on which the statistical analysis is
obtained. Further, the theoretical study on the probability of
detection and the probability of false alarm in the presence
of log-logistic foliage clutter are discussed. Future research
will investigate the characteristics of targets and the design of
radar receivers for the log-logistic clutter so as to improve the
performance of target detection, tracking and identification
in foliage.
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