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The advances in programmable and reconfigurable radios have rendered feasible transmitter optimization schemes that can greatly
improve the performance of multiple-antenna multiuser systems. Reconfigurable radio platforms are particularly suitable for
implementation of transmitter optimization at the base station. We consider the downlink of a wireless system with multiple
transmit antennas at the base station and a number of mobile terminals (i.e., users) each with a single receive antenna. Under
an average transmit power constraint, we consider the maximum achievable sum data rates in the case of (1) zero-forcing (ZF)
spatial prefilter, (2) modified zero-forcing (MZF) spatial prefilter, and (3) triangularization spatial prefilter coupled with dirty-
paper coding (DPC) transmission scheme. We show that the triangularization with DPC approaches the closed-loop MIMO rates
(upper bound) for higher SNRs. Further, the MZF solution performs very well for lower SNRs, while for higher SNRs, the rates
for the ZF solution converge to the MZF rates. An important impediment that degrades the performance of such transmitter
optimization schemes is the delay in channel state information (CSI). We characterize the fundamental limits of performance in
the presence of delayed CSI and then propose performance enhancements using a linear MMSE predictor of the CSI that can be
used in conjunction with transmitter optimization in multiple-antenna multiuser systems.

Keywords and phrases: transmitter beamforming, dirty-paper coding, correlated channels, channel state information, MMSE
prediction.

1. INTRODUCTION that can provide high-capacity (i.e., spectral efficiency) wire-
less communications in rich scattering environments. It has
been shown that the theoretical capacity (approximately) in-
creases linearly as the number of antennas is increased [1, 2].

With the advent of flexible and programmable radio
technology, transmitter optimization techniques used in
conjunction with MIMO processing can provide even greater
gains in systems with multiple users. Reconfigurable ra-
dio platforms are particularly suitable for implementation

of transmitter optimization at the base station. Such opti-

For a wide range of emerging wireless data services, the
application of multiple antennas appears to be one of the
most promising solutions leading to even higher data rates
and/or the ability to support greater number of users.
Multiple-transmit multiple-receive antenna systems rep-
resent an implementation of the MIMO (multiple-input
multiple-output) concept in wireless communications [1]
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mization techniques have great potential to enhance perfor-
mance on the downlink of multiuser wireless systems. From
an information-theoretic model, the downlink corresponds
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to the case of a broadcast channel [3]. Recent studies that
have also focussed on multiple-antenna systems with mul-
tiple users include [4, 5, 6, 7, 8, 9, 10] and the references
therein.

In this paper, we study multiple-antenna transmitter op-
timization (i.e., spatial prefiltering) schemes that are based
on linear preprocessing and transmit power optimization
(keeping the average transmit power conserved). Specifically,
we consider the downlink of a wireless system with multiple
transmit antennas at the base station and a number of mo-
bile terminals (i.e., users) each with a single receive antenna.
We consider the maximum achievable sum data rates in the
case of (1) zero-forcing spatial prefilter, (2) modified zero-
forcing spatial prefilter, and (3) triangularization spatial pre-
filter coupled with dirty-paper coding transmission scheme
[11]. We study the relationship between the above schemes
as well as the impact of the number of antennas on perfor-
mance.

After characterizing the fundamental performance lim-
its, we then study the performance of the above transmitter
optimization schemes with respect to delayed channel state
information (CSI). The delay in CSI may be attributed to the
delay in feeding back this information from the mobiles to
the base station or alternately to the delays in the ability to
reprogram/reconfigure the transmitter prefilter. Without ex-
plicitly characterizing the source and the nature of such de-
lays, we show how the performance of the above transmitter
optimization schemes is degraded by the CSI delay. In or-
der to alleviate this problem, we exploit correlations in the
channel by designing a linear MMSE predictor of the chan-
nel state. We then show how the application of the MMSE
predictor can improve performance of transmitter optimiza-
tion schemes under delayed CSI.

The paper is organized as follows. In Section 2 we de-
scribe the system model. In Section 3, we describe the var-
ious transmitter optimization schemes including their fun-
damental performance limits as well as the effect of delayed
CSIL. In Section 4, a formal channel model capturing chan-
nel correlations and a linear MMSE predictor of the channel
state which is used to overcome the effect of delayed CSI are
presented.

2. SYSTEM MODEL

In the following we introduce the system model. We use a
MIMO model [1] that corresponds to a system presented in
Figure 1. It consists of M transmit antennas and N mobile
terminals (each with a single receive antenna). In other words
each mobile terminal presents a MISO channel as seen from
the base station.

In Figure 1, x,, is the information bearing signal intended
for mobile terminal # and y, is the received signal at the cor-
responding terminal (for n = 1,...,N). The received vector

Y= [}’la---a)’N]TiS

y = HSx +n, ye@N, xe CN, ne eV,
SE GMXN He GNXM

(1)

299
Mobile 1
Transmitter A »n
/
/_/% J
Y- ' Mobile 2
X1 — L obile
X X [2¥--3 MIMO [ TTm--4Y
2 transform | channel ] »2
S : H .
\
XN —> M -=> \\

\\_,[Y Mobile N

JN

FIGURE 1: System model consisting of M transmit antennas and N
mobile terminals.

where x = [x1,...,xy]" is the transmitted vector (E[xx"] =
Palyxy), nis AWGN (E[nn"] = NoIyxy), H is the MIMO
channel response matrix, and S is a transformation (spatial
prefiltering) performed at the transmitter. Note that the vec-
tors x and y have the same dimensionality. Further, h,,, is
the nth row and mth column element of the matrix H corre-
sponding to a channel between mobile terminal n and trans-
mit antenna m. If not stated otherwise, we will assume that
N <M.

Application of the spatial prefiltering results in the com-
posite MIMO channel G given as

G=HS, GeceVY, (2)

where gy, is the nth row and mth column element of the
composite MIMO channel response matrix G. The signal re-
ceived at the nth mobile terminal is

N
Yn = nnXn + Z EniXi +1y. (3)
i=1,i#n
Desired signal for user n %,_J
Interference

In the above representation, the interference is the signal that
is intended for mobile terminals other than terminal n. As
said earlier, the matrix S is a spatial prefilter at the transmit-
ter. It is determined based on optimization criteria that we
address in the next section and has to satisfy the constraint

trace (SS7) < N (4)

which keeps the average transmit power conserved. We rep-
resent the matrix S as

S=AP, AcCMN pc NN (5)

where A is a linear transformation and P is a diagonal ma-
trix. P is determined such that the transmit power remains
conserved.
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3. TRANSMITTER OPTIMIZATION SCHEMES

Considering different forms of the matrix A, we study the
following transmitter optimization schemes.

(1) Zero-forcing (ZF) spatial prefiltering scheme where A
is represented by

A = HH(HHY) (6)
As can be seen, for N < M, the above linear transformation
is zeroing the interference between the signals dedicated to
different mobile terminals, that is, HA = Iyx«n. X, are as-
sumed to be circularly symmetric complex random variables
having Gaussian distribution MNe (0, P,y). Consequently, the
maximum achievable data rate (capacity) for mobile termi-
nal n is

P, 2
RiF = log, (14 P el 7)

where p,, is the nth diagonal element of the matrix P defined
in (5). In (6) it is assumed that HH" is invertible, that is, the
rows of H are linearly independent.

(2) Modified zero-forcing (MZF) spatial prefiltering
scheme that assumes

-1
A=H" (HHH + ?1) ) (8)

av

In the case of the above transformation, in addition to the
knowledge of the channel H, the transmitter has to know the
noise variance Np. x,, are assumed to be circularly symmet-
ric complex random variables having Gaussian distribution
Ne (0, Pay). The maximum achievable data rate (capacity) for
mobile terminal # now becomes

Pav|gnn|2
. ) ©
Py Zizl,i#n |gni| + No

RMZF = Jog, (1 +

While the transformation in (8) appears to be similar in form
to an MMSE linear receiver, the important difference is that
the transformation is performed at the transmitter. Using the
virtual uplink approach for transmitter beamforming (intro-
duced in [7, 8]), we present the following proposition.

Proposition 1. If the nth diagonal element of P is selected as

(n=1,...,N), (10)

where a,, is the nth column vector of the matrix A, the constraint
in (4) is satisfied with equality. Consequently, the achievable
downlink rate RMY for mobile n is identical to its correspond-
ing virtual uplink rate when an optimal uplink linear MMSE
receiver is applied.

See Appendix A for a definition of the corresponding vir-
tual uplink and a proof of the above proposition.

(3) Triangularization spatial prefiltering with dirty-paper
coding (DPC) where the matrix A assumes the form

A = HUR!, (11)

where H = (QR)" and Q is unitary and R is upper triangular
(see [12] for details on QR factorization). In general, R™! is a
pseudoinverse of R. The composite MIMO channel G in (2)
becomes G = L = HS, a lower triangular matrix. It permits
application of dirty-paper coding designed for single-input
single-output (SISO) systems. We refer the reader to [4, 5, 6,
13, 14, 15, 16] for further details on the DPC schemes.

By applying the transformation in (11), the signal in-
tended for terminal 1 is received without interference. The
signal at terminal 2 suffers from the interference arising from
the signal dedicated to terminal 1. In general, the signal at
terminal n suffers from the interference arising from the sig-
nals dedicated to terminals 1 to n — 1. In other words,

Y1 = guxi +ny,
Y2 = g0X + $1X1 + 1y,

n—1

Yn = ZnnXn t Z EniXi + Ny, (12)

i=1

N-1

YN = gNNXN t+ Z gNiXi + nN.
i=1

Since the interference is known at the transmitter, DPC can
be applied to mitigate the interference (the details are given
in Appendix B). Based on the results in [13], the achievable
rate for mobile terminal # is

Pav|g |2) ( Pav"’nnpnnlz)

DPC _ mal ) _

R;™ =log, <1+ No log, | 1+ No ,
(13)

where 7y, is the nth diagonal element of the matrix R defined
in (11). Note that DPC is applied just in the case of the lin-
ear transformation in (11), with corresponding rate given by
(13).

Note that trace(AA™) = N, thereby satisfying the con-
straint in (4). Consequently, we can select P = Inxy and
present the following proposition.

Proposition 2. For high SNR (P, > Ny) and P = Inxn, the
achievable sum rate of the triangularization with DPC scheme
is equal to the rate of the equivalent (open loop) MIMO system.
In other words, for Py, > Np,

N
z RDPC = log, (det (INxN + &HHH» (14)
n=1 NO
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Proof. Starting from the right-side term in (14) and with
HH" = RHR, for P,, > Ny,

Pav
log, (det (INxN + —RHR)
Ny

Pav
~ log, <det (VORHR))
P

N
_ Z REPC
n=1
(15)
which concludes the proof. O

The ZF and MZF schemes should be viewed as trans-
mitter beamforming techniques using conventional channel
coding to approach the achievable rates [7, 8]. The trian-
gularization with DPC scheme is necessarily coupled with a
nonconventional coding, that is, the DPC scheme.

Once the matrix A is selected, the elements of the diag-
onal matrix P are determined such that the transmit power
remains conserved and the sum rate is maximized. The con-
straint on the transmit power is

trace (APPUAM) < N. (16)
The elements of the matrix P are selected such that
diag(P) = [pi1s..., pan]"
N (17)
= arg max R,.
trace(APPHAH) <N -1
3.1. Fundamental limits

To evaluate the performance of the above schemes, we con-
sider the following baseline solutions.

(1) No prefiltering solution where each mobile terminal
is served by one transmit antenna dedicated to that mobile.
This is equivalent to S = I. A transmit antenna is assigned
to a particular terminal corresponding to the best channel
(maximum channel magnitude) among all available transmit
antennas and that terminal.

(2) Equal resource TDMA and coherent beamforming
(denoted as TDMA-CBF) is a solution where signals for dif-
ferent terminals are sent in different (isolated) time slots. In
this case, there is no interference, and each terminal is us-
ing 1/N of the overall resources. When serving a particular
mobile, ideal coherent beamforming is applied using all M
transmit antennas.

(3) Closed-loop MIMO (using the water-pouring opti-
mization on eigenmodes) is a solution that is used as an up-
per bound on the achievable sum rates. In the following, it
is denoted as CL-MIMO. This solution would require that
multiple terminals act as a joint multiple-antenna receiver.

Average user rate (bits/symbol)

SNR (dB)

—— No prefiltering
TDMA-CBF
—— ZF

—e— MZF

DPC

x— CL-MIMO

FIGURE 2: Average rate per user versus SNR (M = 3, N = 3, Rayleigh
channel).

This solution is not practical because the terminals are nor-
mally individual entities in the network and they do not co-
operate when receiving signals on the downlink.

In Figure 2, we present average rates per user versus
SNR = 10log(P,/Ny) for a system consisting of M = 3
transmit antennas and N = 3 terminals. The channel is
Rayleigh, that is, the elements of the matrix H are complex
independent and identically distributed Gaussian random
variables with distribution Ne (0, 1). From the figure we ob-
serve the following. The triangularization with DPC scheme
is approaching the closed-loop MIMO rates for higher SNR.
The MZF solution is performing very well for lower SNRs
(approaching CL-MIMO and DPC rates), while for higher
SNRs, the rates for the ZF scheme are converging to the MZF
rates. The TDMA-CBF rates are increasing with SNR, but still
significantly lower than the rates of the proposed optimiza-
tion schemes. The solution where no prefiltering is applied
clearly exhibits properties of an interference limited system
(i.e., after a certain SNR, the rates are not increasing). Corre-
sponding cumulative distribution functions (cdf) of the sum
rates normalized by the number of users are given in Figure 3
for SNR = 10 dB (see more on the “capacity-versus-outage”
approach in [17]).

In Figure 4, we present the behavior of the average rates
per user versus number of transmit antennas. The average
rates are observed for SNR = 10dB, N = 3, and variable
number of transmit antennas (M = 3,6, 12,24). The rates in-
crease with the number of transmit antennas and the differ-
ence between the rates for different schemes becomes smaller.
As the number of transmit antennas increases, while keeping
the number of users N fixed, the spatial channels (i.e., rows of
the matrix H) are getting less cross-correlated (approaching
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FiGUure 3: CDF of rates, SNR = 10dB, per user (M = 3, N
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FIGURE 4: Average rate per user versus M/N (SNR = 10dB, N =
3, variable number of transmit antennas M = 3,6, 12,24, Rayleigh

channel).

orthogonality for M — o0). It can be shown that for orthog-
onal channels, all three schemes perform identically.

We now illustrate a case when the number of available
terminals N; (i.e., users) is equal to or greater than the num-
ber of transmit antennas M. Out of N; terminals, the trans-
mitter will select N = M terminals and perform the above
transmitter optimization schemes for the selected set. There
are N¢!/((N; — M)!M!) possible sets. Between the transmit

557

Average user rate (bits/symbol)

3 4 5 6 7 8 9 10 11 12
Number of available terminals

—— ZF
—=— MZF
—e— DPC

FIGURE 5: Average rate per user versus number of available terminals
(SNR = 10dB, M = 3, Rayleigh channel).

antennas and each terminal, there is (1 X M)-dimensional
spatial channel. For each set of the terminals there is a matrix
channel H; € CM*M where each row corresponds to a differ-
ent spatial channel of the corresponding terminal in the set.
The selected terminals are the ones corresponding to the set
(18)

>

] = argminH H?I(HjH?I)_1
j

where || - || is the Frobenius norm. The above criterion will
favor the terminals whose spatial channels have low cross-
correlation. In Figure 5, we present the average rates per user
(the average sum rates divided by N = M) versus number of
available terminals. The increase in the rates with the number
of available terminals is a result of multiuser diversity (i.e.,
having more terminals allows the transmitter to select more

favorable channels).

3.2. Effect of CSldelay
As a motivation for the analysis presented in the follow-
ing sections, we now present the effects of imperfect chan-
nel state knowledge. In practical communication systems the
channel state H has to be estimated at the receivers, and
then fed to the transmitter. Specifically, mobile terminal n
feeds back the estimate of the nth row of the matrix H, for
n =1,...,N.In the case of a time-varying channel, this prac-
tical procedure results in noisy and delayed (temporally mis-
matched) estimates being available to the transmitter to per-
form the optimization. As said earlier, the MIMO channel
is time varying. Let H;_; and H; correspond to consecutive
block-faded channel responses. The temporal characteristic
of the channel is described using the correlation

E[hi-1yumhiym]

k==

(19)
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FIGURE 6: Average rate per user versus temporal channel correlation
k (SNR = 10dB, M = 3 (solid lines), M = 6 (dashed lines), N = 3,
Rayleigh channel).

where I' = Elhiymhi,,], and hiy, is a stationary random pro-
cess (form =1,...,Mandn = 1,...,N, denoting transmit-
and receive-antenna indices, respectively). Low values of the
correlation k correspond to higher mismatch between H;_,
and H;. Note that the above channel is modeled as a first-
order discrete Markov process. In the case of the Jakes model,
k = Jo(27 f47), where f; is the maximum Doppler frequency
and 7 is the time difference between Fi(;i—1)um and hiypm. In ad-
dition, the above simplified model assumes that there is no
spatial correlation.

We assume that the mobile terminals feed back H;_;
which is used at the base station to perform the transmitter
optimization for the ith block. In other words, the downlink
transmitter is ignoring the fact that H; # H,_;. In Figure 6,
we present the average rate per user versus the temporal
channel correlation k in (19). From these results we note the
very high sensitivity of the schemes to the channel mismatch.
In this particular case, the performance of the ZF and MZF
schemes becomes worse than when there is no prefiltering.
See also [18] for a related study of channel mismatch and
achievable data rates for single-user MIMO systems. Note
that the above example and the model in (19) is a simplifi-
cation that we only use to illustrate the schemes’ sensitivity
to imperfect knowledge of the channel state. In the following
section, we introduce a detailed channel model incorporat-
ing correlations in the channel state information.

4. CHANNEL STATE PREDICTION FOR
PERFORMANCE ENHANCEMENT

In the following, we first address the temporal aspects of the
channel H. For each mobile terminal, there is a (1 X M)-
dimensional channel between its receive antenna and M

transmit antennas at the base station. The MISO channel
h, = [hu1 - - - huu] for mobile terminaln (n = 1,...,N) cor-
responds to the nth row of the channel matrix H, and we
assume that it is independent of other channels (i.e., rows of
the channel matrix). The temporal evolution of the MISO
channel h, may be represented as [19, 20]

h,(t)=[1l---1]D,N,, D, e CN*Ni N, e CN>*M,

(20)

where N, is an (N x M)- dimensional matrix with elements
corresponding to complex i.i.d. random variables with dis-
tribution MNe(0,1/Ny). D, is an Ny x Ny diagonal Doppler
shift matrix with diagonal elements

dij = e/t (21)
representing the Doppler shifts that affect Ny plane waves
and

2
w; = =V, cos (yi),

3 fori=1,...,Ny,

(22)
where v, is the velocity of mobile terminal # and the angle of
arrival of the ith plane wave at the terminal is y; (generated
as U0 2m]).

It can be shown that the model in (20) strictly conforms
to the Jakes model for Ny — oco. This model assumes that
at the mobile terminal the plane waves are coming from all
directions with equal probability. Further, note that each di-
agonal element of D, corresponds to one Doppler shift. D,
and N, are independently generated. With minor modifica-
tions, the above model can be modified to capture the spatial
correlations as well (see [21]).

We assume that the transmitter has a set of previous
channel responses (for mobile terminal n) h,(¢t) where t =
kTq, and k = 0,—1,...,—(L — 1). The time interval T,
may correspond to a period when a new CSI is sent from
the mobile terminal to the base station. Knowing that the
wireless channel has correlations, based on previous channel
responses the transmitter may perform a prediction of the
channel response h,(7) at the time moment 7. In this paper
we assume that the prediction is linear and that it minimizes
the mean square error between true and predicted channel
state. The MMSE predictor W, is

W, = mTin arg E| T"h,, — h,(7)!] ’ (23)
where h,,, is a vector defined as
hun = [ha(Ohy (= Tep) - - -hy( = (L= D)Ta)]".  (24)

In other words, the vector is constructed by stacking up the
previous channel responses available to the transmitter. We
define the following matrices:

U,=E [hunh];n])

(25)
V,, = E[h,,h,(7)].
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3.5

Average user rate (bits/symbol)

CSI delay (ms)

—2— No prefiltering
—+ ZF
—=— MZF

FIGURE 7: Average rate per user versus CSI delay, with MMSE pre-
diction (dashed lines) and without MMSE prediction (solid lines)
(SNR = 10dB, M = 3, N = 3, channel based on model in (20),
fe = 2GHz, v = 30kmph).

It can be shown that the linear MMSE predictor W, is [22]
W, =U,'V,. (26)

The above predictor exploits the correlations of the MISO
channel. Note that different linear predictors are needed for
different mobile terminals.

A practical implementation of the above prediction can
use sample estimates of U, and V,, as

-1

PN 1

Un = Z hun(iTch)hun(iTch)Ha
NW i=—N,,

(27)

Underlying assumption in using the above estimates is that
the channel is stationary over the integration window N,, T.
Further, if the update of the CSI is performed at discrete time
moments kTg, (k = 0,—1,...), the update period Ty, should
be such that

Tch < (28)

2 f doppler .

In Figure 7, we present the average rates per user versus
the delay 7 of the CSL. The system consists of M = 3 trans-
mit antennas and N = 3 terminals. The channel is modeled
based on (20) (assuming that the carrier frequency is 2 GHz
and the velocity of each mobile terminal is 30 kmph and set-
ting the number of plane waves Ny = 100). Because the ideal
channel state H(t + 7) is not available at the transmitter, we
assume that H(#) is used instead to perform the transmitter

357

Average user rate (bits/symbol)

Velocity (km/h)

—a— No prefiltering
—— ZF
—=— MZF

FIGURE 8: Average rate per user versus terminal velocity, with
MMSE prediction (dashed lines) and without MMSE prediction
(solid lines) (SNR = 10dB, M = 3, N = 3, channel based on model
in (20), f. = 2GHz, 7 = 2 milliseconds).

optimization at the moment ¢ + 7. Figure 7 presents average
rates for the ZF and MZF schemes, for SNR = 10 dB. Results
depicted by the solid lines correspond to the application of
the delayed CSI H(¢) instead of the true channel state H(¢+7).
The dashed lines depict results when the MMSE predicted
channel state Hypvisg (£+ 7) is used instead of the true channel
state H(t + 7). Without any particular effort to optimally se-
lect the implementation parameters, in this particular exam-
ple, we use L = 10 previous channel responses to construct
the vectors in (24). Further, the length of the integration win-
dow in (27) is selected to be N,, = 100. The results clearly
point to improvements in the performance of the schemes
when the MMSE channel state prediction is used. The re-
sults suggest that the temporal correlations in the channel
alone are significant enough to support the application of
the MMSE prediction. The presence of spatial correlations in
the channel model will further improve the benefits of such
channel state prediction schemes used in conjunction with
transmitter optimization.

For the above assumptions, in Figure 8 we present the av-
erage rates per user versus the terminal velocity with the CSI
delay 7 = 2 milliseconds. From the results, we can see that
the prediction scheme significantly extends the gains of the
transmitter optimization even for higher terminal velocities.

5. CONCLUSION

The advances in programmable and reconfigurable radios
have rendered feasible transmitter optimization schemes that
can greatly improve the performance of multiple-antenna
multiuser systems. In this paper, we presented a study on
multiple-antenna transmitter optimization schemes for mul-
tiuser systems that are based on linear transformations and
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transmit power optimization. We considered the maximum
achievable sum data rates in the case of the zero-forcing,
the modified zero-forcing, and the triangularization spatial
prefiltering coupled with the dirty-paper coding transmis-
sion scheme. We showed that the triangularization with DPC
approaches the closed-loop MIMO rates (upper bound) for
higher SNR. Further, the MZF solution performed very well
for lower SNRs (approaching closed-loop MIMO and DPC
rates), while for higher SNRs, the rates for the ZF scheme
converged to that of the MZF rates. A key impediment to the
successful deployment of transmitter optimization schemes
is the delay in the channel state information (CSI) that is
used to accomplish this. We characterized the degradation in
the performance of transmitter optimization schemes with
respect to the delayed CSI. A linear MMSE predictor of the
channel state was introduced which then improved the per-
formance in all cases. The results have suggested that the tem-
poral correlations in the channel alone are significant enough
to support the application of the MMSE prediction. In the
presence of additional spatial correlations, the usefulness of
such prediction schemes will be even greater.

APPENDICES

A. DEFINITION OF THE VIRTUAL LINK AND
PROOF OF PROPOSITION 1

We now describe the corresponding virtual uplink for the
system in Figure 1. Let X, be the uplink information-bearing
signal transmitted from mobile terminal n (n = 1,...,N)
and let y, be the received signal at the mth base sta-
tion antenna (m = 1,...,M). X, are assumed to be cir-
cularly symmetric complex random variables having Gaus-
sian distribution Ne (0, P,y ). Further, the received vector y =
(715> m] T s

y=Hx+a=H%+a, yecM xecV,

B} (A.1)
neCM HeeMN,

where X = [%1,...,%y]" is the transmitted vector (E[xx"] =
P, Inxn), 1 is AWGN (E[flle] = Nolyxm), and H=H"is
the uplink MIMO channel response matrix.

It is well known that the MMSE receiver is the opti-
mal linear receiver for the uplink (multiple-access channel)
[23, 24]. It maximizes the received SINR (and rate) for
each user. The decision statistic is obtained after the receiver
MMSE filtering as

xdec = why, (A.2)
where the MMSE receiver is
-1 H
W= ((HHH + ?1) H)
¥ (A.3)

-1
=H" (HHH + ?1) .

av

Proof of Proposition 1. Note that W = A in (8), for the MZF
transmitter spatial prefiltering. We normalize the column
vectors of the matrix W in (A.3) as

Wnor = WP, (A4)

where P is defined in (10). In other words, the nth diagonal
element of P is selected as

Do = 1
nn ,—wr}'l w,

where w,, is the nth column vector of the matrix W (where
W, = a,, which is the column vector of A forn = 1,...,N).
It is well known that any normalization of the columns of the
MMSE receiver in (A.3) does not change the SINRs. In other
words, the SINR for the nth uplink user (n = 1,...,N) is

..,N), (A.5)

Py |wih, |

SINR" = S —
PaV Zi:l,i%n |wth1 | + N()WEIW,,

o, (A.6)
B P,y |whh, |/ (whw,)

= — N
Pav Zfil,i#n |wthl| /(WL{Wn) +N0

where h,, is the nth column vector of the matrix H. Note
that hil = h, which is the nth row vector of the downlink
MIMO channel H. The corresponding downlink SINR when
the MZF spatial perfiltering is used (with P defined in (10))
is

Py | h,a, | 2/(alr;1an)

SINR}#F = N ; :
Py X,z | hiai |/ (alla,) + No

(A7)

As said earlier, w, = a, and }_15 = h,. Thus, SINRIZIZF =
SINRY" for n = 1,...,N leading to identical rates, which
concludes the proof. O

B. SPATIAL PREFILTERING WITH DPC

One practical, but suboptimal, single-dimensional DPC so-
lution is described in [14, 15]. Starting from that solution we
introduce the DPC scheme.

The transmitted signal in (1) intended for terminal 7 is

Xn = fmod(k\n - In)) (Bl)

where X, is the information-bearing signal for terminal n and
fmod(+) is @ modulo operation (i.e., a uniform scalar quan-
tizer). For a real variable x, fiod4(x) is defined as

fmod(x) = ((x +Z)mod(22)) - Z (B.2)
and in the case of a complex variable a + jb, fmod(a + jb) =
fmod(a) + jfmod(b). The constant Z is selected such that
E[x,x}] = P,. Further, from (12), I, is the normalized in-
terference at terminal n:

n—1 GuiXi

niti

In = Z >
i-1 &nn

(B.3)
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assuming that g,, # 0. Note that I, is only known at
the transmitter. At terminal n, the following operation is
performed:

foa(2) = T, (B.4)
Inn

where n} is a wrapped-around AWGN (due to the nonlin-
ear operation fmod(-)). For high SNR and with X, being uni-
formly distributed over the single-dimensional region, the
achievable rate is approximately 1.53 dB away from the rate
in (13) [14, 15].

To further approach the rate in (13), based on [14], the
following modifications of the suboptimal scheme in (B.1)
are needed. The transmitted signal intended for terminal # is
now

Xn = fk (Qn - fn In + dn)> (BS)

where fi(-) is a modulo operation over a k-dimensional re-
gion. &, is a parameter to be optimized (0 < &, < 1) and
dy, is a dither (uniformly distributed pseudonoise over the k-
dimensional region). At terminal #, the following operation
is performed:

fk(;_") = %ot (1= &)ty + Eun, (B.6)

nn

where 7, is a wrapped-around AWGN (due to the nonlin-
ear operation fi(-)) and u, is uniformly distributed over the
k-dimensional region. For k — o and X, being uniformly
distributed over the k-dimensional region, the rate in (13)
can be achieved [14]. Further details on selecting &, and d,
are beyond the scope of this paper. We refer the reader to [14]
and references therein.
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