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Although numerous channel estimation and multiuser detection approaches have appeared for long-code uplink CDMA systems,
joint performance study of channel estimators and symbol detectors remains largely open. In this paper, we construct three typical
symbol-level linear receivers upon existing channel estimationmethod, known as zero-forcing (ZF), minimummean-square-error
(MMSE), and RAKE receivers, for symbol detection. Since the channel estimation error is rippled to the linear receivers, perfor-
mance of all receivers is thus jointly analyzed with the channel estimator from a perturbation perspective. Extensive simulation
examples involving different communication environments demonstrate high consistency between our analysis and experimental
results.
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1. INTRODUCTION

Direct sequence (DS) code division multiple access (CDMA)
technology has become an appealing solution to third-gen-
eration wireless systems [1, 2]. It provides a communica-
tion-system unique capabilities of simultaneous spectrum
sharing, mitigation of jamming, interception, and multipath
fading [3], and can easily support transmission of multirate
information streams.

Multiuser interference (MUI) is a typical obstacle to be
obviated in detection of input signals in a DS/CDMA sys-
tem, which has attracted substantial efforts in recent years
[4]. In DS/CDMA systems, the bandwidth of the input sig-
nal is spread by a sequence with a much higher rate in order
to effectively suppress the interference. There are two kinds
of spreading codes: the periodic spreading sequence (short
codes) which repeats from symbol to symbol, and the ape-
riodic spreading sequence (long codes) which has a much
longer period compared with the symbol duration. In recent
years, many efforts have been focused on the CDMA system
with short codes, resulting in simplified methods, and very
importantly, tractable analysis of the system performance.
However, long spreading codes feature the newCDMA-based

wireless standards [5]. Employment of long codes exhibits
certain superiority to short codes in terms of increasing im-
munity of the system to MUI and channel fading on the
average [6], improving the spectrum efficiency through the
uniform distribution of the signal bandwidth, and moreover
ensuring a secure communication link in a hostile environ-
ment, protecting users’ information against intentional in-
terception.

Despite various advantages, adopted long spreading
codes inevitably destroy cyclostationarity of CDMA signals,
making many of the existing channel estimation and de-
tection approaches for short-code CDMA systems not di-
rectly applicable. Therefore, solutions for long-code CDMA
systems are still under extensive investigation. It has been
witnessed that various solutions for downlink communi-
cations have been developed [7, 8, 9, 10]. However, up-
link communications incur new problems due to asynchro-
nism and particular code assignment strategies. Given pi-
lot symbols of all users, least squares (LS)-fitting or iterative
maximum likelihood (ML) approaches have been reported
[6, 11, 12]. Blind methods have also been derived. Corre-
lation matching techniques have been successfully applied
for channel estimation [13, 14]. Employing a space-time
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2D RAKE receiver structure to maximize the output signal-
to-interference-plus-noise ratio (SINR), both channel es-
timation and minimum mean-square-error (MMSE)/zero-
forcing (ZF) receivers are presented in [15, 16]. Built upon
the structure of convolutive channels, a Toeplitz displace-
ment channel estimation method has been proposed [17].
A novel parallel factor analysis technique is applied to mul-
tiuser detection [18]. Even in the presence of colored Gaus-
sian noise in addition to unknown multipath fading and
MUI, turbomultiuser detectors can be developed [19]. Based
on LS fitting, a blind decorrelating RAKE receiver is re-
cently proposed [20]. If all users’ spreading codes and prop-
agation delays are known, a subspace technique can be ap-
plied to estimate multipath parameters [21]. Performance of
long-code CDMA systems and detection methods has also
been studied under the assumption of perfect channel es-
timate. A heuristic approximation of SINR for the decor-
relator and simulation results for the MMSE receiver are
provided [22]. Spectral efficiency of some linear receivers
are explored [23, 24]. Near-far resistance of MMSE detec-
tion is investigated [25] and trade-offs of long-versus-short
spreading sequences are demonstrated [26, 27]. Performance
of ML detectors is studied for multirate CDMA systems
[28].

In this paper, we study joint performance of the chan-
nel estimator and multiuser receivers for long-code uplink
CDMA systems. The channel estimator considered in our
analysis is based on [21], which extends [10] to uplink com-
munications with slight modification. It is also closely related
to [20] where a low-complexity algorithm is further devel-
oped. Based on the estimated channel, different linear detec-
tion techniques such as ZF, MMSE, and RAKE are applied.
Both ZF and MMSE receivers have complexity which is cu-
bic in the processing gain. Due to the time-varying property
of a long-code system, designing new low-complexity mul-
tiuser detectors remains a challenging issue. Since in practice,
the channel estimation is based on processing of finite data
samples, it will deviate from its theoretical value, resulting in
estimation errors. Perturbation in channel estimate will be
further carried on to the receivers, causing receivers’ output
SINRs and BERs all perturbed. To quantify the effect of sam-
ple size, we apply perturbation theory to obtain the chan-
nel mean-square error (MSE), detectors’ perturbed SINR,
and finite-data-based bit-error rate (BER). Unlike previous
work [22, 23], which studied the effect of randomness of
codes on the fluctuation of the SINR of receivers constructed
from perfect signature vectors, our analysis considers the ef-
fect of imperfect signature waveforms caused by finite data
samples on the performance of receivers. Although joint per-
formance has been studied for short-code DS/CDMA sys-
tems [29] and long-code downlink CDMA systems [30],
long-code uplink communications adopt completely differ-
ent channel estimation and symbol detection schemes and
the results in [29, 30] are not applicable. Therefore, new
joint performance analysis for long-code uplink systems is
necessary and important. Moreover, high consistency is ob-
served between our experimental results and analytical re-
sults.

This paper is organized as follows. A long-code CDMA
uplink system model is described in Section 2. Subspace-
based channel estimation method is reviewed, together with
addition of noise-power estimation method and implemen-
tation of three typical linear detectors are presented in
Section 3. In Section 4, joint performance of channel esti-
mator and detectors in terms of channel MSE, receivers’
SINR and BER is evaluated. Finally, various simulation ex-
amples are provided in Section 5 and conclusions are drawn
in Section 6.

2. CDMAUPLINKWITH LONG CODES

Consider an uplink CDMA system [14], where J mobile sta-
tions are communicating with a base station. The jth user’s
bit wj(n) is first spread by aperiodic codes cj,n(k) (k =
0, . . . ,P−1), and then transmitted through amultipath chan-
nel gj(m). All channels are assumed to have maximum order
q (q� P). The signal from user j is assumed to arrive at the
base station with delay dj . Then, after considering rectangle
pulse shaping, the received chip-rate signal is a superposition
of signals from J users corrupted by noise [13]

y(k) =
J∑
j=1

q∑
m=0

gj(m)s j
(
k −m− dj

)
+ v(k), (1)

where

s j(k) =
∞∑

n=−∞
wj(n)cj,n(k − nP), (2)

v(n) is zero-mean AWGN with variance σ2v = E{|v(n)|2}.
If we assume that the system is quasi-synchronous, where
transmission delays from all users to the base station are
within a small fraction of a chip duration, that is, 0 ≤ dj �
P. As a result, the intersymbol interference could be elimi-
nated if we collect only L = P − µ samples in the nth bit
interval into a vector y(n) = [y(nP + µ), . . . , y(nP + P − 1)]T

with µ = max{q + dj}. Let C j(n) be the truncated version of
the following code filtering matrix of dimensions (P + q) by
(q + 1) for user j:

C̄ j(n) =




cj,n(0) 0
...

. . . cj,n(0)

cj,n(P − 1)
...

0
. . . cj,n(P − 1)



, (3)

that is, C j(n) = [C̄ j(n)]µ+1:P,1:q+1. Then according to (1), a
simple matrix form follows:

y(n) =
J∑
j=1

C j(n)g jwj(n) + v(n)

= C(n)Gw(n) + v(n) = H(n)w(n) + v(n),

(4)



100 EURASIP Journal on Wireless Communications and Networking

where C(n)(P−µ)×(J(q+1)), G(J(q+1))×J , and H(n)(P−µ)×J are de-
fined as

C(n) = [C1(n), . . . ,CJ(n)
]
,

G = diag
{
g1, . . . , gJ

}
,

H(n) = [h1(n), . . . ,hJ(n)]
= [C1(n)g1, . . . ,CJ(n)gJ

] = C(n)G,

(5)

g j with (q + 1) elements is the channel vector of user j,
w(n)J×1 and v(n)(P−µ)×1 are given by

w(n) = [w1(n), . . . ,wJ(n)
]T
,

v(n) = [v(nP + µ), . . . , v(nP + P − 1)]T .
(6)

Throughout this paper, we make the following assump-
tions.

(AS1) All users’ information sequences are mutually inde-
pendent and temporally i.i.d. with unit power.

(AS2) Each user’s codes and delay are known.

(AS3) All users’ long codes are pseudorandom variables.

(AS4) The number of active users in the system satisfies J <
(P − q)/(q + 1).

The first assumption is adopted for most systems and conve-
nient for analysis. However, the effect of different interfering
power is studied in the simulation in the paper. For the sec-
ond assumption, it is reasonable to assume that the base sta-
tion knows all users’ spreading codes. On the other hand, all
users’ delays are assumed to be estimated in advance by some
delay estimator such as [16]. However, if they are not avail-
able, we can over-parameterize the channel vector to absorb
the delay ambiguity [20]. Long-code sequence can be catego-
rized as deterministic or stochastic. To facilitate our analysis,
the latter is adopted as (AS3). (AS4) is the condition required
for channel estimation in [10, 21] upon which our receivers
are built.

3. CHANNEL ESTIMATION ANDMULTIUSER
DETECTION IN CDMAUPLINK

Before we start joint performance analysis, we first briefly
present the channel estimation method, which extends
[10] to CDMA uplink with some alterations. The tailored
method, instead of using the whole code-decorrelated data
vector, utilizes only a portion pertaining to the desired user to
estimate channel in a reduced complexity. Whitening is per-
formed before subspace method is applied, and noise power
is estimated from the whitened data. Then, three most com-
monly used symbol-level linear receivers, ZF, MMSE, and
RAKE receivers, are constructed in order to detect the desired
user’s symbols.

3.1. Subspace-based channel and
noise-power estimation

According to (4), the original data vector y(n) contains non-
stationary signal contribution and stationary noise contri-
bution. Consequently, the conventional unconditional co-
variance of y(n), which is estimated from sample average of
y(n)y(n)H , contains no noise subspace. The signal subspace
in fact spans the whole operational space, as mentioned in
[30]. Therefore, subspace approach cannot be applied to the
unconditional covariance of y(n).

As in [10], we first decorrelate the data vector y(n) in (4)
using the pseudoinverse of code matrix C(n) at each symbol
to obtain an approximately stationary sequence of J(q + 1)
elements as

u(n) = C(n)†y(n)

= Gw(n) +C(n)†v(n).
(7)

It is observed that after code decorrelation, u(n) contains a
stationary signal process and a nonstationary noise process.
The unconditional covariance of the decorrelated sequence
becomes

R̄ = GGH + σ2vA, (8)

where

AJ(q+1)×J(q+1) � E{C(n)†(C(n)†)H}
= E{[C(n)HC(n)]−1}. (9)

Noticing that G contains J users’ channel vector as its diag-
onal block, we then partition both R̄ and A into J × J sub-
matrices of dimensions (q + 1) × (q + 1). If we denote their
( j, j)th submatrices as R̄ j and A j , respectively, then

R̄ j � STj R̄S j = g jgHj + σ2vA j , where j = 1, . . . , J , (10)

andA j � STj AS j , where S j is a selectionmatrix of dimensions
(q + 1) by J(q + 1) and defined as

S j =
[
0( j−1)(q+1)×(q+1); I(q+1)×(q+1); 0(J− j)(q+1)×(q+1)

]T
. (11)

The correlation matrix R̄ j after decorrelation now contains
the desired subspace spanned by the jth user’s channel vec-
tor, but it is corrupted by a colored matrix A j . Therefore,
whitening is performed to yield

R j � A−1/2j R̄ jA
−1/2
j = A−1/2j g jgHj A

−1/2
j + σ2v I. (12)

It is observed that A−1/2j g j constitutes the unique signal sub-
space of R j , and σ2v is the least eigenvalue of R j with mul-
tiplicity q. For convenience, denote a new column vector of
(q + 1) elements as χ j � A−1/2j g j /‖A−1/2j g j‖, the subspace or-
thogonal to χ j as the noise subspace U

j
n, and the eigenvalues

of R j as λi (i = 1, . . . , q + 1) in a descending order. Applying
the subspace technique to R j immediately yields the follow-
ing channel estimation method for the channel of user j and
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the noise power

χ j = arg max
‖β‖=1

βHR jβ,

g j =
A1/2

j χ j∥∥A1/2
j χ j

∥∥ , σ2v =
1
q

q+1∑
i=2

λi.
(13)

It can easily be verified from (12) that

σ2v =
1
q
tr
{(
U

j
n
)H

R jU
j
n

}
, (14)

where “tr” is a trace operator.
It is necessary to mention that the above derivations

use (AS3). However, without any assumption on codes,
the averaged covariance of the decorrelated sequence u(n)
can still be obtained as (8), if we define AJ(q+1)×J(q+1) �
(1/N)

∑
n[C(n)HC(n)]−1. Clearly, in this situation, A can be

calculated in advance given all sets of codes, and therefore
modeled as a deterministic quantity. As a result, the above
mentioned approach is still applicable.

3.2. Symbol detection

We now turn to symbol detection based on estimated chan-
nel vectors. Without loss of generality, we focus on our de-
sired user, user 1, and typical linear receivers to detect the
desired user’s symbols w1(n).

3.2.1. ZF receiver

Once all users’ channel vectors are estimated, the signature
matrix can be constructed at each time instance n using all
users’ spreading codes as (5). Then, the ZF receiver at time
instant n is defined as a column vector with (P− q) elements

fZF(n) = H(n)
[
H(n)HH(n)

]−1
e, (15)

where e is a unitary vector with the first element as 1. Then
w1(n) is estimated by

ŵ1,ZF(n) = fHZF(n)y(n). (16)

3.2.2. MMSE receiver

The MMSE receiver, which is a column vector with (P − q)
elements, can be defined as

fMMSE(n) =R(n)−1C1(n)g1, (17)

where R(n) is the conditional correlation matrix of y(n) at
time n, which is conditioned on all users’ codes. Notice that
R(n) cannot be estimated by conventional sample average.
However, it can be constructed by

R(n) = H(n)H(n)H + σ2v I, (18)

once H(n) is constructed as (5) from all estimated channel
vectors and σ2v is estimated according to (14). Correspond-
ingly, the detected symbol is given by

ŵ1,MMSE(n) = fHMMSE(n)y(n). (19)

3.2.3. RAKE receiver

The RAKE receiver at time n is constructed as the following
column vector with (P − q) elements [8]:

fRAKE(n) = h1(n) = C1(n)g1, (20)

and the desired user’s symbol is estimated as

ŵ1,RAKE(n) = fHRAKE(n)y(n). (21)

Linear receivers are coupled with estimated channel vec-
tors. Their performance will be investigated jointly with
channel estimators next.

4. PERFORMANCE ANALYSIS

In this section, we will apply perturbation theory to analyze
the channel estimation MSE for each user. Performance of
three linear receivers for the desired user is then evaluated in
terms of SINR and BER. Before we proceed, we clarify some
notations used in the following analysis. First, the perturba-
tion is defined as the difference between the estimated quan-
tity based on finite data samples and its asymptotic value
based on infinite large data samples. For our subspace-based
channel estimation, its perturbation is given by the difference
between the estimated channel based on N data samples and
the true channel vector, after noticing that the true channel
vector can be obtained when infinite data samples are ap-
plied. For receivers, since they are constructed based on esti-
mated channels, their perturbations thus depend on channel
perturbations, which will be derived later. Moreover, as we
can see later, all perturbations originate from the perturba-
tion of data-covariance matrix, which is estimated from fi-
nite data samples. Since the inputs and noise are all random,
therefore, the perturbation of data covariance, and thus all
other perturbations, can be modeled as random process. In
the sequel, the perturbation is denoted by preceding the cor-
responding quantity by δ, and the perturbed quantity with .̃
For example, δg j = g̃ j − g j , δR j = R̃ j − R j . Assume the
number of data samples N is sufficiently large such that per-
turbation technique is applicable.

4.1. Channel mean-square error

When estimated from finite data samples, data-covariance
matrix gets perturbed. Its perturbation will be carried over
to channel estimate. In the sequel, we will study the statisti-
cal performance of the jth user’s channel estimator under a
large sample size assumption by applying perturbation tech-
niques. It is observed from (13) that the jth user’s channel
estimate depends onR j and therefore R̄. When R̄ is estimated
from N decorrelated data samples as

˜̄R = 1
N

N∑
n=1

u(n)u(n)H , (22)

R j is perturbed as the following according to (10), (11), and
(12):

R̃ j = A−1/2j STj
˜̄RS jA

−1/2
j . (23)
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Using (22) and (23), and replacing u(n) with (7), we can fur-
ther express R̃ j as an estimate fromN decorrelated data sam-
ples as

R̃ j = 1
N

N∑
i=1

[
x j(n) + ν j(n)

][
x j(n) + ν j(n)

]H
, (24)

where

x j(n) = A−1/2j g jwj(n),

ν j(n) = A−1/2j STj C(n)
†v(n).

(25)

Noticing that ν j(n) is a Gaussian vector whose covariance
E{A−1/2j STj C(n)

†v(n)v(n)H(C(n)†)HS jA
−1/2
j } can be approx-

imated by σ2v I, we can view R̃ j to be estimated from N sam-
ples of x j(n) corrupted by AWGN ν j(n), and perturbation
analysis can be readily conducted to R j . The Gaussian prop-
erty on the noise ν j(n) is necessary for deriving some statis-
tics later. According to [31], the first-order perturbation of
the signal subspace χ j is given by

δχ j =
(
1/γ2j

)
U

j
n
(
U

j
n
)H

δR jχ j , (26)

where γ2j = gHj A
−1
j g j . According to (13), δχ j will cause g j

perturbed as g̃ j = (χ̃Hj A j χ̃ j)
−1/2A1/2

j χ̃ j . Substituting δχ j into
χ̃ j , expanding the power term using Taylor series, and keep-
ing only the first order terms, we obtain the jth user’s channel
perturbation as

δg j ≈
(
χHj A jχ j

)−1/2
A1/2

j δχ j

− 1
2

(
χHj A jχ j

)−3/2(
δχHj A jχ j + χHj A jδχ j

)
A1/2

j χ j .
(27)

Since in-space error is much smaller than the orthogonal
space error by [31], and noticing g j = (χHj A jχ j)

−1/2A1/2
j χ j ,

we further simply (27) to the following by keeping only the
orthogonal space error:

δg j ≈ Π⊥
g j

(
χHj A jχ j

)−1/2
A1/2

j δχ j , (28)

where Π⊥
g j � (I − g jgHj /g

H
j g j). On the other hand,

(gHj A
−1
j g j)(χHj A jχ j) = 1 by (13), which implies χHj A jχ j =

1/γ2j . Using these results and replacing δχ j with (26), (28)
becomes

δg j ≈ 1
γj
Π⊥

g jA
1/2
j U

j
n
(
U

j
n
)H

δR jχ j . (29)

Then the covariance of channel estimation error is evaluated
according to

E
{
δg jδgHj

}
≈ 1

γ2j
Π⊥

g jA
1/2
j U

j
n
(
U

j
n)HE

{
δR jχ jχ

H
j δR j

}
U

j
n
(
U

j
n
)H

A1/2
j Π⊥

g j .

(30)

Clearly, the covariance depends on the term E{δR jχ jχ
H
j δR j}.

Hence, it suffices to determine a (q + 1) by (q + 1) general-
form matrix that is also required later:

T j(D) = E
{
δR jDδR j

}
, (31)

whereD can be replaced by corresponding deterministic ma-
trices of dimensions (q + 1) by (q + 1), respectively, later.
Noticing (12) and (24), and using the results in [32], we have
that if all quantities are real, and the noise is Gaussian, then

T j(D) =
γ4j κ4w

N
χ j

[
I� (χTj Dχ j

)]
χTj

+
1
N

tr
(
R jD

)
R j +

1
N
R jDTR j ,

(32)

where � represents elementwise multiplication, and κ4w is
the fourth-order cumulant of wj(n). For a complex system,

T j(D) =
γ4j κ4w

N
χ j

[
I� (χHj Dχ j

)]
χHj +

1
N

tr
(
R jD

)
R j . (33)

Therefore, for a given data model, statistical properties of the
inputs and additive noise,T j(D) can always be evaluated. Ap-
plying (32) or (33) to (30), setting D = χ jχ

H
j , and noticing

χHj U
j
n = 0, tr{R jD} = χHj R jχ j = γ2j + σ2v , one can verify that

in both cases (30) reduces to

E
{
δg jδgHj

} ≈ σ2v
(
γ2j + σ2v

)
Nγ2j

Π⊥
g jA

1/2
j U

j
n
(
U

j
n
)H

A1/2
j Π⊥

g j . (34)

It is further simplified if noise is small

E
{
δg jδgHj

} ≈ σ2v
N
Π⊥

g jA
1/2
j U

j
n
(
U

j
n
)H

A1/2
j Π⊥

g j . (35)

The channel MSE is then given by the trace of (35). It can
be seen that the jth user’s channel MSE is proportional to
noise power and inversely proportional to data length N . It
also depends on its own channel condition and all users’ long
codes.

4.2. SINRs of different receivers

SINR is an important performance indicator for receivers.
The average SINR can be defined as

SINR = E
{
f(n)HR1(n)f(n)

}
E
{
f(n)HRint(n)f(n)

} , (36)

where f(n) is any symbol-level receiver,

R1(n) = h1(n)h1(n)H ,

Rint(n) =R(n)−R1(n).
(37)
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Although fluctuation of SINR can be analyzed under perfect
conditions, perturbation in channel estimation induced by
finite data samples inevitably causes the receiver to be per-
turbed as f̃(n) = f(n) + δf(n), where the first-order pertur-
bation δf(n) is assumed to have zero mean. This is a rea-
sonable assumption. According to [32], it can be assumed
that E{δR j} = 0 and E{δσ2v } = 0, when they are estimated
from finite data. Therefore one can verify that E{δg j} = 0,
and then E{δH} = 0. Consequently, from later analysis, we
have E{δf(n)} = 0. Based on it, the perturbed SINR has the
following form:

S̃INR = E
{
f(n)HR1(n)f(n)

}
+ E

{
δf(n)HR1(n)δf(n)

}
E
{
f(n)HRint(n)f(n)

}
+ E

{
δf(n)HRint(n)δf(n)

} .
(38)

It depends on both unperturbed terms (signal power,
interference-plus-noise power) and corresponding per-
turbed terms. They follow particular forms of Φ(X) =
E{f(n)HXf(n)} for unperturbed terms and of Ψ(X) =
E{δf(n)HXδf(n)} for perturbed terms, where X can be re-
placed byR1(n) orRint(n). Since different receivers take dif-
ferent forms, these quantities need to be evaluated for each
receiver respectively. For shorter notations, all receiver sub-
scripts are dropped later.

4.2.1. SINR of the ZF receiver

First, replacing the ZF receiver with (15), it can be shown that

Φ
(
R1(n)

) = 1 (39)

and Φ(Rint(n)) = σ2v ‖f(n)‖2 = σ2v e
HE{[H(n)HH(n)]−1}e. It

is much involved to further simplify Φ(Rint(n)). Therefore,
time average over codes is performed for approximation:

Φ
(
Rint(n)

) ≈ σ2v e
H 1
N

N∑
n=1

[
H(n)HH(n)

]−1
e. (40)

To evaluate the perturbation term, that is, Ψ(X), we first ob-
tain δf(n) according to (15). Since perturbation in the signa-
ture matrixH(n) is given by

δH(n) = [C1(n)δg1, . . . ,CJ(n)δgJ
]
, (41)

according to (5), noticing H̃(n) = H(n) + δH(n), expand-
ing [H̃(n)HH̃(n)]−1 using Taylor series, and keeping only the
first-order terms, we obtain

δf(n) ≈ Γ(n)δH(n)
(
H(n)HH(n))−1e

− (H(n)†
)H

δH(n)H
(
H(n)†

)H
e,

(42)

where

Γ(n) = I−H(n)H(n)†,

H(n)† = (H(n)HH(n))−1H(n)H.
(43)

Then we obtain

Ψ(X) ≈ E
{
eH
[
H(n)HH(n)

]−1
δH(n)HΓ(n)

×XΓ(n)δH(n)
[
H(n)HH(n)

]−1
e
}

− E
{
eH
[
H(n)HH(n)

]−1
δH(n)HΓ(n)

×X
(
H(n)†

)H
δH(n)H

(
H(n)†

)H
e
}

− E
{
eHH(n)†δH(n)H(n)†XΓ(n)

× δH(n)
[
H(n)HH(n)

]−1
e
}

+ E
{
eHH(n)†δH(n)H(n)†X

(
H(n)†

)H
× δH(n)H

(
H(n)†

)H
e
}
.

(44)

δg j could be regarded as independent of C j(n) for j =
1, . . . , J , since the former depends on A j which can be viewed
as independent of C j(n) when the number of samples used
to estimate A j is sufficiently large. As a result, the expectation
in (44) will be performed in two steps: first with respect to
δg j while regarding each C j(n) as a constant, and then with
respect to C j(n) for the result obtained in the first step. Simi-
larly, ensemble average can be replaced by sample average for
large N , resulting in the approximation of (44) by

Ψ(X)

≈ 1
N

N∑
n=1

{
eH
[
H(n)HH(n)

]−1
E
{
δH(n)HΓ(n)XΓ(n)δH(n)

}
× [H(n)HH(n)

]−1
e− eH

[
H(n)HH(n)

]−1
× E

{
δH(n)HΓ(n)X

(
H(n)†

)H
δH(n)H

}[
H(n)†

]H
e

− eHH(n)†E
{
δH(n)H(n)†XΓ(n)δH(n)

}
× [H(n)HH(n)

]−1
e + eHH(n)†

× E
{
δH(n)H(n)†X

(
H(n)†

)H
δH(n)H

}
× (H(n)†

)H
e
}
,

(45)

where each unperturbed quantity inside the expectation (un-
derlined) terms is regarded as deterministic. Noticing that
Γ(n) is orthogonal to R1(n) and H(n)†R1(n)(H(n)†)H =
eeH , the perturbation of the desired power is then simplified
as

Ψ
(
R1(n)

) = eHH(n)†E
{
δH(n)eeHδH(n)H

}(
H(n)†

)H
e.
(46)

Computation of the underlined term is given by Appendix A.
If we apply results there, (46) becomes

Ψ
(
R1(n)

)
≈ 1

N

N∑
n=1

eHH(n)†C1(n)E
{
δg1δgH1

}
C1(n)H

(
H(n)†

)H
e.

(47)

Similarly, if we decomposeRint(n) = H(n)(I− eeH)H(n)H +
σ2v I and apply the orthogonality between Γ(n) and
H(n)H(n)H , the second and third terms in (45) for comput-
ing the perturbation of noise power disappear. Moreover, it



104 EURASIP Journal on Wireless Communications and Networking

can be shown that Γ(n)Rint(n)Γ(n) = σ2vΓ(n), and

H(n)†Rint(n)
(
H(n)†

)H = I− eeH + σ2v
[
H(n)HH(n)

]−1
.
(48)

Applying the above results and using Appendix A, we obtain

Ψ
(
Rint(n)

)
≈ 1

N

N∑
n=1

{
σ2v e

H
[
H(n)HH(n)

]−1
E
{
δH(n)HΓ(n)δH(n)

}
× [H(n)HH(n)

]−1
e + σ2v e

HH(n)†

× E
{
δH(n)

[
H(n)HH(n)

]−1
δH(n)H

}(
H(n)†

)H
e

+ eHH(n)†
J∑
j=2

C j(n)E
{
δg jδgHj

}

× C j(n)H
(
H(n)†

)H
e
}
.

(49)

Since the underlined terms computed by Appendix A are at
the order of O(σ2v /N), the first and second terms in (49) are
at the order of O(σ4v /N) and can be omitted in the presence
of very small noise power. Then (49) reduces to

Ψ
(
Rint(n)

)
≈ 1
N

N∑
n=1

eHH(n)†

 J∑

j=2
C j(n)E

{
δg jδgHj

}
C j(n)H


(H(n)†

)H
e.

(50)

To summarize, the perturbed SINR can be predicted based

on (38), where unperturbed terms are computed by (39)
and (40), and perturbed terms are computed by (47) and
(50). According to (35), (47) and (50), both Ψ(R1(n)) and
Ψ(Rint(n)) are approximated at the order ofO(σ2v /N), which
is inversely proportional to N and proportional to σ2v . More-
over, it is observed that Ψ(R1(n)) is caused by the desired
user’s channel perturbation, while Ψ(Rint(n)) is caused by
all interfering users’ channel perturbations.

4.2.2. SINR of theMMSE receiver
Substituting (17) for the receiver, the unperturbed term can
be shown to be Φ(X) = gH1 E{C1(n)HR(n)−1XR(n)−1C1(n)}g1,
which is unobtainable in a closed form due to the inverse
of R(n). Therefore, approximation of expectation by time
average is applied here as for the ZF receiver,

Φ
(
X) = gH1


 1
N

N∑
n=1

C1(n)HR(n)−1XR(n)−1C1(n)


g1.

(51)
To evaluate the perturbed term, perturbation of the receiver
is necessary. Obtaining δR(n) from (18) and then using (17),
one can verify the perturbation of the MMSE receiver by

δf(n)=R(n)−1δHe

−R(n)−1
[
δH(n)H(n)H+H(n)δH(n)H+δσ2v I

]
f(n).
(52)

Correspondingly,Ψ(X) can be approximated by two-step ex-
pectations in the same way as for the ZF receiver as

Ψ(X) = 1
N

N∑
n=1

{
eHE

{
δH(n)HR(n)−1XR(n)−1δH(n)

}
e

+ f(n)HH(n)E
{
δH(n)HR(n)−1XR(n)−1δH(n)

}
H(n)H f(n)

+ f(n)HE
{
δH(n)H(n)HR(n)−1XR(n)−1H(n)δH(n)H

}
f(n)

+ f(n)HR(n)−1XR(n)−1f(n)E
{
δσ2v δσ

2
v

}
+ f(n)HE

{
δH(n)H(n)HR(n)−1XR(n)−1δH(n)

}
H(n)f(n)︸ ︷︷ ︸

a1

+a∗1

+ f(n)HR(n)−1XR(n)−1E
{
δH(n)δσ2v

}
H(n)H f(n)︸ ︷︷ ︸

a2

+a∗2

+ f(n)HE
{
δH(n)δσ2v

}
H(n)HR(n)−1XR(n)−1f(n)︸ ︷︷ ︸

a3

a∗3

− eHE
{
δH(n)HR(n)−1XR(n)−1δH(n)

}
H(n)H f(n)︸ ︷︷ ︸

a4

−a∗4

− eHE
{
δH(n)HR(n)−1XR(n)−1H(n)δH(n)H

}
f(n)︸ ︷︷ ︸

a5

−a∗5

− eHE
{
δH(n)Hδσ2v

}
R(n)−1XR(n)−1f(n)︸ ︷︷ ︸
a6

−a∗6
}
,

(53)
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where for shorter expression a1 up to a6 have been de-
fined. All underlined terms follow general forms derived in
Appendix A except E{δσ2v δσ2v } and E{δH(n)δσ2v } which are
derived in Appendix B. Since each expectation term is shown
to be at the order ofO(σ2v /N), the final perturbations for both
the desired signal and interference plus noise are thus all at
the order ofO(σ2v /N). To summarize, the perturbed SINR for
the MMSE receiver can be predicted based on (38), where
unperturbed terms are computed by (51), and perturbed
terms are computed by (53), with X replaced by R1(n) or
Rint(n) respectively.

4.2.3. SINR of the RAKE receiver

Closed-form SINR of the RAKE receiver will be derived here
due to the simplicity of the receiver. We first rewrite the sig-
nature matrix as the following:

H(n) = [C1(n)g1, . . . ,CJ(n)gJ
]

= [G1c1,n, . . . ,GJcJ ,n
]
,

(54)

where

c j,n =
[
cj,n(0), . . . , cj,n(P − 1)

]T
,

G j =
[
Ḡ j
]
µ+1−dj :P−dj ,1:P = S jḠ j ,

(55)

Ḡ j with dimensions of (P + q)× P is defined as

Ḡ j(n) =




gj(0) 0
...

. . . gj(0)

gj(q + 1)
...

0
. . . gj(q + 1)



, (56)

and S j = [0(p−µ)×(µ−dj ); I(P−µ)×(P−µ); 0(P−µ)×(q+dj )]. Then all
subsequent analysis will be based on (54). First, the unper-
turbed desired power is derived after replacing the RAKE re-
ceiver with (20) and h1(n) with G1c1,n, and applying trace,
vec, and kronecker product operations [33]. These steps are
summarized by

Φ
(
R1(n)

)
= E

{
cH1,nG

H
1 G1c1,ncH1,nG

H
1 G1c1,n

}
= E

{
tr
{
GH

1 G1c1,ncH1,nG
H
1 G1c1,ncH1,n

}}
= vecH

(
GH

1 G1
)
vec

(
E
{
c1,ncH1,nG

H
1 G1c1,ncH1,n

})
= vecH

(
GH

1 G1
)
E
{(
c∗1,n ⊗ c1,n

)(
cT1,n ⊗ cH1,n)

}
vec

(
GH

1 G1
)
.

(57)

The underlined term is given by [34] for real codes as

E
{(
c∗1,n ⊗ c1,n

)(
cT1,n ⊗ cH1,n

)}
= κ4cX1 + σ4cX2 + σ4c vec(I) vec(I)

H + σ4c I,
(58)

and for complex codes as

E
{(
c∗1,n ⊗ c1,n

)(
cT1,n ⊗ cH1,n

)}
= κ4cX1 + σ4c vec(I) vec(I)

H + σ4c I,
(59)

where κ4c is the fourth-order cumulant of the spreading
codes, σ2c = E{cj(n)2},

X1 = diag
{
a1aT1 , . . . , aPa

T
P

}
,

ai =

 0, . . . , 0︸ ︷︷ ︸

i−1
, 1, 0, . . . , 0︸ ︷︷ ︸

P−i



T

,
(60)

and X2 is partitioned into P × P subblocks with the (i, j)th
subblock a jaTi .

Similarly, the unperturbed interference-plus-noise power
can be computed as the following after noticing that c1,n is
independent of c j,n, and E{c j,ncHj,n} = σ2c I for j = 1, . . . , J :

Φ
(
Rint(n)

) = J∑
j=2

E
{
cH1,nG

H
1 G jc j,ncHj,nG

H
j G1c1,n

}
+ E

{
σ2v c

H
1,nG

H
1 G1c1,n

}
= σ4c

J∑
j=2

tr
{
GH

1 G jGH
j G1

}
+ σ2c σ

2
v tr

{
GH

1 G1
}
.

(61)

We now proceed to evaluate the perturbed termΨ(X) by first
obtaining the perturbation of the RAKE receiver. According
to (20) and (54), we have δf(n) = δG1c1,n. Noticing (56),
δG1 is calculated as

δG1 =
[
B0δg1, . . . ,BP−1δg1

]
, (62)

where

B j � S1Ω
jB, B =

[
IM(q+1)

0

]
, (63)

Ω is a shifting matrix with all 1’s in the first subdiagonal, and
Ω0 is defined as an identity matrix for convenience. Based
on the above results, following the same steps for deriving
(57), and noticing that δG1 is independent of codes, then the
perturbed signal power is first obtained as

Ψ
(
R1(n)

) = E
{
cH1,nδG

H
1 G1c1,ncH1,nG

H
1 δG1c1,n

}
= tr

{
E
{(
c∗1,n ⊗ c1,n

)(
cT1,n ⊗ cH1,n)

}
× E

{
vec

(
GH

1 δG1
)
vecH

(
GH

1 δG1
)}}

,

(64)

where the first underlined term is given by (58) or (59) as ex-
plained before, and the second underlined term is given in
Appendix C. Finally, the perturbed interference-plus-noise



106 EURASIP Journal on Wireless Communications and Networking

power is computed by

Ψ
(
Rint(n)

) = J∑
j=2

E
{
cH1,nδG

H
1 G jc j,ncHj,nG

H
j δG1c1,n

}
+ E

{
σ2v c

H
1,nδG

H
1 δG1c1,n

}
= σ4c

J∑
j=2

tr
{
G jGH

j E
{
δG1δGH

1

}}

+ σ2c σ
2
v tr

{
E
{
δG1δGH

1

}}
(65)

with E{δG1δGH
1 } given in Appendix C.

To summarize, the perturbed SINR for the RAKE receiver
can be obtained analytically based on (38), where the unper-
turbed signal power of the RAKE receiver, given by (57), de-
pends on the desired user’s channel conditions as well as the
second- and fourth-order statistics of its own code sequence,
while the unperturbed interference plus noise power given
by (61) depends on the second-order moment of the codes,
and cross channel conditions between each interfering user
and the desired user. Finally, perturbed signal power and in-
terference are given by (64) and (65), respectively. From them
and Appendix C, we can conclude that both the desired user’s
power and interference-plus-noise power are perturbed at
the order of O(σ2v /N).

4.3. BER performance of different receivers

For each receiver, once its output SINR is evaluated, BER
can be obtained by assuming that the interference is Gaus-
sian distributed. This may not necessarily be correct, but this
approximation has been shown to be relatively good [8, 35],
especially when the number of interfering users is large. The
BER for BPSK information symbol is

BER = Q
(√

S̃INR
)
, (66)

where Q(x) = (1/
√
2π)

∫∞
x e−t2/2dt.

5. SIMULATION EXAMPLES

In this section, we verify our performance analysis by sim-
ulation examples. The average channel MSE, and the aver-
age SINR and BER of each receiver over 100 independent
realizations are used as performance indicators. All analyt-
ical results are obtained based on the results in Section 4. As
theoretical limits, SINRs and BERs of all ideal linear receivers
are also presented. Those ideal receivers are constructed from
all users’ perfect channel vectors as well as noise power. In
the simulation setup, we consider an uplink CDMA system,
where each user transmit BPSK signals through a respective
multipath channel, whose parameters are randomly gener-
ated with equal power for each path according to Gaussian
distribution. All users are assumed to have multipath delay
spread as q = 2. All users are assumed to have the same trans-
mission power, if not stated otherwise. The spreading factor
is set to be 32 for all simulations. To validate our analysis, we
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Figure 1: Effect of data length. (a) MSE. (b) Output SINR.

study joint performance of the channel estimator and detec-
tors under the effect of different system parameters, such as
different data length N , various input signal-to-noise ratio
SNR, varied number of users J , and signal to each interfering
user’s power ratio (SIR).

Effect ofN , J = 8, SNR = 20 dB, SIR = 0 dB

MSEs of channel estimation over different N are plotted in
Figure 1a. Experimental and analytical curves are highly con-
sistent for all examinedN , and as expected, theMSE level de-
creases when N becomes large. SINRs of all receivers are il-
luminated in Figure 1b, where experimental, analytical, and
theoretical SINRs start to overlap from N = 50, indicating
that the proposed receivers require very small data size to
achieve their theoretical limit at 20 dB SNR environment. On
the other hand, the ZF and MMSE receivers show much bet-
ter performance than the RAKE receiver.

Effect of SNR, J = 8,N = 500, SIR = 0 dB

We consider various SNR from 0 dB to 12.5 dB at a step
of 2.5 dB. Figure 2a illustrates the channel estimation MSE,
which monotonically decreases as SNR increases. It is also



Joint Performance Study for Uplink Long-Code CDMA Systems 107

100

10−1

10−2

10−3
0 2 4 6 8 10 12

M
SE

Input SNR (dB)

Experimental
Analytical

(a)

12

10

8

6

4

2

0

−2
0 5 10

O
u
tp
u
t
SI
N
R
(d
B
)

Input SNR (dB)

(b)

100

10−1

10−2

10−3
0 5 10

B
E
R

Input SNR (dB)

(c)

Figure 2: Effect of SNR. (a) MSE. (b) Output SINR. (c) BER. The
legend of (b) and (c) is the same as Figure 1b.

seen that the experimental MSE converges to its analytical
value at large SNR. Slight differences are caused by the first-
order approximation error. Figures 2b and 2c plot SINRs and
BERs of each receiver. TheMMSE receiver shows slightly bet-

ter performance than the ZF receiver. Both of them are signif-
icantly superior to the RAKE receiver. The convergence be-
tween the experimental and analytical values can also be ob-
served for each receiver, indicating that our analytical SINR
and BER can serve as good performance predictors. More-
over, the experimental values are found to be very close to
their theoretical ones, showing that each proposed receiver
constructed from the proposed channel estimator and esti-
mated noise behaves as well as its ideal counterpart.

Effect of J ,N = 500, SNR = 10 dB, SIR = 0 dB

The number of equally powered users in the system varies
from 2 to 8. Figures 3a to 3c illustrate the MSE, SINR, and
BER performance of the proposed methods, respectively. It
can be observed that the MSE slightly degrades when J in-
creases. Although an explicit relationship between the MSE
and J is not obtained in (35), J ’s effect can still be found to be
caused by the matrix A1/2

j . Due to the same reason, the SINRs
and BERs of the ZF and MMSE receivers also slightly de-
grade for large J . The RAKE receiver’s performance degrades
drastically, which can easily be explained from our analysis
that the interference-plus-noise power in (61) significantly
increases with J . Again, for either MSE, SINR, or BER, exper-
imental values are highly consistent with their corresponding
analytical ones for large J where Gaussian assumption for in-
terference signals is well suitable. Each receiver’s experimen-
tal SINRs and BERs are overlapped with their theoretical val-
ues.

Near-far effect,N = 500, SNR = 10 dB and J = 8

The power ratio of each interfering user over the desired user
ranges from 0 dB to 10 dB at a step of 2 dB. Analytical and ex-
perimental MSEs plotted in Figure 4a are found to be a con-
stant, indicating that channel estimation MSE is not affected
by interference power. This conclusion complies with (35),
where A j , as the only term containing interfering users’ ef-
fect, is independent of interfering user’s power. The near-far
resistance of the channel estimator can be accredited to the
code correlation operation which significantly removes MUI
in the partial data covariance matrix. Similar conclusion can
be drawn to SINRs and BERs of both ZF and MMSE re-
ceivers since they explicitly remove MUI. As expected, RAKE
receiver’s performance degrades significantly when interfer-
ence power increases.

6. CONCLUSION

We derived a closed form covariance for channel estima-
tion error when channel is estimated using code decorrela-
tion and subspace techniques as [10, 20, 21] based on finite
data samples in long-code CDMA uplink. The performance
of three symbol-level linear receivers constructed from the
estimated channel, known as ZF, MMSE, and RAKE re-
ceivers, is also studied. Simulation examples involving differ-
ent communication environments are provided and demon-
strate high consistency between our analysis and experimen-
tal results.
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Figure 3: Effect of number of users. (a) MSE. (b) Output SINR.
(c) BER. The legend of (b) and (c) is the same as Figure 1b.
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APPENDICES

A. DERIVATION OF EXPECTATIONQUANTITIES
FOR THE ZF RECEIVER

A.1. Derivation of E{δH(n)HZδH(n)}
In this case, Z is a deterministic matrix of dimensions (P−µ)
by (P−µ). By (41), the (i, j)th element of E{δH(n)HZδH(n)}
is given by E{δgHi Ci(n)HZC j(n)δg j}. The diagonal term (i.e.,
i = j) can readily be obtained as follows after replacing
E{δg jδgHj } by (35):

E
{
δgHj C j(n)HZC j(n)δg j

}
= tr

{
C j(n)HZC j(n)E

{
δg jδgHj

}}
≈ σ2v

N
tr
{
C j(n)HZC j(n)Π⊥

g jA
1/2
j U

j
n
(
U

j
n
)H

A1/2
j Π⊥

g j

} (A.1)

which is clearly at the order of O(σ2v /N). On the
other hand, off-diagonal terms E{δgHi Ci(n)HZC j(n)δg j} =
tr(Ci(n)HZC j(n)E{δg jδgHi }) for i �= j depend on E{δg jδgHi }
and will be shown next to be at the order of O(σ4v /N) and
thus are negligible.

Replacing δg j by (29), the covariance between different
channel perturbations is computed as

E
{
δg jδgHi

}
= 1

γiγj
Π⊥

g jA
1/2
j U

j
n
(
U

j
n
)H

E
{
δR jχ jχ

H
i δRi

}
Ui

n

(
Ui

n

)H
A1/2
i Π⊥

gi

(A.2)

which depends on E{δR jχ jχ
H
i δRi}. Following similar steps

in [32], one can verify that

E
{
δR jDδRi

} = 1
N

[
E{ν j(n)ν j(n)HDνi(n)νi(n)H} − σ4vD

]
.

(A.3)
Since ν j(n) = A−1/2j SHj C(n)

†v(n) with v(n) independent of
C(n), applying the results in [34] for E{v(n)v(n)HDv(n)v(n)H},
it is found that E{v(n)v(n)HDv(n)v(n)H} can be approxi-
mated by O(σ4v ), causing E{δR jDδRi} in (A.3) at the or-
der of O(σ4v /N). As a result, E{δgiδgHj } in (A.2) can be ap-
proximated at most by the order of O(σ4v /N), making all off-
diagonal terms negligible.

To summarize, E{δH(n)HZδH(n)} can be approximated
by a diagonal matrix with its (i, i)th element given by (A.1),
which is at the order of O(σ2v /N).

A.2. Derivation of E{δH(n)ZδH(n)H}
In this case, Z is a deterministic matrix of dimensions J by J .
According to (41), we immediately have

E
{
δH(n)ZδH(n)H

} = J∑
j=1

zj, jC j(n)E
{
δg jδgHj

}
C j(n)H

+
J∑

i, j=1, i �= j

zi, jCi(n)E
{
δgiδgHj

}
C j(n)H ,

(A.4)

where zi, j denotes the (i, j)th entry of Z. According to our
previous analysis, the first term on the right-hand side of
(A.4) involves the covariance of the perturbation between
the same channel, which is at the order of O(σ2v /N), while
the second term involves cross covariance between two differ-
ent channel perturbations, which is at the order of O(σ4v /N),
therefore, (A.4) can be simplified to (A.5), after applying
(35), as follows:

E
{
δH(n)ZδH(n)H

}

= σ2v
N

J∑
j=1

zj, jC j(n)Π⊥
g jA

1/2
j U

j
n
(
U

j
n
)H

A1/2
j Π⊥

g jC j(n)H.
(A.5)

A.3. Derivation of E{δH(n)ZδH(n)}
and E{δH(n)HZHδH(n)H}

Rewriting (41) as δH = C(n) diag{δg1, . . . , δgJ}, then
E
{
δH(n)ZδH(n)

}
= C(n)E

{
diag

{
δg1, . . . , δgJ

}
ZC(n) diag

{
δg1, . . . , δgJ

}}
.

(A.6)

In this case, the matrix Z should have dimensions of J × (P−
µ), and ZC(n) has dimensions of J × J(q + 1). Partitioning
each row of ZC(n) into J subvectors of equal length of q + 1
elements, and denoting the jth subvector at the ith row as
zHi j , we have

E
{
δH(n)ZδH(n)

}

= C(n)E


diag

{
δg1, . . . , δgJ

}


zH11 · · · zH1J
...

...
...

zHJ1 · · · zHJJ




×diag
{
δg1, . . . , δgJ

}



= C(n)



E
{
δg1gT1

}
z∗11 · · · E

{
δgJgT1

}
z∗1J

...
...

...
E
{
δg1gTJ

}
z∗J1 · · · E

{
δgJgTJ

}
z∗JJ


 .

(A.7)

For a complex system, (A.7) clearly becomes a zero matrix.
For a real system, as before, if we ignore the cross covariance
between different channel perturbations, then (A.7) reduces
to the following after using (35):

E
{
δH(n)ZδH(n)

}
= σ2v

N

[
C1(n)Π⊥

g1A
1/2
1 U1

n

(
U1

n

)H
A1/2
1 Π⊥

g1z
∗
11, . . . ,

CJ(n)Π⊥
gJA

1/2
J U

j
n(U

j
n)HA1/2

J Π⊥
gJ z

∗
JJ

]
.

(A.8)

Once E{δH(n)ZδH(n)} is computed, E{δH(n)HZHδH(n)H}
can be readily obtained as the Hermitian of
E{δH(n)ZδH(n)}. It can also be observed that both
E{δH(n)ZδH(n)} and its Hermitian are at the order of
O(σ2v /N) for a real system and 0 for a complex system.
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B. DERIVATION OF EXPECTATIONQUANTITIES
FOR THEMMSE RECEIVER

B.1. Derivation of E{δσ2v δσ2v }
The perturbation of the q least eigenvalues of R1 is given by
δσ2v = (1/q) tr{(U1

n)
HδR1U1

n} according to (14). Using vec
and tr operations, it is straightforward to show

E
{
δσ2v δσ

2
v

} = 1
q2

E
{
tr
{(
U1

n

)H
δR1U1

n

}
tr
{(
U1

n

)H
δR1U1

n

}}

= 1
q2

vecH
(
U1

n

(
U1

n

)H)
E
{
vec

(
δR1

)
vecH

(
δR1

)}

× vec
(
U1

n

(
U1

n

)H)
(B.1)

which depends on E{vec(δR1) vecH(δR1)}. If we denote the
ith column of δR1 as δri, then we have δri = δR1θi, where
θi is a unit vector with its ith element as 1. Correspondingly,
the (i, j)th submatrix of E{vec(δR1) vecH(δR1)}, which has
size (q + 1) × (q + 1), becomes E{δR1θiθ

H
j δR1} = T1(θiθ

H
j )

according to our definition (31). Applying those results, and
noticing that

vec
(
U1

n

(
U1

n

)H) = [θT1U1
n

(
U1

n

)H
, . . . , θTq+1U

1
n(U

1
n)

H
]H

,
(B.2)

(B.1) reduces to

E
{
δσ2v δσ

2
v

} = 1
q2

q+1∑
i, j=1

θTi U
1
n

(
U1

n

)H
T1
(
θiθ

H
j

)
U1

n

(
U1

n

)H
θ j .

(B.3)

Substituting T1(θiθ
H
j ) by (32) or (33), and noticing that

(U1
n)

Hχ1 = 0, and (U1
n)

HR1 = σ2v (U
1
n)

H , we have that for a
real system,

E
{
δσ2v δσ

2
v

} = σ2v
Nq2


 q+1∑

i, j=1

(
θTj R1θi

)
θTi U

1
n

(
U1

n

)H
θ j

+ σ2v

q+1∑
i, j=1

(
θTi U

1
n

(
U1

n

)H
θ j

)2,
(B.4)

and for a complex system

E
{
δσ2v δσ

2
v

} = σ2v
Nq2

q+1∑
i, j=1

(
θTj R1θi

)
θTi U

1
n

(
U1

n

)H
θ j . (B.5)

Clearly, E{δσ2v δσ2v } is at the order of O(σ2v /Nq2) for either a
real or complex system.

B.2. Derivation of E{δH(n)δσ2v }
Replacing δσ2v with (1/q) tr{(U1

n)
HδR1U1

n}, and expressing
E{δH(n)δσ2v } in columns, we obtain

E
{
δH(n)δσ2v

} = 1
q

[
E
{
C1(n)δg1 tr

{(
U1

n

)H
δR1U1

n

}}
, . . . ,

E
{
CJ(n)δgJ tr

{(
U1

n

)H
δR1U1

n

}}]
.

(B.6)

It is observed that except the first column, all other ones
involve cross-correlation between δg j and δR1. That cross-
correlation depends on the cross-correlation between δR1

and δR j for j �= 1, and has been shown to be at the order
of O(σ4v /N) by our previous analysis. Then we only focus on
the first column next, and approximate all the other columns
as 0. Replacing δg1 by (29) and applying trace property, the
first column of (B.6) becomes

E
{
δh1(n)δσ2v

} = 1
qγ1

C1(n)Π⊥
g1A

1/2
1 U1

n

(
U1

n

)H
× E

{
δR1 vecH

(
δR1

)
vec

(
U1

n

(
U1

n

)H)}
χ1

(B.7)

which depends on E{δR1 vecH(δR1) vec(U1
n(U

1
n)

H)}. Notic-
ing δR1 = [δr1, . . . , δrq+1], we have vec(δR1) =
[δrH1 , . . . , δr

H
q+1]

H . Applying (B.2), it can be shown that the
following holds:

E
{
δR1 vecH

(
δR1

)
vec

(
U1

n

(
U1

n

)H)}

=

 q+1∑

j=1
T1
(
θ1θ

H
j

)
U1

n

(
U1

n

)H
θ j , . . . ,

q+1∑
j=1

T1
(
θq+1θ

H
j

)
U1

n

(
U1

n

)H
θ j


.

(B.8)

Replacing (B.8) back into (B.7), substituting T1(θiθ
H
j ) by

(32) or (33), and noticing that (U1
n)

Hχ1 = 0 and (U1
n)

HR1 =
σ2v (U

1
n)

H , (B.7) reduces to the following after neglecting the
higher order terms of O(σ4v /N):

E
{
δh1(n)δσ2v

}
≈ σ2v

Nqγ1
C1(n)Π⊥

g1A
1/2
1


 q+1∑

j=1

(
θHj R1θ1

)
U1

n

(
U1

n

)H
θ j , . . . ,

q+1∑
j=1

(
θHj R1θq+1

)
U1

n

(
U1

n

)H
θ j


χ1
(B.9)

which is clearly at the order of O(σ2v /Nq).
To summarize, E{δH(n)δσ2v } can be approximated by a

matrix with its first column given by (B.9) and all the other
columns by zeros.
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C. DERIVATION OF EXPECTATION QUANTITIES
FOR THE RAKE RECEIVER

C.1. Derivation of E{vec(GH
1 δG1) vecH(GH

1 δG1)}
Rewriting vec(GH

1 δG1) as vec(GH
1 δG1I) and using vec

operations, then the following holds:

E
{
vec

(
GH

1 δG1) vecH
(
GH

1 δG1
)}

= (I⊗GH
1

)
E
{
vec

(
δG1

)
vec

(
δG1

)H}
(I⊗G1

)
.

(C.1)

Directly replacing δG1 by (62), applying the result in (35),
(C.1) is further computed as

E
{
vec

(
GH

1 δG1
)
vecH

(
GH

1 δG1
)}

= (I⊗GH
1 )BE

{
δg1δgH1

}
BH

(
I⊗G1

)
= σ2v

N

(
I⊗GH

1

)
BΠ⊥

g1A
1/2
1 U1

n

(
U1

n

)H
A1/2
1 Π⊥

g1B
H
(
I⊗G1

)
,

(C.2)

whereB is defined as

B = [BT
0 , . . . ,B

T
P−1
]T
. (C.3)

C.2. Derivation of E{δG1δGH
1 }

Noticing (62), applying the result in (34), and ignoring
O(σ4v /N) terms, we have

E
{
δG1δGH

1

} = P−1∑
i=0

BiE
{
δg1δgH1

}
BH
i

= σ2v
N

P−1∑
i=0

BiΠ
⊥
g1A

1/2
1 U1

n

(
U1

n

)H
A1/2
1 Π⊥

g1B
H
i .

(C.4)
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