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We consider blind channel identification and signal separation in long-code CDMA systems. First, bymodeling the received signals
as cyclostationary processes with modulation-induced cyclostationarity, long-code CDMA system is characterized using a time-
invariant system model. Secondly, based on the time-invariant model, multistep linear prediction method is used to reduce the
intersymbol interference introduced by multipath propagation, and channel estimation then follows by utilizing the nonconstant
modulus precoding technique with or without the matrix-pencil approach. The channel estimation algorithm without the matrix-
pencil approach relies on the Fourier transform and requires additional constraint on the code sequences other than being a
nonconstant modulus. It is found that by introducing a random linear transform, the matrix-pencil approach can remove (with
probability one) the extra constraint on the code sequences. Thirdly, after channel estimation, equalization is carried out using a
cyclic Wiener filter. Finally, since chip-level equalization is performed, the proposed approach can readily be extended to multirate
cases, either with multicode or variable spreading factor. Simulation results show that compared with the approach using the
Fourier transform, the matrix-pencil-based approach can significantly improve the accuracy of channel estimation, therefore the
overall system performance.
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1. INTRODUCTION

In addition to intersymbol and interchip interference, one of
the key obstacles to signal detection and separation in CDMA
systems is the detrimental effect of multiuser interference
(MUI) on the performance of the receivers and the over-
all communication system. Compared to the conventional
single-user detectors where interfering users are modeled as

This is an open access article distributed under the Creative Commons
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reproduction in any medium, provided the original work is properly cited.

noise, significant improvement can be obtained with mul-
tiuser detectors where MUI is explicitly part of the signal
model [1].

In literature [2], if the spreading sequences are peri-
odic and repeat every information symbol, the system is
referred to as short-code CDMA, and if the spreading se-
quences are aperiodic or essentially pseudorandom, it is
known as long-code CDMA. Since multiuser detection re-
lies on the cyclostationarity of the received signal, which is
significantly complicated by the time-varying nature of the
long-code system, research onmultiuser detection has largely
been limited to short-code CDMA for some time, see, for
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Figure 1: Block diagram of a long-code DS-CDMA system.

example, [3, 4, 5, 6, 7] and the references therein. On the
other hand, due to its robustness and performance stabil-
ity in frequency fading environment [2], long code is widely
used in virtually all operational and commercially proposed
CDMA systems, as shown in Figure 1. Actually, each user’s
signal is first spread using a code sequence spanning over
just one symbol or multiple symbols. The spread signal is
then further scrambled using a long-periodicity pseudoran-
dom sequence. This is equivalent to the use of an aperiodic
(long) coding sequence as in long-code CDMA system, and
the chip-rate sampled signal and MUIs are generally mod-
eled as time-varying vector processes [8]. The time-varying
nature of the received signal model in the long-code case
severely complicates the equalizer development approaches,
since consistent estimation of the needed signal statistics can-
not be achieved by time-averaging over the received data
record.

More recently, both training-based (e.g., [9, 10, 11]) and
blind (e.g., [8, 12, 13, 14, 15, 16, 17, 18, 19]) multiuser detec-
tion methods targeted at the long-code CDMA systems have
been proposed. In this paper, we will focus on blind chan-
nel estimation and user separation for long-code CDMA sys-
tems. Based on the channel model, most existing blind algo-
rithms can roughly be divided into three classes.

(i) Symbol-by-symbol approaches. As in long-code sys-
tems, each user’s spreading code changes for every in-
formation symbol, symbol-by-symbol approaches (see
[8, 17, 18, 19], e.g.) process each received symbol indi-
vidually based on the assumption that channel is in-
variant in each symbol. In [8, 17, 18], channel estima-
tion and equalization is carried out for each individ-
ual received symbol by taking instantaneous estimates
of signal statistics based on the sample values of each
symbol. In [19], based on the BCJR algorithm, an iter-
ative turbo multiuser detector was proposed.

(ii) Frame-by-frame approaches. Algorithms in this cate-
gory (see [15, 20], e.g.) stack the total received signal
corresponding to a whole frame or slot into a long vec-
tor, and formulate a deterministic channel model. In
[15], computational complexity is reduced by breaking
the big matrix into small blocks and implementing the
inversion “locally.” As can be seen, the “localization”
is similar to the process of the symbol-by-symbol ap-
proach. And the work is extended to fast fading chan-
nels in [20].

(iii) Chip-level equalization. By taking chip-rate informa-
tion as input, the time-varying effect of the pseudo-
random sequence is absorbed into the input sequence.

With the observation that channels remain approxi-
mately stationary over each time slot, the underlying
channel, therefore, can bemodelled as a time-invariant
system, and at the receiver, chip-level equalization is
performed. Please refer to [14, 21, 22, 23] and the ref-
erences therein.

In all these three categories, one way or another, the time-
varying channel is “converted” or “decomposed” into time-
invariant channels.

In this paper, the long-code CDMA system is character-
ized as a time-invariant MIMO system as in [14, 23]. Actu-
ally, the received signals and MUIs can be modeled as cyclo-
stationary processes with modulation-induced cyclostation-
arity, and we consider blind channel estimation and signal
separation for long-code CDMA systems using multistep lin-
ear predictors. Linear prediction-based approach for MIMO
model was first proposed by Slock in [24], and developed by
others in [25, 26, 27, 28]. It has been reported [26, 28] that
compared with subspacemethods, linear predictionmethods
can deliver more accurate channel estimates and aremore ro-
bust to overmodeling in channel order estimate. In this pa-
per, multistep linear prediction method is used to separate
the intersymbol interference introduced by multipath chan-
nel, and channel estimation is then performed using non-
constant modulus precoding technique both with and with-
out the matrix-pencil approach [29, 30]. The channel esti-
mation algorithm without the matrix-pencil approach relies
on the Fourier transform, and requires additional constraint
on the code sequences other than being nonconstant mod-
ulus. It is found that by introducing a random linear trans-
form, the matrix-pencil approach can remove (with proba-
bility one) the extra constraint on the code sequences. After
channel estimation, equalization is carried out using a cyclic
Wiener filter. Finally, since chip-level equalization is per-
formed, the proposed approach can readily be extended to
multirate cases, either with multicode or variable spreading
factor. Simulation results show that compared with the ap-
proach using the Fourier transform, the matrix-pencil-based
approach can significantly improve the accuracy of channel
estimation, therefore the overall system performance.

2. SYSTEMMODEL

Consider a DS-CDMA system with M users and K re-
ceive antennas, as shown in Figure 2. Assume the process-
ing gain is N , that is, there are N chips per symbol. Let
uj(k) ( j = 1, . . . ,M) denote user j’s kth symbol. Assume
that the code sequence extends over Lc symbols. Let c j =



208 EURASIP Journal on Wireless Communications and Networking

User 1 u1(k)

User 2 u2(k)
...

UserM uM(k)

...

y1(n)

y2(n)
...

yk(n)

Figure 2: Block diagram of a MIMO system.

[cj(0), cj(1), . . . , cj(N − 1), cj(N), . . . , cj(LcN − 1)] denote
user j’s spreading code sequence. For notations used for each
individual user, please refer to Figure 1. When k is a multiple
of Lc, the spread signal (at chip rate) with respect to the signal
block [uj(k), . . . ,uj(k + Lc − 1)] is[

r j(kN), . . . , r j
(
(k + Lc)N − 1

)]
= [

uj(k)cj(0), . . . ,uj(k)cj(N − 1), . . . ,

uj
(
k + Lc − 1

)
cj
((
Lc − 1

)
N
)
, . . . ,

uj
(
k + Lc − 1

)
cj
(
LcN − 1

)]
.

(1)

The successive scrambling process is achieved by[
s j(kN), . . . , s j

((
k + Lc

)
N − 1

)]
= [

r j(kN), . . . , r j
((
k + Lc

)
N − 1

)]
·∗[dj(kN),dj(kN + 1), . . . ,dj

((
k + Lc

)
N − 1

)]
,
(2)

where “·∗” stands for point-wise multiplication, and
[dj(kN),dj(kN+1), . . . ,dj(kN+N−1)] denotes the chip-rate
scrambling sequence with respect to symbol uj(k). Defining[

vj(kN), . . . , vj
((
k + Lc

)
N − 1

)]
�
[
uj(k)dj(kN), . . . ,uj(k)dj(kN +N − 1), . . . ,

uj
(
k + Lc − 1

)
dj
((
k + Lc − 1

)
N
)
, . . . ,

uj
(
k + Lc − 1

)
dj
((
k + Lc

)
N − 1

)]
,

(3)

we get[
s j(kN), s j(kN + 1), . . . , s j

((
k + Lc

)
N − 1

)]
= [

vj(kN), vj(kN + 1), . . . , vj
((
k + Lc

)
N − 1

)]
·∗ [cj(0), cj(1), . . . , cj(LcN − 1

)]
.

(4)

If we regard the chip rate vj(n) as the input signal of user j,
then s j(n) is the precoded transmit signal corresponding to
the jth user and

s j(n) = vj(n)cj(n), n ∈ Z, j = 1, 2, . . . ,M, (5)

where cj(n) = cj(n + LcN) serves as a periodic precoding
sequence with period LcN . We note that this form of peri-
odic precoding has been suggested by Serpedin and Gian-
nakis in [31] to introduce cyclostationarity in the transmit
signal, thereby making blind channel identification based on
second-order statistics in symbol-rate-sampled single-carrier
system possible. More general idea of transmitter-induced
cyclostationarity has been suggested previously in [32, 33].
In [34], nonconstant precoding technique has been applied
to blind channel identification and equalization in OFDM-
based multiantenna systems.

Based on Figures 1 and 2, the received chip-rate signal at
the pth antenna (p = 1, 2, . . . ,K) can be expressed as

yp(n) =
M∑
j=1

L−1∑
l=0

g
(p)
j (l)s j(n− l) +wp(n), (6)

where L − 1 is the maximum multipath delay spread in

chips, {g(p)j (l)}L−1l=0 denotes the channel impulse response
from jth transmit antenna to pth receive antenna, and
wp(n) is the pth antenna additive white noise. Let s(n) =
[s1(n), s2(n), . . . , sM(n)]T be the precoded signal vector. Col-
lect the samples at each receive antenna and stack them into
a K × 1 vector, we get the following time-invariant MIMO
system model:

y(n) = [
y1(n), y2(n), . . . , yK (n)

]T = L−1∑
l=0

H(l)s(n− l) +w(n),

(7)

where

H(l) =



g(1)1 (l) g(1)2 (l) · · · g(1)M (l)

g(2)1 (l) g(2)2 (l) · · · g(2)M (l)

...
...

. . .
...

g(K)1 (l) g(K)2 (l) · · · g(K)M (l)


K×M

(8)

and w(n) = [w1(n),w2(n), . . . ,wK (n)]T .
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DefiningH(z) =∑L−1
l=0 H(l)z−l, it then follows that

y(n) =H(z)s(n) +w(n) � ys(n) +w(n). (9)

In the following section, channels are estimated based on
the desired user’s code sequence and the following assump-
tions.

(A1) The multiuser sequences {uj(k)}Mj=1 are zero mean,
mutually independent, and i.i.d. Take E{|uj(k)|2} = 1
by absorbing any nonidentity variance of uj(k) into
the channel.

(A2) The scrambling sequences {dj(k)}Mj=1 are mutually in-
dependent i.i.d. BPSK sequences, independent of the
information sequences.

(A3) The noise is zero mean Gaussian, independent of the
information sequences, with E{w(k + l)wH(k)} =
σ2wIKδ(l) where IK is the K × K identity matrix.

(A4) H(z) is irreducible when regarded as a polynomial
matrix of z−1, that is, Rank{H(z)} = M for all com-
plex z except z = 0.

3. BLIND CHANNEL IDENTIFICATION BASEDON
MULTISTEP LINEAR PREDICTORS

In this section, first, multistep linear prediction method is
used to resolve the intersymbol interference introduced by
multipath channel. Secondly, based on the ISI-free MIMO
model, two channel estimation approaches are proposed by
exploiting the advantage of nonconstant modulus precoding:
one uses the Fourier analysis, and the other is based on the
matrix-pencil technique.

3.1. ISI reduction and separation based onmultistep
linear predictors

Based on the results in [6, 28, 35], it can be shown that under
(A1), (A2), (A3), and (A4), finite length predictors exist for
the noise-free channel observations

ys(n) =H(z)s(n) =
L−1∑
l=0

H(l)s(n− l) (10)

such that it has the following canonical representation:

ys(n) =
Ll∑
i=l

A(l)
n,i ys(n− i) + e

(
n|n− l

)
, l = 1, 2, . . . , (11)

for some Ll ≤M(L− 1) + l− 1, where the l-step ahead linear
prediction error e(n|n− l) is given by

e
(
n|n− l

) = l−1∑
i=0

H(i)s(n− i) (12)

satisfying

E
{
e
(
n|n− l

)
yHs (n−m)

} = 0 ∀m ≥ l. (13)

Therefore, based on (11) and (13), the coefficient matrices
A(l)
n,i’s can be determined from

E
{
ys(n)yHs (n−m)

}= Ll∑
i=l

A(l)
n,i E

{
ys(n−i)yHs (n−m)

} ∀m≥ l.

(14)

Actually, consider

Rs(n, k) � E
{
s(n)sH(n− k)

}
= diag

[∣∣c1(n)∣∣2, . . . ,∣∣cM(n)∣∣2]δ(k). (15)

It follows that Rs(n, k) is periodic with respect to n:

Rs(n, k) = Rs
(
n + LcN , k

)
(16)

(where N is the processing gain) since cj(n) = cj(n + LcN)
for j = 1, 2, . . . ,M. Note that Rs(n, k) = 0 for any k �= 0.
Defining Rs(n) � Rs(n, 0), then

Rs(n) = Rs
(
n + LcN

)
. (17)

It follows that the K ×K autocorrelation matrix of the noise-
free channel output

Rys(n, k) � E
{
ys(n)ysH(n− k)

}
=

L−1∑
l=0

H(l)Rs(n− l)HH(l − k)
(18)

is also periodic with period LcN in this circumstance. In (14),
lettingm = l, l + 1, . . . ,Ll, we have

[
A(l)
n,l,A

(l)
n,l+1, . . . ,A

(l)
n,Ll

]
= [

Rys(n, l), . . . ,Rys

(
n,Ll

)]
R#(n, l,Ll), (19)

where # stands for pseudoinverse andR(n, l,Ll) is a (Ll − l +
1)K×(Ll−l+1)K matrix with its (i, j)thK×K block element
as Rys(n− l− i+1, j− i) = E{ys(n− l− i+1)ysH(n− l− j+1)}
for i, j = 1, . . . ,Ll− l+1. And Rys(n, k) can be estimated from

Ry(n, k) � E
{
y(n)yH(n− k)

} = Rys(n, k) + σ2nIKδ(k)
(20)

through noise variance estimation, please see [6, 28] formore
details.

Now define el(n) � e(n|n− l)− e(n|n− l + 1) and let

E(n) �



ed+1(n + d)
ed(n + d − 1)

...
e2(n + 1)
e
(
n|n− 1

)

 . (21)
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It then follows from (12) that

E(n) =


H(d)

H(d − 1)
...

H(0)

 s(n) � H̃s(n), (22)

where

H̃ �


H(d)

H(d − 1)
...

H(0)

 . (23)

Thus, we obtained an ISI-free MIMOmodel (22).

3.2. Channel estimation through the Fourier analysis

Consider the correlation matrix of E(n),

RE(n) � E
{
E(n)EH(n)

} = H̃Rs(n)H̃H

= H̃diag
{∣∣c1(n)∣∣2,∣∣c2(n)∣∣2, . . . ,∣∣cM(n)∣∣2}H̃H.

(24)

Note that cj(n) = cj(n + LcN), j = 1, 2, . . . ,M, so RE(n) is
periodic with period LcN . The Fourier series of RE(n) is

SE(m) =
LcN−1∑
n=0

RE(n)e−i(2πmn/LcN)

= H̃Cs(m)H̃H ,

(25)

where

Cs(m) � diag

( LcN−1∑
n=0

∣∣c1(n)∣∣2e−i(2πmn/LcN), . . . ,

LcN−1∑
n=0

∣∣cM(n)∣∣2e−i(2πmn/LcN)

)
= diag

(
Cs1 (m), . . . ,CsM (m)

)
.

(26)

The basic idea of this channel estimation algorithm
is to design precoding code sequences {cj(n)}LcN−1n=0 ( j =
1, 2, . . . ,M) such that for a given cycle m = mj , Csj (mj) �= 0
and Csk (mj) = 0 for all k �= j. That is, all but one entries in
Cs(m) are zero. Choosing a different cycle mj for each user
(obviously, we need LcN > M), blind identification of each
individual channel can then be achieved through (25).

In fact, if for m = mj , Csj (mj) �= 0, but Csk (mj) = 0, for
all k �= j, then

SE
(
mj

) = H̃ diag
(
0, . . . , 0,Csj

(
mj

)
, 0, . . . , 0

)
H̃H. (27)

It then follows from (8), (23), and (27) that

g j =
[
g(1)j (d), . . . , g(K)j (d), . . . , g(1)j (0), . . . , g(K)j (0)

]T
(28)

can be determined up to a complex scalar from theK(d+1)×
K(d+1) Hermitian matrix g jgHj . In other words, the channel
responses from user j to each receive antenna p = 1, 2, . . . ,K
can be identified up to a complex scalar. This ambiguity can
be removed either by using one training symbol or using dif-
ferential encoding.

3.3. Channel estimation using the
matrix-pencil approach

Noting that RE(n) = RE(n + LcN), we form a matrix pencil
{S1, S2} based on linear combination of {RE(n)}LcN−1n=0 with
random weighting. Let αi(n) be uniformly distributed in in-
terval (0,1), where i = 1, 2. Define

Si=
LcN−1∑
n=0

αi(n)RE(n)

=H̃diag

( LcN−1∑
n=0

αi(n)
∣∣c1(n)∣∣2, . . . ,LcN−1∑

n=0
αi(n)

∣∣cM(n)∣∣2
)
H̃H

� H̃ΓiH̃H for i = 1, 2.
(29)

According to the definition,

Γi = diag

( LcN−1∑
n=0

αi(n)
∣∣c1(n)∣∣2, . . . ,

LcN−1∑
n=0

αi(n)
∣∣cM(n)∣∣2

)
, i = 1, 2,

(30)

are two positively-definited matrices.
Consider the generalized eigenvalue problem

S1x = λS2x ⇐⇒ H̃
(
Γ1 − λΓ2

)
H̃Hx = 0. (31)

If H̃ is of full column rank (which is ensured by assumption
(A4)), then (31) reduces to

(
Γ1 − λΓ2

)
H̃Hx = 0. (32)

By using random weighting, all the generalized eigenvalues
corresponding to (32),

λj =
∑LcN−1

n=0 α1(n)
∣∣cj(n)∣∣2∑LcN−1

n=0 α2(n)
∣∣cj(n)∣∣2 , j = 1, 2, . . . ,M, (33)

are distinct eigenvalues with probability 1. In this case, since
Γ1 and Γ2 are both diagonal, the generalized eigenvector x j

corresponding to λj should satisfy

H̃Hx j = βjI j , (34)

where βj is an unknown scalar, and I j = [0, . . . , 1, . . . , 0]T

with 1 in the jth entry is the jth column of theM×M identity
matrix I [29].
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It then follows from (31) and (34) that

S1x j = H̃Γ1H̃Hx j = βj

LcN−1∑
n=0

α1(n)
∣∣cj(n)∣∣2g j , (35)

where g j is as in (28). And g j can be determined up to a scalar
once the generalized eigenvector x j is obtained.

Remark 1. It should be noticed that the channel estimation
algorithm based on the Fourier analysis requires an addi-
tional condition on the coding sequences, which actually im-
plies that for a given cycle, all antennas, except one, are nulled
out. More specifically, this constraint on the code sequences
implies that for each user, there exists at least one narrow fre-
quency band over which no other user is transmitting. When
using the matrix-pencil approach, on the other hand, ran-
domweights, hence a random linear transform, is introduced
instead of the Fourier transform, resulting in that the condi-
tion on the code sequences can be relaxed to any nonconstant
modulus sequences which make λj ’s in (33) be distinct from
each other for j = 1, 2, . . . ,M.

4. CHANNEL EQUALIZATION USING
CYCLICWIENER FILTER

After the channel estimation, in this section, equaliza-
tion/desired user extraction is carried out using an MMSE
cyclic Wiener filter. Without loss of generality, assume user
1 is the desired user. We want to design a chip-level K × 1
MMSE equalizer {fd(n, i)}Le−1i=0 of length Le (Le ≥ L) which
satisfies

fd(n, i) = fd
(
n + LcN , i

)
, i = 0, 1, . . . ,Le − 1. (36)

The equalizer output can be expressed as

v̂1(n− d) =
Le−1∑
i=0

fHd (n, i)y(n− i). (37)

With the above equalizer, the MSE between the input signal
and the equalizer output is

E
{∣∣e(n)∣∣2} = E

{∣∣∣∣∣
Le−1∑
i=0

fHd (n, i)y(n−i)−v1(n−d)
∣∣∣∣∣
2}

. (38)

Applying the orthogonality principle, we obtain

E

{[ Le−1∑
i=0

fHd (n, i)y(n− i)− v1(n− d)

]
yH(n− k)

}
= 0

(39)

for k = 0, 1, . . . ,Le − 1.
Recall that (see (5)) if we define

C(n) � diag
{
c1(n), c2(n), . . . , cM(n)

}
,

v(n) �
[
v1(n), v2(n), . . . , vM(n)

]T
,

(40)

then

s(n) = [
s1(n), s2(n), . . . , sM(n)

]T = C(n)v(n). (41)

It then follows from (7) that

y(n) =
L−1∑
l=0

H(l)C(n− l)v(n− l) +w(n). (42)

Stacking Le successive y(n) together to form the KLe× 1 vec-
tor

Y(n) =


y(n)

y(n− 1)
...

y
(
n− Le + 1

)

 � HC,nV(n) +W(n), (43)

where

HC,n =


H(0)C(n) · · · H(L− 1)C(n− L + 1) · · · 0

...
. . .

...
. . .

...
0 · · · H(0)C

(
n− Le + 1

) · · · H(L− 1)C
(
n− Le − L + 2

)
 (44)

is a KLe × [(L + Le − 1)M] matrix, V(n) = [vT(n), vT(n −
1), . . . , vT(n− Le − L+ 2)]T andW(n) is defined in the same
manner as Y(n). It follows from (A1), (A2), and (A3) that

RY (n) � E
{
Y(n)YH(n)

} =HC,nH
H
C,n + σ2wIKLe ,

Rv1Y (n,d) � E{v1(n− d)YH(n)} = IHd H
H
C,n,

(45)

where Id = [0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸
(d+1)′sM×1 block

, . . . , 0]H is the (Md + 1)th

column of theM(L+Le−1)×M(L+Le−1) identity matrix.
Define

f̃d(n) �
[
fHd (n, 0), f

H
d (n, 1), . . . , f

H
d

(
n,Le − 1

)]H
(46)
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as the KLe × 1 equalizer coefficients vector. Then (39) can be
rewritten as

RY (n) f̃d(n) =HC,nId. (47)

It then follows that for n = 0, . . . ,LcN − 1,

f̃d(n) = R#
Y (n)HC,nId, (48)

where # denotes pseudoinverse.

5. EXTENSION TOMULTIRATE CDMA SYSTEMS

To support multimedia services with different quality of
services requirements, multirate scheme is implemented in
3G CDMA systems by using multicode (MC) or variable
spreading factor (VSF). InMC systems, the symbols of a high-
rate user are subsampled to obtain several symbol streams,
and each stream is regarded as the signal from a low-rate vir-
tual user and is spread using a specific signature sequence. In
VSF systems, users requiring different rates are assigned sig-
nature sequences of different lengths. Thus in the same pe-
riod, more symbols of high-rate users can be transmitted.

Since chip-level channel modeling and equalization are
performed, the proposed approach can readily be extended
to multirate case. As an MC system with high-rate users is
equivalent to a single-rate system with more users, extension
of the proposed approaches to MCmultirate CDMA systems
is therefore trivial. For VSF systems, letN be the smallest pro-
cessing gain and let Lc, jN denote the length of the jth user’s
spreading code. Defining

Lc = LCM
(
Lc,1, . . . ,Lc,M

)
(49)

as the least common multiple of {Lc,1, . . . ,Lc,M}, the gener-
alization of the proposed algorithm to VSF systems is then
straightforward.

6. SIMULATION EXAMPLES

We consider the case of two users and four receive antennas.
Each user transmits QPSK signals. The spreading gain is cho-
sen to be N = 8 or N = 16, and three cases are considered.
(1) Both users have spreading gain N = 8. (2) Both users
have spreading gain N = 16. (3) Two users have different
data rates, the spreading gain for the low-rate user is N = 16,
and for the high-rate user is N = 8.

The nonconstant modulus channelization codes spread
over 32 chips (i.e., 2 to 4 symbols depending on the user’s
spreading gain). Both randomly generated codes which
are uniformly distributed within the interval [0.8, 1.2] and
codes that satisfy the additional constraint (as described in
Section 3.2) are considered. In the simulation, “codes with

constraint” are chosen to be

c1 =
[
0.6857, 0.7145, 0.6356, 0.6849, 0.8433, 0.8036, 0.7597,

0.5856, 0.7488, 0.5641, 0.7300, 0.7542, 0.7482, 0.5870,

0.7902, 0.6172, 0.5409, 0.5474, 0.6425, 0.7834, 0.7520,

0.6743, 0.6904, 0.8114, 0.5829, 0.6913, 0.5939, 0.7339,

0.8608, 0.6380, 0.8207, 0.8808
]
,

c2 =
[
0.6670, 0.7275, 0.8540, 0.6100, 0.7518, 0.6363, 0.5545,

0.6887, 0.7092, 0.6143, 0.6313, 0.7625, 0.5210, 0.8036,

0.7582, 0.6979, 0.8136, 0.6944, 0.6902, 0.6660, 0.6536,

0.6908, 0.6010, 0.8078, 0.7622, 0.5486, 0.6005, 0.6395,

0.6176, 0.8070, 0.6382, 0.8265
]
.

(50)

The multipath channels have three rays and the multipath
amplitudes are Gaussian with zero mean and identical vari-
ance. The transmission delays are uniformly spread over 6
chip intervals. Complex zero mean white Gaussian noise was
added to the received signals. The normalized mean-square-
error of channel estimation (CHMSE) for the desired user is
defined as

CHMSE = 1
KIL

I∑
i=1

K∑
p=1

∥∥∥ĝ(p)1 − g
(p)
1

∥∥∥2∥∥∥g(p)1

∥∥∥2 , (51)

where I stands for the number of Monte-Carlo runs, and K
is the number of receive antennas. And SNR refers to the
signal-to-noise ratio with respect to the desired user and is
chosen to be the same at each receiver. The result is averaged
over I = 100 Monte-Carlo runs. The channel is generated
randomly in each run, and is estimated based on a record of
256 symbols. In the case of multirate, we mean 256 lower-
rate symbols. The equalizer with length Le = 6 is constructed
according to the estimated channel, and is applied to a set
of 1024 independent symbols in order to calculate the sym-
bol MSE and BER for each Monte-Carlo run. Blind channel
estimation based on nonconstant modulus precoding is car-
ried out both with and without the matrix-pencil approach.
Without the matrix-pencil approach, channel estimation is
obtained directly through the second-order statistics of E(n)
(see (22)) based on the nonconstant precoding technique
and the Fourier transform, as presented in Section 3.2. Sim-
ulation results show that by introducing a random linear
transform, the matrix-pencil approach delivers significantly
better results for both single-rate and multirate systems. Fig-
ures 3 and 4 correspond to the single-rate cases, where both
users have spreading gain N = 8 or N = 16, and the codes
in (50) are used. In the figures, “MP” stands for “matrix pen-
cil”. Figures 5 and 6 compare the performances of the matrix-
pencil-based approach when different codes are used. In the
figures, “codes with constraint” denote the codes in (50), and
we choose N = 8 for the high-rate user and N = 16 for the
low rate user. Optimal spreading code design and random
linear transform design will be investigated in future work.
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Figure 3: Normalized MSE of channel estimation versus SNR,
single-rate cases with N = 8 and N = 16, respectively.
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Figure 4: Comparison of BER versus SNR, single-rate cases with
N = 8 and N = 16, respectively.

7. CONCLUSIONS

In this paper, blind channel identification and signal separa-
tion for long-code CDMA systems are revisited. Long-code
CDMA system is characterized using a time-invariant system
model by modeling the received signals and MUIs as cyclo-
stationary processes with modulation-induced cyclostation-
arity. Then, multistep linear prediction method is used to re-
duce the intersymbol interference introduced by multipath
propagation, and channel estimation is performed by ex-
ploiting the nonconstant modulus precoding technique with
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Figure 5: Normalized MSE of channel estimation versus SNR for
matrix-pencil-based approach with different codes, multirate con-
figuration with N = 8 for the high-rate user and N = 16 for the
low-rate user, respectively.
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Figure 6: Comparison of BER versus SNR for matrix-pencil-based
approach with different codes, multirate configuration with N = 8
for the high-rate user andN = 16 for the low-rate user, respectively.

and without the matrix-pencil approach. It is found that by
introducing a random linear transform, the matrix-pencil-
based approach delivers a much better result than the one re-
lying on the Fourier transform. As chip-level channel model-
ing and equalization are performed, the proposed approach
can be extended tomultirate CDMA systems in a straight for-
ward manner.
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