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The unavoidable parametrization of the wireless link represents a major problem of the network-coded modulation synthesis in a
2-way relay channel. Composite (hierarchical) codeword received at the relay is generally parametrized by the channel gain, forcing
any processing on the relay to be dependent on channel parameters. In this paper, we introduce the codebook design criteria,
which ensure that all permissible hierarchical codewords have decision regions invariant to the channel parameters (as seen by
the relay). We utilize the criterion for parameter-invariant constellation space boundary to obtain the codebooks with channel
parameter-invariant decision regions at the relay. Since the requirements on such codebooks are relatively strict, the construction
of higher-order codebooks will require a slightly simplified design criteria. We will show that the construction algorithm based
on these relaxed criteria provides a feasible way to the design of codebooks with arbitrary cardinality. The promising performance
benefits of the example codebooks (compared to a classical linear modulation alphabets) will be exemplified on the minimum

distance analysis.

1. Introduction

The physical-layer coding in the wireless multinode and
multisource scenarios is currently under a heavy investiga-
tion in the research community. The cooperative relaying
scenarios for two-way communication (see, e.g., [1, 2]), and
particularly the scenarios based on the principles similar
to Network Coding (NC) [3], are foreseen to have a great
potential even for the wireless communication networks.
Although the pure NC operates with a discrete (typical
binary) alphabet over lossless discrete channels, its principles
can be extended into the wireless domain. Such an extension
is however nontrivial, because the signal space link models
(e.g., MAC phase in relay communications) lack a simple
finite field properties as found and used in a pure discrete
NC. There are still only very limited results available even
for the simplest possible scenarios like 2-Way Relay Channel
(2-WRC). A brief overview of the current state of art of

the bidirectional relaying scenarios is available in [4] and in
references therein.

A complete revamp of the physical-layer modula-
tion/coding, respecting inherently and from the beginning
the structure of the multinode network with possible mul-
tiple sources of information, is foreseen to be a preferred
solution [5]. This principle is sometimes called Wireless
Network Coding (WNC) or Physical Network Coding
(PNC). However, we believe that the term Network Coded
Modulation (NCM) better describes the phenomenon of the
modulation/coding aware of the surrounding network struc-
ture. The major benefits of these communication principles
are given by the possibility to increase a throughput in a
MAC phase of the bidirectional communication, and by the
inherently increased reliability of the BC stage [6].

The strategy where the relay decodes only a hierarchi-
cal codeword is called by some authors Denoising (DNF
Strategy) [7]; however the term “denoising” seems to be
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rather connected to the symbol level treatment (as done
in [7]). We feel that a more generic term Hierarchical
Decoding and Forward (HDF) (8, 9] is better suited for
possible application on more complicated codebooks and
channel structures. Increased MAC phase throughput of
DNF (HDF) strategy provides performance improvement
against the standard techniques based on Amplify & Forward
or Joint Decode & Forward (e.g., [10]) paradigms. In the
MAC phase of the DNF strategy relay “denoises” the received
signal, which means that it performs decisions directly on
the superimposed symbols without actually distinguishing
the individual symbols from both sources. Together with
the eXclusive law [7] applied on the relay output, symbol
mapping makes it possible to get joint throughput gains
similar to the discrete NC case.

The paper in [9] introduces Hierarchical eXclusive Code
(HXC) layered design which relies on a concatenation of the
exclusive alphabet and outer standard capacity-approaching
code. Lattice-based code construction [11, 12], using the
principles from [13] is limited to the nonparametric Gaus-
sian channels. Authors of [11] present the simplest realiza-
tion of HDF strategy with minimal cardinality mapping,
which they call “modulo decoding” More general relay
output mapping, which considers also the possibility of
extended cardinality, is introduced in [8].

The channel parametrization proved to be a major
problem of synthesizing relay WNC in Denoise and Forward
(DNF) strategies proposed in [6, 7, 14]. Specific channel
parametrization can invoke the eXclusive law [7] failures,
resulting in significant performance degradation (see e.g.,
[7, 9]). The authors of [6] propose two adaptive solutions
to overcome this problem. The first approach prerotates
the transmitted signal (closed loop adaptation required) in
such a way that the constellation observed at the relay is
invariant to the channel parameter. The second solution
uses an adaptive relay decision DNF maps, choosing the
optimal one for a given parametrization. The particular map
index needs to be passed along with the data message at the
broadcast phase.

The adaptive solutions are generally not well suited
for fast-fading channels. Moreover, the increased BC phase
overhead (e.g., larger adaptive DNF map set, increased
cardinality of the relay output) of these adaptive solutions
was observed for higher-order modulations (e.g., 16-QAM)
[6].

This paper approaches the problems of the MAC phase
channel parametrization in the HDF relaying from a different
angle. We design the alphabets (codewords) used by source
nodes A and B in such a way that the resulting hierarchi-
cal codeword visible at the relay has channel parameter-
invariant decision regions. The design criteria for a Paramet-
ric Hierarchical eXclusive Code (PHXC), which satisfies the
requirement of parameter-invariant decision regions at the
relay, are presented in the form of required conditions for
PHXC hierarchical codeword pairs in [5]. The fulfillment of
these design criteria force the particular constellation space
boundary (given by the set of points which have an identical
Euclidean distance to the both corresponding hierarchical
codewords) to be invariant to the channel parametrization.

MAC phase

BC phase

FiGure 1: Model of 2-WRC in half-duplex mode.

Complete individual codebooks could be designed to
be pairwise parameter-invariant only for those pairs of
hierarchical codewords whose decision regions at the relay
are mutually neigbouring and which fall into two distinct
mapping regions of the relay output. The PHXC design
criteria then guarantee the parameter-invariance of the
corresponding pairwise (decision) boundaries.

Another way of how to synthesize complete PHXC
codebook is to apply the pairwise PHXC design criteria
on all “critical” hierarchical codeword pairs, that is, on all
hierarchical codeword pairs which must always obey the
exclusive law. Such an approach will force all corresponding
pairwise boundaries (i.e., not only the ones which are directly
affecting the decision regions shape) to be parameter-
invariant. Although this requirement could be relatively
strict, it allows us to express the codebook design criteria in a
compact set of required conditions. In this paper, we present
the design criteria for the complete parametric hierarchical
exclusive codebook and show that all requirements of the
extended design criteria can be satisfied at once only if the
terminals use different individual codebooks.

2. System Model and Definitions

We adopt the system model presented in [5]. A 2-WRC
working in a half-duplex mode (nodes cannot simultane-
ously receive and transmit) is assumed. The end-nodes of the
system are denoted as A and B, and the relay is denoted as R
(Figure 1).

2.1. MAC Phase. The constellation space signal received at R
in MAC phase is

X = hasa + hpsp +w, (1)

where w is AWGN, hy, hp are scalar complex channel
coefficients (constant during the observation and known at
R), and sy4, sp are transmitted signal space codewords. The
useful signal (hasa + hpsp) can be equivalently expressed
(after a rescaling by 1/h,) as

u = sy +asg, (2)

where « = hp/hs. The only purpose of this “rescaling”
is an attempt to simplify the signal analysis in parametric
MAC channel by introducing a useful signal model which
incorporates the influence of both channel parameters
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FiGure 2: 2-WRC with HXC and perfect Side Information.

(ha, hp) in the single one parameter (). The equivalent MAC
channel model is in this case given by

X = hsu+w. (3)

The signal space codewords s; (i € {A,B}) are drawn
from individual codebooks B4, B (individual codebooks
can be different in general). The equivalent hierarchical code-
words u € B,(«), as seen by R, have generally the codebook
parametrized by . The number of individual codewords in
B and Bp is assumed to be equal, thatis, |Ba| = |Bs| = N,
and the number of hierarchical codewords is | B, («)| < N2.
Throughout this paper, we assume only a minimal cardinality
of the hierarchical codebook |8B,(a)| = N. For a general
discussion on hierarchical codebook cardinality see [9].

2.2. BC Phase. The relay R re-encodes the codeword u into
sg = sgp(u) € By and sends it during the BC phase. Notice
that the relay decodes only a hierarchical codeword u and not
the individual codewords sy, sg. This corresponds to the DNF
(HDF) relaying strategy. In the BC phase, the nodes receive

X; = hgisg + Wi, (4)

where i € {A, B}, hg; are channel complex gains, and w; is
AWGN.

3. Parametric Hierarchical Exclusive Code
in 2-WRC

3.1. HDF Strategy in Parametric 2-WRC. The joint 2-
source signal space codebook is called eXclusive Code (XC)
C(sa,sp) € Br if and only if the exclusive law [7] of the
network coding holds

G(SA, SB) ?& G(S,,q) SB) < 84 75 S.’A) ( )
5

C(sa,sg) # C(sa,8p) < sp # Sp.

Assuming that the receiver has perfect a priori Side
Information (SI) on its own data, the decoding of the XC-
encoded source A data is not affected by the source B
data (and vice-versa) (Figure 2). The capacity region has
a rectangular shape which can be outside the 2-user MAC
region of traditional Decode and Forward (DF) strategy [4].

The relay processing in the HDF strategy consists gener-
ally of the decoding function u = Dgr(x) and the encoding
function sg = Cr(1). If the hierarchical data rate R, is below
the equivalent hierarchical MAC channel (3) capacity, then
the HDF Decoder (HDFD) can provide perfect decisions
u = u and the HDF design reduces to the design of the HDF
Coder (HDFC) function Cg(-) such that

Cr(u(sa,sp)) = C(sa,sp), (6)

where C(sa,sp) is XC. Such a code Cg(-) will be called
Hierarchical eXclusive Code (HXC).

A major problem occurs when we apply the HDF strategy
to the wireless constellation space parametric channels. The
constellation space model of the MAC phase is continuously
valued (3), and hence it lacks a simple finite field properties
(as found and used in a pure discrete NC). The codewords
visible at the relay are parametrized u(a) € B,(«) and the
decision regions of the HDF re-encoder generally depend
on a. A structure of the processing at the relay is shown in
Figure 3.

The exclusive law in parametric channel [5] implies

u(sa, sp, &) # u(s),sp, o) < s4 #8), -
7

u(sa, sp, o) # u(sa,sp, Q) < s # g

for all @. The decoding and encoding functions generally
depend on channel parameters Dpr(q)(+), Crw(-). The code
which has the HDF functions Dg(+) and Cg(+) invariant to
the channel parametrization («) is called Parametric Hier-
archical eXclusive Code (PHXC) [5]. Generally the PHXC
comprises codebooks B4, Bp, Br and the re-encoding
functions Dpy)(-) and Crw (). One of the possible ways
of how to design the PHXC is to design the codebooks B4
and Bjp in such a way that the decoding function Dg(a)(-)
does not depend on «, that is, the HDFD decision regions
are parameter-invariant [5].

The codebook design for parametric channels can gener-
ally focus on the two different design goals. One goal is the
parameter-invariant structure of the relay processing, which
can be achieved if the codebook design forces the decision
regions at the relay to be independent on the actual channel
parameter values. The second goal is the parameter-invariant
performance of the entire system, that is, the codebook
design with performance (e.g., rate) resistant to the channel
parametrization. This paper mainly addresses the first goal,
the codebook design criteria for parameter-invariant decoder
structure. As we will show in the later sections, the “reduced”
version of the proposed codebook design criterion shows also
some promising (parameter-invariant) performance results.

3.2. HDF Decoder Decision Regions. We denote the code-
words in codebooks as follows, 84 = {s“},, Bp =
{s#};, and B, = {uf};. Let ukini)(q) = s + as® be
the equivalent hierarchical codeword received at the relay.
Codeword indices k, i4, ip must obviously obey the exclusive
law (7). Note that the index of the hierarchical codeword
k is a function of the pair of individual codeword indices
(ia,ip), hence it is useful to list all permissible combina-
tions of individual codewords s™, s® (and corresponding
hierarchical codewords uk(4-#)) in a “hierarchical codeword
table” (Table 1). We generally assume that all codebooks
are subsets of 2-dimensional vector space over the field F
(Ba, Bp, By, Br C [?) and that the parameter is a scalar
in F, & € F. The field is typically the set of real or complex
numbers.

Definition 1. A pairwise boundary R (a) is the set of
points having the same (constellation space) Euclidean
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Figure 3: Equivalent model of HDF strategy relay processing in
parametric channel.

TaBLE 1: Example of hierarchical codeword table (|84l = |Bg| =
N).

ip1 ip) ce iBN
igl uliansis1) ulianis2) ulianiBN)
is uliazsi1) uliazis2) uliazisN)
ne ulian-is1) ulian-is2) uliansin)

distance from a pair of hierarchical codewords u¥(43) () and
u/lsis) () for any k # . A pairwise boundaries set 8pp is the
union of all pairwise boundaries R¥ (a).

A pairwise boundary (see the example in Figure 4) is
defined for every permissible pair of hierarchical codewords
(u*(@),u()). From the perspective of the codebook design,
the most critical are those pairs of hierarchical codewords,
which have one of the comprising individual codewords
identical (sq = s}, or s = s). These hierarchical codeword
pairs may directly violate the exclusive law (7), if some
specific value of parametrization cause them to fall into an
identical decision region of the relay decoder. The codewords
from such pair must hence be designed appropriately to
ensure that they always fall into two distinct mapping regions
of the output HDF codebook B, otherwise the errorless
communication would be impossible. Pairwise boundaries
between all such pairs of hierarchical codewords constitute
some subset of &pp, as it is obvious from the following
definition.

Definition 2. A critical boundaries subset $cg C Spp is the
set of all pairwise boundaries R*(«) between all permissible
hierarchical codewords pairs ui»i)(q), ulis2)(a) which
have iy = i}y orig = ij.

uk(iasip) /,’/Rk,l(a)

FIGURE 4: Visualization of the pairwise boundary in the constella-
tion space.

Pairwise boundary &R¥ between the hierarchical code-
words pair uk-) (), u/s-) () is hence classified as critical
(REL) by Definition 2, if the corresponding hierarchical
codewords reside in the same row (iy = i,) or column
(ip = i) of the hierarchical codeword table (Table 1).

3.3. Pairwise PHXC Design Criteria. As mentioned above,
one of the possible ways of how to design the PHXC is to
design the codebooks B4 and B in such a way that the
decoding function Dg(4)(+) would not depend on «, that is,
the HDFD decision regions are a-invariant. The shape of
the HDFD decision regions is always given directly by some
subset of pairwise boundaries, which we will call the active
boundaries subset (a5 C $pp)—see the example in Figure 5.
In general, the active boundaries subset 845 does not have to
comprise solely the boundaries from $cp (8apZ48cp). As it
is also obvious from Figure 5, the final shape of the HDFD
decision regions generally does not have to be formed by all
boundaries from $cp. Boundaries for some index pairs could
be overlapped by other decision boundaries. For example,
boundaries between two neigbouring hierarchical codewords
(in one column or row of the hierarchical codeword table)
do not have to appear as a true decision boundaries of the
overall hierarchical codebook. However, considering all, even
the “masked” ones, enables simplified parametric codebook
construction at the expense of fulfilling stricter criterion than
actually required. Such code design rules are thus sufficient
but not necessary ones.

The pairwise design criterion for the a-invariant pairwise
boundary R (i.e., for the a-invariant hierarchical codeword
pair uk(+) and u!'i%%)) in F? is (under some limitations)
derived as a pair of required conditions in [5]:

<siA _ sy g 4 sié> =0, (8)
<si3 _ sins gt + Sii;> = 0. 9)

4. Design Criteria for
Complete PHXC Codebooks

The final shape of the HDFD decision regions is given entirely
by active boundaries (R,’iIB(a) € 8a). Hence, it could seem
quite reasonable to apply the pairwise design criteria (8),
and (9) just to these boundaries in 845. Note that in this
case the design criteria would ensure that the constellation
space “position” of all boundaries from $,p will remain fixed,
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Figure 5: HDFD decision regions’ shape example (real-valued
2-dimensional example codebook). Note that some boundaries
lie inside the decision region corresponding to one hierarchical
codeword (given by the same region colour). Such boundaries do not
affect the final decision region’s shape, and hence can be considered
as “masked”.

however some other boundaries could potentially “move”
along with the varying channel parameter a.

This “boundary movement” could (for some values of «)
change the HDFD decision regions shape and hence break
the requirement of parameter-invariant HDFD decision
regions (Figure 6). One way of how to potentially avoid
this undesirable behavior is to apply the design criteria on
all critical boundaries (:RélB((x) € 4cp), thus requiring all
pairwise boundaries in $cp to be a-invariant. As we will
prove later in this section, this condition will be sufficient to
force even the entire set 8pp to be parameter-invariant.

4.1. E-PHXC Design Criteria. Forcing all critical pairwise
boundaries to be a-invariant could be a relatively strict
requirement; nevertheless it allows us to express the design
criteria in a compact set of required conditions, and it avoids
the movement of all critical boundaries (complete set $cp),
which are dominantly responsible for the final shape of the
HDED decision regions. We apply the design criteria (8),
and (9) for the parameter-invariant pairwise boundary to all
critical boundaries; hence the extended design criteria for a
complete PHXC codebooks will be derived.

A code which has all the critical boundaries (RélB(oc) S
4cp) invariant to the channel parameter will be called
Extended Parametric Hierarchical eXclusive Code (E-
PHXC). Now we will formally define the E-PHXC codebooks
and introduce the necessary conditions for the codebooks’
design in Lemma 4 (proof is available in Appendix A).

Definition 3. The codebooks B4 = {s};,, Bp = {s},, are
the E-PHXC when all the critical boundaries {Ré‘;lg(oc) € 8cp
for hierarchical codebook 8B, («) at the relay are a-invariant.

Lemma 4. The codebooks B4 = {s*};,, Bp = {s"},, are the
E-PHXC if the following conditions hold:

<siA _ sfg;sfs> =0 Vig <iy, (10)
<Si5_sig;sis+si};> =0 Vig<ip (11)
forallia,ip,iy,iz € {1,2,...,N}, where N = | Bl = | Bsl.

4.2. E-PHXC Decoder Decision Regions. Design criteria for E-
PHXC codebooks (10) and (11) force all critical boundaries
(set Scp) to be invariant to the channel parameter. Hence,
all pairs of hierarchical codewords which are in the same
row (or column) of the hierarchical codeword table (Table 1)
have the corresponding pairwise boundary invariant to
the channel parameter. Moreover, the design criteria are
sufficient to force the entire set of pairwise boundaries ($pp)
to be parameter-invariant, that is, the constellation space
boundary R*! between any permissible pair of hierarchical
codewords is forced to be parameter-invariant by the E-
PHXC design criteria (10) and (11). We will prove this in the
following Lemma (proof is available in Appendix B).

Lemma 5. If the codebook fulfills E-PHXC design criteria
then it has all permissible pairwise boundaries ( Rbl e 8pp)
invariant to the channel parameter.

4.3. E-PHXC with Identical Individual Codebooks. Now we
analyze the design criteria for the special case of identical
individual codebooks B4 = B = B. Note that by
“identical codebooks” we mean codebooks which have all
codewords completely identical (i.e., including the indexing
of codewords in the codebook). Hence e.g. two mutually
rotated BPSKs are not considered as identical. In this case,
both codebooks contain the same codewords, so we may
omit the subscript (A, B) from indices.

Theorem 6 (E-PHXC with identical codebooks). The code-
book B = {s'}; is the E-PHXC if the following conditions hold:

|

I8! = {siss")  vi<i,

s'|| = Vi<i,

|
(12)

foralli,i" € {1,2,...N}, where N = | B|.

Proof. We start with (11) from which we get for two pairs of
codeword indices (i, j) and (i’, j")

<si —s';s +s"'> =0,
(13)

Sl

I -
where j is an imaginary unit. Should this hold for all i < ',
the inner products (s'; s’ ) must be real-valued and all norms
lIs'll, Is” || must have same magnitude. Thus, the condition
(11) is equivalent with conditions (s;s") € R and ||s'|| =
const.

! +j23{(sss" )} =0 vi<i,
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FIGURE 6: Movement of pairwise boundaries affects the HDFD decision regions’ shape (real-valued 2-dimensional example codebook).

From (10) we get
<si — s"';sj> =0,

<si;sj> = <si;sj> Vi<i,

forall i,i’,j € {1,2,...N}. Considering the symmetry, this
is equivalent to

(14)

<si;sj> = <si’;sf> Vi, i, j, (15)

which is in turn equivalent to
<si;si'> = const = ||s'||?, Vii. (16)
Thus the condition (10) is equivalent to (s';s”) = ||s! 1. O

Theorem 7. E-PHXC does not exist for any identical individ-
ual binary codebooks (By = Bp = B, | B| = 2).

Proof. The binary codebook contains two individual code-
words B = {s!,s?}. Each codeword is a 2-dimensional vector
over the field F. Design criteria for the E-PHXC with identical
binary codebooks require (from (12))

[Is'l] = [s* ], (17)
IIs!|* = (s';%). (18)

We assume that there exists s' # s? such that both conditions
are satisfied.

The Cauchy-Bunyakovskii-Schwartz inequality (CBS)
[15] states that for all vectors x, y

[ xoy) | =< 1] - iyl (19)

where the equality is achieved if and only if x = yy fory =
(X,y)/\lxllz. The inner product (s';s?) must be positive and
real valued (from (18)), so |(s';s?)| = (s';s?). Now, we apply
the CBS inequality (19) on vectors s, s%:

[(s's8*) [ < [Is"]] - [Is*[],
(20)
(sh;s?) < 18]I,
because [|s!]| = [|s*| (from (17)). Condition (18) requires

the equality in (20). This equality is achieved if and only if
s! = ys?, where y = (s';82)/lIs'[I* = 1, that is, the equality is
achieved if and only if s' = s?, which is a contradiction with
the assumption s! # s2. O

Corollary 8. E-PHXC does not exist for any identical individ-
ual codebooks (By = By = B, |B| = N).

Proof. The conditions (17) and (18) form a subset of
all required conditions for any individual codebook with
cardinality greater than two (| 8| > 2). As shown in a proof of
Theorem 7, it is impossible to find two different codewords
satisfying this condition. O

4.4. E-PHXC with Different Individual Codebooks. We proved
that the individual codebook satisfying all the required
design criteria does not exist if we request both codebooks
to be identical. In this section, we derive the E-PHXC design
criteria for the assumption of two nonidentical individual
codebooks (B4 # Bg).
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Theorem 9 (E-PHXC with different codebooks). The code-
books By = {s},, Bp = {s"};, are the E-PHXC if the
following conditions hold:

s#|| = ||s%]| vis <, (21)
j(siﬂ;sf%> =0 Vip<ip (22)
<siA _ si,;;sfs> =0 Vig<iy, (23)

for allia, iy, ip, iy, jp € {1,2,...,N}.

Proof. We start again with (11), from which we get

<s”‘ — s + siB> =0,

.12 a2 112 . . (24)
siol|" = [[s ||+ j23{ (smssB) } =0 Vi < i,

|

for all ig,ip € {1,2,...,N}, which gives us directly (21) and
(22). From (10) we immediately get the last condition (23).
O

4.5. Example Binary Alphabet Construction Algorithm. We
have shown in previous sections that E-PHXC codebooks
have all pairwise boundaries invariant to the channel param-
eter and that they could be designed only if the sources
use two different individual codebooks (8B4 # Bg). Here we
exemplify the E-PHXC design criteria for this case ((21),
(22), (23)) on a few simple cases.

Assume F = C,n = 2 and two different binary codebooks
|B4| = |Bg| = 2 with code indices i4, ig € {1,2}. Value « is
a complex-valued scalar. Considering these assumptions, the
design criteria for a binary E-PHXC (from Theorem 9) are

[Is'11 = lls*Il; (25)
J{(s'®;s*)} =0, (26)
(s' —s™;ss) = 0, (27)
(s —s;8%) = 0. (28)

As it is obvious from (27) and (28), a trivial example
of E-PHXC are codebooks B4, B with mutually orthogonal
codewords ({s*4;s®) = 0 for all s™,s™), provided that also
(25) and (26) are not violated. Some examples of these
“orthogonal” binary codebooks are presented in Table 2.
Codebooks B4, Bp spanning mutually orthogonal subspaces
have additional advantage of providing unitary parameter-
invariant performance (e.g., the phase rotation). The deci-
sion subspaces for both source codebooks are independent
(orthogonal) and thus a unitary rotation of one subspace
cannot affect the overall performance. Despite of the fact that
the orthogonality itself puts the HXC (in MAC phase) on
the same level as the classical MAC with joint decoding of
both data streams, the HDF strategy with such HXC can still
utilize all the BC phase benefits of network-coding principles
(seee.g., [6] for details), regardless of the MAC phase channel
parametrization.

Example design process for generally nonorthogonal E-
PHXC codebooks B4, Bg is presented in Algorithm 1. Some
examples of nonorthogonal binary codebooks, which were
found using this algorithm, are presented in Table 3. The
construction algorithm, however, does not guarantee zero-
mean nor equal distance (Gram matrix) codebooks By, Bg.
It is obvious that if the alphabet B; satisfies the design
criteria from Theorem 9, then the codebook B; = —B; (all
codewords have inverted signs) satisfies the design criteria as
well (this holds for any alphabet cardinality). The nonzero
mean of any codebook can hence be quite easily adjusted
by sequential swapping of the codebooks $B; and —B; at the
particular source, since the resulting “compound” codebook
will be zero mean.

We have defined the E-PHXC codebooks (B4, Bz) in
such a way that the shape of the HDFD decision regions
is a-invariant. This was achieved by forcing all pairwise
boundaries from $cp to be a-invariant. Note that only the
shape of the HDFD decision regions was considered, hence
it is possible that two hierarchical codewords u¥, u’ switch
their position in the constellation space (with respect to the
corresponding pairwise boundary R¥) for some values of
a. This phenomenon is affected only by the signs of real
and imaginary part of «, so the relay HDF decoder must
take into account at most four different patterns (one for
each of the four possible sign combinations of R {a} and
J{a}) for hierarchical codewords. Note that the shape of the
HDFD decision regions still remains a-invariant for arbitrary
a, which is obvious from Figure 7, where the effect of the
parameter sign is exemplified (for various values of «) on the
example codebook I from Table 2.

5. Minimum Distance-Based Design Criteria for
Higher-Order Cardinality Codebooks

The new challenge in the codebook design arises when
we need to design a codebook with higher cardinality.
It can be shown that the strictness of the complete E-
PHXC design criteria ((21), (22), and (23)) disables the
codebook design in C? for higher than binary cardinality. To
overcome this inconvenience, we will slightly “relax” the E-
PHXC design criteria and propose a new codebook design
algorithm which will provide the tool for the construction of
codebooks with generally arbitrary cardinality. By relaxing
the proposed design criteria; we lose the parameter-invariant
shape of the decision regions at the relay HDF decoder, but
nevertheless, the overall system performance does not have
to be negatively influenced. As we will show in this section,
the performance analysis of the codebooks constructed
according to the modified design algorithm shows some
promising performance (compared to the traditional linear
modulation schemes—e.g., PSK, QAM).

5.1. Hierarchical Minimum Distance. As we have already
mentioned in the introduction of this paper, the major
problem of HDF strategy is the channel parametrization in
the MAC phase of the bidirectional communication. Specific
channel parametrization can invoke the eXclusive law [7]
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TaBLE 2: Example binary E-PHXC codebooks.

sla §24 s's s%8
codebook I (-1,1) (1,-1) (1,1) (-1,-1)
codebook II (0,1) (0,-1) (1,0) (=1,0)
codebook IIT (-1+4j,1— ) (1—j,—1+)) (1+j,1+7) (-1—j,—1—j)

(1) Choose arbitrarily s's € C2.

(2) Choose s € C2, s’ = §;s', where §, € C! is arbitrary
scaling constant such that (25), (26) are satisfied.

(3) Find v € C? such that (v;s'8) = 0.

(4) Choose arbitrarily s'4 € C2.

(5) Find s*4 € C? such that s* = s'4 — §,v, where §, € C!
is arbitrary scaling constant.

(6) By = {s'4,s%}, Bp = {s'7,s%}

ArcoriTHM 1: Binary E-PHXC codebook—example design.

failures, resulting in significant performance degradation
(see e.g., [7, 9]). This eXclusive law failures occur whenever
the channel parametrization causes some pair of useful
signals (u(a), u’(«)) which correspond to a distinct eXclusive
relay output codeword (C(u(a)) # C(u'(«))) to fall in (or
close) to each other in the constellation space, thus increasing
the probability of erroneous decision at the relay. These
eXclusive law failures can be analyzed by observing the
(squared) hierarchical distance of the useful signals in the
constellation space

g (@) = [Ju() = 0 ()] " (29)
For a general pair of useful signals (u-#), uls-)), it becomes

. v . . 2
Bty (@ = [| (8 =) +afs” =sE)[ - 0)

The hierarchical minimum distance represents an
approximation of the hierarchical decoder exact metric (as

discussed, e.g., in [6]), and its performance is quite closely
connected with the error rate performance of the whole
system [6]. The hierarchical minimum distance for the HDF
strategy can be defined as

d2. (a) = min d? . (a).
mm( ) el #Cw) (u,u)( ) (31)
The eXclusive law failures cause d2; («) — 0, which in turn
results into a faulty decision of the relay decoder, and hence
the performance degradation. In the following subsection we
show that the fulfillment of (23) from the original E-PHXC

design criteria is sufficient to avoid these failures for arbitrary
channel parametrization.

5.2. Modified Design Criteria. Here we finally introduce the
relaxed design criteria for the codebook construction. The
following theorem shows that (23) is sufficient to avoid
the significant performance degradation of the system by
avoiding the eXclusive law failures (d2;, (a) = 0).

Theorem 10. The codebooks Ba = {s*};, Bp = {s*};

are resistant to the eXclusive law failures (for |a| > 0) if the
following condition holds:

(s —siisit) =0 Vig < i}, (32)
forallia, iy, jp € {1,2,...,N}.

Proof. It is obvious that (32) forces the following inner
product to be always equal to zero:

<<s"A - si;‘>; (sjB - sj}'3>> =0. (33)
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TaBLE 3: Example (nonorthogonal) binary E-PHXC codebooks.

sl4 §%4 sls s%b
codebook IV 2,1) (1,2) (1,1) (-1,-1)
codebook V (1,2) (1,1) (1,0) (-1,0)
codebook VI (L, 7) (j,1) (I+j,1+)) (-1-j,-1-7j)
codebook VII (2,1+)) (1+4,2) (I+j,1+7) (-1—j,—-1—)
codebook VIII 2+j,1) (1+25,2—7) (I+j,1+7) (-1—j,—-1—)

(1) Choose x,y € C? such that (x;y) = 0.
(2) By =1{q® -x}h 4 P €C
(3) Pickv € C2.

(4) By ={v—q* -ylh_s q*€C

ArLcoriTHM 2: Higher-order codebook—example design.

Hence, the vectors Asiis = (si4 —si4) and Asitjs = (sie — gjb)
are mutually orthogonal. Now, since the pairs of mutually
orthogonal vectors are always linearly independent (e.g.,
[15]), and the norm of the vector is equal to zero if and
onlt if the vector is a zero vector (||x|| = 0 ¢ x = o),
we can conclude that the minimum distance (30) will be
nonzero for any « # 0, because (s — s') + a(s® — s') is
a linear combination of the linearly independent vectors.
Hence, the eXclusive law failures d2; (&) = 0 are avoided for
any a # 0. O

The “relaxed” design criteria (32) are hence able to avoid
the eXclusive law failures for any permissible value of the
channel parametrization (excluding the singular case a =
0). The Algorithm 2 presents an example design process for
codebooks of generally arbitrary cardinality.

Vector v defines the mean of the codebook B,4. For
v = 0, we obtain a trivial solution with mutually orthogonal
codewords ({s*4;s) = 0 for all s4,s). In this case the
main benefits of the HDF strategy are again mainly in the
BC phase. For v# o0, we have the codebook with a non-
zero mean, which can be again easily adjusted by sequential
swapping of the codebooks B4 and —B,. The coefficients
q'4,q" can be chosen from the classical linear modulation
constellation (e.g., PSK or QAM) and can be generally
identical (g*+ = q'#) for both codebooks.

5.3. Performance Evaluation. Now we analyze the hierar-
chical minimum distance performance of the codebooks
designed according to the Algorithm 2. Figures 8, 9, and
10 present the performance comparison of the example
codebooks (with zero mean (v = o)) and classical linear
modulation constellations (for various channel parametriza-
tion). All codebooks are scaled to have identical mean symbol
energy. Note that the distance shortening at |a| — 0 is
generally inevitable [6].

We conclude this section by observing the influence of
the non-zero mean values of the codebook. In Figure 11, the
comparison of the 4-ary example codebooks with [[v]| €
{0,1,2} is shown. It is obvious from this figure that the
increasing value of the mean of the alphabet degrades the
minimum distance performance.

6. Discussion of Results and Conclusion

The achievements of this paper can be summarized as
follows. The MAC stage channel parametrization of the 2-
WRC system with HDF strategy affects the decision regions
at the relay as well as the overall system performance (which
is influenced by the minimum distance performance of
the chosen codebooks). The adverse effects of the channel
parametrization (e.g., eXclusive law failures) can be generally
avoided by the system adaptation (either by prerotation or by
adaptive decision regions, see [6]), or by designing the source
node codebooks in such a way that the decision regions at the
relay are invariant to the channel parametrization. Since the
adaptive solutions are generally not well suited for the fast-
fading channels, we focus in this paper mainly on the second
approach.

Utilizing the criterion for parameter-invariant constel-
lation space boundary [5], we have derived E-PHXC code-
book construction criteria that guarantee channel parameter-
invariant relay decision regions. We have shown that these
criteria require having two nonidentical source node code-
books. Strict nature of the full E-PHXC design criteria dis-
ables the possibility of designing the codebooks with higher
than binary cardinality. To overcome this inconvenience,
we have proposed the modified codebook construction
algorithm (Algorithm 2), which is based on the relaxed
version of the design criteria. This algorithm provides a
feasible way for the design of codebooks with arbitrary
cardinality.

Although neither of the construction algorithms require
mutual orthogonality of the codebooks, it appears to be the
simplest way of how to fulfill their requirements. Despite
the fact that the orthogonality itself puts the HXC (in MAC
phase) on the same level as the classical MAC with joint
decoding of both data streams, the performance gain of the
HDF strategy is in this case given by the increased reliability
of the BC phase, which is available regardless of the MAC
phase channel parametrization. Both proposed algorithms
can produce a codebook with non-zero mean, which would
have obvious performance disadvantages. It was shown that
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FiGure 8: Hierarchical minimum distance performance for QPSK and 4-ary example codebook (zero-mean).

this problem can be solved by sequential swapping of the
codebooks B; and —B;, since the resulting “compound”
codebook will have zero-mean.

Performance analysis shows some promising results of
the minimum distance of the example codebooks, compared
to the classical linear modulation constellations. The more
detailed investigation of the influence (pros and cons) of
the modification of proposed E-PHXC design criteria on the
relay processing/performance is a subject for future work.

Appendices

A. Proof of Lemma 4

We apply the PHXC design criteria (8), (9) to all critical

boundaries. The critical boundary R (a) is the pairwise

boundary between hierarchical codewords u () (a) and

u/lai) (&) where iy = i or ig = i} (from Definition 2).
Now we have (from (8))

0= <s”A — sla; gt 4 si33> = <0;si3 + si53>, (A.])
forall iy =1}, i # iy, ia,ip,i5 € {1,2,...,N} and
0= <siA — sla; s +si"> = <s"A - s"ﬁ*;Zs"B>, (A.2)
forall i = i'g, ia # i}, in, iy is € {1,2,...,N}.
From (9), we have
0= <siB — sl sl + s’%>, (A.3)
for all i # iy, ip, iz € {1,2,...,N} and
0= <si3 — si;s + siB> = <0;2si3>, (A.4)

for all ip = ig, ip, iy € {1,2,...,N}.

It is obvious that the inner products in (A.1) and (A.4)
are always zero, and hence these conditions are always
satisfied for all required individual codeword indices. From
the remaining two inner products (A.2) and (A.3), we have
the following criteria for the E-PHXC design:

(s —sh;s) =0 Vig,iy,ip € 11,2,...,N}, ia # i,
(A.5)

(s — st +85) =0 Vi, iy € {1,2,...,N}, ip # .
(A.6)

Furthermore, the condition (A.5) for a given pair of
indices (ia,iy) is equivalent to the same condition for a
“reversed” pair of these indices (i},i4), because (s —
si;si) = —1(s™ — sr;s) (and similarly for (A.6)). Hence
it is sufficient to check (A.5) only for i < i} (and (A.6) for
ip < l};)

B. Proof of Lemma 5

We choose (without loss of generality) two hierarchical
codewords (ulia1i1) and u'ia>i2)) which have different indices
(is1 # i and iy # ip2). These hierarchical codewords reside
in a different row and column of the hierarchical codeword
table (Table 1). The corresponding pairwise boundary is not
considered critical by Definition 2 (RUavisihliazie) ¢ Lo,
hence it is not directly forced to be parameter-invariant by
E-PHXC design criteria (see Figure 12). We will prove that
Riavis)(ia2ie2) will be parameter-invariant if the E-PHXC
design criteria are satisfied.

Assume that we have E-PHXC codebooks B4, Bz. Then
any hierarchical codeword pair residing in the same row or
column of the corresponding hierarchical codeword table has
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F1Gure 9: Hierarchical minimum distance performance for 8-PSK and 8-ary example codebook (zero mean).
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FiGure 10: Hierarchical minimum distance performance for 16-QAM and 16-ary example codebook (zero mean).

the pairwise boundary invariant to channel parameter (cor- Boundaries R, R!2, R, and R** satisfy the PHXC
responding boundary is considered critical by Definition 2 design criteria (8), (9), and hence the following three inner
and is required to be parameter-invariant by Definition 3).  products (conditions for R!> and R3* are identical) are

All such boundaries satisfy the PHXC pairwise criteria (8), forced to be zero:
(9). The following four boundaries are hence parameter-
invariant (marked as $cp in Figure 12) <si"‘ _ gin si“‘> -0 (B.2)

iansis) (s B 13
eR(Ml ig1),(ia2,ip1) — ﬁ N

ﬁ(iAl’iBl)’(iAl’iBZ) = Rlz) <SIVBl - Sim;SiB1 + Si32> =0, (BS)
Gavsisn).(innsis) e (B.1)
R 1A1,1B2))\14251B2) — R )

RUainianin) — @34, <Sim - SiAz;sisz> =0. (B.4)
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The examined pairwise boundary (R Uavis)liais) =
R'4) will be parameter-invariant if the following two inner

products are zero:
<SiA1 — iz gl 4 siBz> =0, (B.5)

<siBl — st 4 si32> =0. (B.6)

Now it is obvious that (B.6) is identical with (B.3) and (B.5)
and is forced to be zero by (B.2) and (B.4):

<Sim _ SiAz;SiBl + siBz> — <SiA1 _ siAz;SiBJ> + <SiA1 _ siAz;Si32>

<sim _ siAZ;SiBI + Sisz> =0.
(B.7)
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The pairwise boundary &R Ua1-i#):(i42i52) satisfies both (B.5)
and (B.6), and hence it is indirectly forced to be parameter-
invariant by the E-PHXC design criteria (10), (11). In
the same way we can prove that any permissible pairwise
boundary (R*! € 8pp) with arbitrary indices k, ! is forced
to be parameter-invariant by the E-PHXC design criteria.
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