
EURASIP Journal on Wireless Communications and Networking 2005:4, 541–553
c© 2005 W. Li and H. Dai

Optimal Throughput and Energy Efficiency
for Wireless Sensor Networks:
Multiple Access andMultipacket Reception

Wenjun Li
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7914, USA
Email: wli5@ncsu.edu

Huaiyu Dai
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695-7914, USA
Email: huaiyu dai@ncsu.edu

Received 9 December 2004; Revised 1 April 2005

We investigate two important aspects in sensor network design—the throughput and the energy efficiency. We consider the uplink
reachback problem where the receiver is equipped with multiple antennas and linear multiuser detectors. We first assume Rayleigh
flat-fading, and analyze two MAC schemes: round-robin and slotted-ALOHA. We optimize the average number of transmissions
per slot and the transmission power for two purposes: maximizing the throughput, or minimizing the effective energy (defined as
the average energy consumption per successfully received packet) subject to a throughput constraint. For each MAC scheme with
a given linear detector, we derive the maximum asymptotic throughput as the signal-to-noise ratio goes to infinity. It is shown
that the minimum effective energy grows rapidly as the throughput constraint approaches the maximum asymptotic throughput.
By comparing the optimal performance of different MAC schemes equipped with different detectors, we draw important tradeoffs
involved in the sensor network design. Finally, we show that multiuser scheduling greatly enhances system performance in a
shadow fading environment.
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1. INTRODUCTION

Wireless sensor networks have become one of the burgeon-
ing research fields in recent years, as they are envisioned to
have wide applications in military, environmental, and many
other fields [1]. Since sensors typically operate on batteries,
replenishment of which is often difficult, a lot of work has
been done to minimize the energy expenditure and prolong
the sensor lifetime through energy efficient designs across
layers [2, 3, 4, 5, 6]. Meanwhile, the sensor network should
be able to maintain a certain throughput (which is equiva-
lent to a certain delay constraint), in order to fulfill the QoS
requirement of the end user, and to ensure the stability of
the network. Typically, the throughput and the energy effi-
ciency are inconsistent, and there exists a tradeoff between
the two measures. The objective of this work is to explore
the maximum achievable throughput under certain network
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configurations and receiver structures, as well as optimal net-
work designs that achieve the desired throughput with mini-
mal energy consumption.

We consider the reachback problem where all sensor
nodes in the sensor field transmit to a common receiver.
The receiver has replenishible power supply and possesses so-
phisticated data reception and processing capabilities. An al-
ternative way for transmitting data, typically in a nonhier-
archical sensor network, is the multihop communication,
whereby a packet is received and forwarded by intermediate
nodes several times before reaching the destination. While
multihop communication may lower the transmission en-
ergy by mitigating the exponential decay in the signal power
as a function of the distance, this energy saving can hardly
justify the extra energy spent on packet reception, process-
ing, routing, and forwarding. Moreover, multihop commu-
nication also incurs more contentions/interference and de-
lays, as indicated in [7, 8]. As exemplified by the sensor net-
works with mobile agents (SENMA) [9], employing a pow-
erful receiver, such as a mobile agent, conserves sensors’ en-
ergy by freeing them from packet relaying, routing, and data
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processing routines, and good performance can be guaran-
teed even with minimal transmission power.

We assume that each node constantly has packets to
transmit; the transmission is slotted and the slot length T
equals the transmission time of one packet. The sensors
and the receiver constitute a multiple access network. Un-
der the traditional collision channel model (i.e., single trans-
mission means success and simultaneous transmissions re-
sult in failure), the throughput of the multiple access net-
work is limited: the maximum throughput per slot is 1
for time-division-multiple-access (TDMA), and is only 1/e
for slotted-ALOHA with optimal decentralized control [10].
Such a throughput may not be sufficient for sensor network
applications. Nevertheless, advanced signal processing tech-
niques such as multiuser detection [11] enable correct re-
ception of simultaneous transmitted packets at the physi-
cal layer, and consequently, Ghez et al. proposed the mul-
tipacket reception model [12], which revolutionized the un-
derlying assumption of MAC layer design. In this paper, we
assume that the receiver is equipped with N antennas and
a linear multiuser detector followed by single-user decoders.
The packet transmission is considered successful as long as
the output signal-to-interference ratio (SIR) of the linear de-
tector is above a certain threshold β [13]. The transmitting
sensors and the receive antenna array thus form a virtual
multiple-input-multiple-output (MIMO) system, which can
also be viewed as a space-division-multiple-access (SDMA)
system. Note that due to the analogy between the direct-
sequence code-division-multiple-access (DS-CDMA) system
and the MIMO system, the analysis in this paper can also be
adapted to the DS-CDMA system with a single receive an-
tenna and spreading gain N . But since the received power
adds up across the antennas, the MIMO system requires only
1/N of the transmission power of the corresponding DS-
CDMA system. A hybrid of CDMA and multiple receive an-
tenna system is also possible, in which case the performance
is further enhanced by the effect of “resource-pooling” [14].

A sensor field usually consists of hundreds or thousands
of sensors, and the number of transmissions in each slot at
the same frequency band is typically much smaller to avoid
the excessive multiple access interference. Therefore, in ad-
dition to the SDMA that defines the channelization in each
slot, another level of medium access control is necessary to
determine which sensors should transmit during each slot,
and the MAC scheme for this purpose can be either co-
ordinated or random. For coordinated access, we consider
round-robin, which is TDMA in essence: the adjacent sensors
form a transmission group and the groups are scheduled for
access one by one. For random access, we consider the sim-
plest form of slotted-ALOHA, known as delayed first trans-
mission (DFT) [15]: in each slot every sensor node trans-
mits a packet (new or retransmission) with the same prob-
ability p independently. We assume that the receiver trans-
mits a beacon at the beginning of each slot for synchroniza-
tion [9, 16]. It might require some overhead for the sensor
nodes to get some delay estimates for synchronization pur-
pose, and then they can adjust their timing when simultane-
ously transmitting. It is known that slotted-ALOHA is simple

and is preferred when the traffic is bursty, but it suffers from
certain performance degradation from centrally controlled
networks, and we will investigate the exact performance loss
in our system. In addition to different MAC schemes, the
linear multiuser detector at the receiver can be the single-
user matched filter, the decorrelating detector, or the linear
MMSE detector. As we will see, both the MAC scheme and
receiver structure employed have significant impact on the
system performance. For a given MAC scheme with a given
linear detector, we optimize the transmit power, as well as
the transmission group size (for round-robin) or the trans-
mission probability (for slotted-ALOHA). We study two op-
timization problems: one is tomaximize the throughput, and
the other is to minimize the energy consumption subject to
a throughput constraint.

We then modify our assumption of pure Rayleigh fad-
ing by admitting shadow fading into our systemmodel. Mul-
tiuser diversity can be realized in such a system by allow-
ing the sensor group with the best shadowing coefficient to
transmit during each slot, and is shown to have great sig-
nificance in energy conservation for sensor networks. Fair-
ness concerns of multiuser scheduling can be remedied by
enabling the movement of the receiver to induce a dynamic
shadowing environment, or other known algorithms with lit-
tle throughput sacrifice (see Section 6).

Most related papers on the performance and optimal re-
source allocation of multiple access networks are based on
the collision model. The optimization of transmission prob-
ability for slotted-ALOHA scheme with or without uplink
CSI are studied in [17, 18, 19]. Relatively few works in this
direction adopted the multipacket reception model [16, 20].
The design of transmission probability of slotted-ALOHA
scheme by exploiting uplink CSI in a distributed fashion
is studied in [16]. In [20], the authors analyze slotted-
ALOHA sensor networks withmultiple mobile agents, whose
covering areas can be optimally designed to maximize the
throughput or to maximize the energy efficiency. The per-
formance analysis of sensor networks using both CDMA and
multiple receive antennas is presented in [21] based on the
results on large random networks in [14]. The analysis in
this paper does not rely on the large network approxima-
tion. Meanwhile, most studies on multiuser scheduling for
uplink or downlink wireless networks have focused on maxi-
mizing the information-theoretic capacity [22, 23, 24, 25]. In
[26], the authors present a scheduling algorithm which max-
imizes a certain performance value estimated by the user or
calculated by the base station, such as a linear function of the
SINR. On the other hand, we study multiuser scheduling by
assuming theMPRmodel due to suboptimal receivers, where
the main performance measure is the throughput in terms of
the average number of successful packets per slot.

The main contribution of this paper is as follows.

(1) We derive the throughput and the effective energy (av-
erage energy consumption for each successful packet)
for multiple access network employing round-robin
and slotted-ALOHA in Rayleigh flat-fading.

(2) We optimize the transmission power and the average
number of transmissions per slot to
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(a) maximize the throughput: for each MAC scheme
with a linear detector, we derive the maximum
asymptotic throughput when the signal-to-noise
ratio goes to infinity,

(b) minimize the effective energy subject to a through-
put constraint: it is shown that the minimum ef-
fective energy grows rapidly as the throughput
constraint approaches the maximum asymptotic
throughput.

(3) By comparing the optimal performance of different
MAC schemes equipped with different detectors, we
draw important tradeoffs involved in the sensor net-
work design.

(4) We show that multiuser scheduling can significantly
enhance the system performance in a shadow fading
environment.

The organization of the paper is as follows. In Section 2,
we introduce the system model, some assumptions of our
work, and the general measures of the throughput and the
energy efficiency. In Section 3, we briefly describe the three
linear detectors of interest and derive the analytical re-
sults to be used later. In Section 4, we first derive the en-
ergy efficiency and the throughput of the round-robin and
slotted-ALOHA scheme, and then study the two optimiza-
tion problems, throughput maximization and throughput-
constrained energy minimization, respectively. Numerical
results and discussions are presented in Section 5. Section 6
studies multiuser scheduling in the shadow fading environ-
ment. Section 7 contains the concluding remarks.

2. SYSTEMDESCRIPTION

We assume that there are totally n sensors in the sensor field,
the receiver is equipped withN antennas, and the SIR thresh-
old is β. The diameter of the sensor field is much smaller than
the distance between the sensor field and the receiver, and
there exists a rich-scattering environment between the sensor
field and the receiver—for example, the sensors are deployed
in a building or a forest. Therefore the channel states between
each sensor and each receive antenna can be modeled as in-
dependent, identically distributed Rayleigh variables. We as-
sume that sensors have no knowledge of uplink channel state
information (CSI), and transmit with equal power P. If m
sensors simultaneously transmit, them sensors andN receive
antennas form a virtual MIMO system, and the discrete-time
model is given by

y =
√
G

m∑
i=1

hixi + n, (1)

where xi is the transmitted signal of the ith sensor and
E[‖xi‖2] = P, hi is the N × 1 spatial signature of the ith
sensor, whose entries are independent circularly-symmetric
complex Gaussian variables with zero mean and unit vari-
ance, G is the common pathloss, n is the noise vector with
zero mean circularly-symmetric complex Gaussian entries
and covariance matrix σ2I, and y is the received signal vector.

The average received SNR of a packet at one receive antenna
is given by ρ = PG/σ2. In the following we denote the matrix
H = [h1,h2, . . . ,hm].

We assume that a feedback channel exists from the re-
ceiver to the sensor nodes, which is used for synchronization,
acknowledgements, group selection, and other signaling on
the MAC layer. The bandwidth of the feedback channel is
typically small and thus the energy consumption for receiv-
ing the signaling is assumed to be negligible throughout the
paper. For simplicity, we also ignore the circuit energy con-
sumption, which can be incorporated and the optimizations
described in this paper can be performed with minor modifi-
cations. Some measures of sensor network’s energy efficiency
have been explored in the literature: in [5], the energy con-
sumption per bit to achieve a desired bit error rate is evalu-
ated, and in [20], the metric efficiency, defined as the average
number of successes over the total number of transmissions,
is studied for SENMA networks. The former metric does not
assume a multipacket reception model, and the latter does
not characterize the exact energy expenditure, as a transmis-
sion scheme with high efficiency is not necessarily energy ef-
ficient if the transmit power is not constrained. We combine
the ideas in these two papers and measure the energy effi-
ciency by the effective energy [21], defined as the average en-
ergy consumption per successfully transmitted packet:

Ee = PT

Pr[succ]
, (2)

where Pr[succ] is the average probability of success for a
transmitted packet. Note that the effective energy directly
determines the number of packets a sensor can successfully
transmit during its lifetime. The throughput, denoted by λ,
is defined as the average number of successful transmissions
per slot. Denote a as the average number of transmissions per
slot, then we have

Pr[succ] = λ

a
. (3)

Throughout the paper we assume that the number of
receive antennas N , the total number of sensors n, the SIR
threshold β, the common pathlossG, as well as the noise vari-
ance σ2 are fixed. When G and σ2 are fixed, the optimization
of the transmission power P is the same as the optimization
of ρ.

3. LINEARMULTIUSER DETECTORS IN
RAYLEIGH FADING CHANNELS

Assume thatm sensors simultaneously transmit and the SNR
is ρ, then the outcome of the ith transmitted packet (success
is denoted by 1 and failure is denoted by 0) is a random vari-
able determined by the channel realization:

oi(H) = I
(
SIRi ≥ β | m, ρ,H

)
, (4)

where I(·) denotes the indicator function. The expected
value of the outcome averaged over all channel realizations
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is denoted by q(m, ρ), which is the same for all i:

q(m, ρ) = EH
[
oi(H)

] = Pr
[
SIRi ≥ β | m, ρ

]
. (5)

In an ergodic channel, the average number of successes when
there arem transmissions per slot and SNR is ρ is given by

EH

[ m∑
i=1

oi(H)

]
=

m∑
i=1

EH
[
oi(H)

] = mq(m, ρ). (6)

As we will see, the throughput and the effective energy for
round-robin and slotted-ALOHA are functions of q(m, ρ),
which is determined by the physical channel and the lin-
ear detector used. In general q(m, ρ) decreases with m and
increases with ρ. In this section, we briefly describe the
three linear detectors of interest, and derive the expression of
q(m, ρ) in Rayleigh fading channels for each detector. More-
over, as we will use the asymptotic value of q(m, ρ) as ρ →∞
frequently in later analysis, we also derive the expression of
q(m,∞)

.= limρ→∞ q(m, ρ). The readers are referred to [11]
for more details of these multiuser detectors.

3.1. Matched filter

The matched filter only requires the knowledge of the spatial
signature of the desired user, which is suitable for the down-
link but not much of an advantage for the uplink where the
knowledge of spatial signatures of all users are known. The
SIR of the ith user after matched-filtering is given by

SIRi = PG
∥∥hi∥∥4

σ2
∥∥hi∥∥2 + PG

∑m
j=1, j �=i

∥∥h†i h j

∥∥2 , (7)

where † denotes conjugate transpose.

Lemma 1. The q(m, ρ) of the matched filter in the Rayleigh
fading channel is given by

qmf(m, ρ)

=




1− Γ
(
β

ρ
,N
)
, m = 1,

1
(m− 2)!

×
∫∞
0

[
1− Γ

(
βy +

β

ρ
,N
)]

ym−2e−ydy, m > 1,

(8)

where Γ(a, x) is the regularized gamma function given by
Γ(a, x) = ∫ x0 ta−1e−tdt/ ∫∞0 ta−1e−tdt.

In the case ρ →∞,

qmf(m,∞) =


1, m = 1,

1− I
(

β

1 + β
;N ,m− 1

)
, m > 1,

(9)

where I(x; a, b) is the regularized beta function, given by
I(x; a, b) = ∫ x0 ta−1(1− t)b−1dt/

∫ 1
0 t

a−1(1− t)b−1dt.

Proof. See Appendix A.

3.2. Decorrelating detector

The decorrelating detector is optimal according to three
different criteria: least squares, near-far resistance, and
maximum-likelihood when the received amplitudes are un-
known [11]. When the spatial signatures are independent,
the decorrelator exhibits improved performance than the
matched filter except at low signal-to-noise ratios, and it con-
verges to the linear MMSE detector at high signal-to-noise
ratios. Generally, the decorrelator allows simpler expressions
as it decomposes amultiuser channel into parallel single-user
Gaussian channels. If H†H is invertible, the SIR of the ith
user using a decorrelating detector is given by

SIRi = ρ[(
H†H

)−1]
ii

, (10)

and whenH†H is singular, SIRi is zero.

Lemma 2. The q(m, ρ) of the decorrelator in the Rayleigh fad-
ing channel is given by (cf. (8) for the definition of the Γ(a, x)
function)

qdec(m, ρ) =


1− Γ

(
β

ρ
,N −m + 1

)
, m ≤ N ,

0, m > N.
(11)

When ρ →∞,

qdec(m,∞) =

1, m ≤ N ,

0, m > N.
(12)

Proof. See Appendix B.

3.3. LinearMMSE detector

The linear MMSE detector cancels the interference and noise
in an optimal way, such that the mean squared error is min-
imized among linear detectors. It can be shown that the lin-
ear MMSE detector also maximizes the SIR [11], hence it is
optimal among linear detectors under the multiple packet re-
ceptionmodel where the success probability only depends on
the SIR. For the linear MMSE receiver, it can be shown that
the SIR of the ith user is given by

SIRi = h†i

(
HiH

†
i +

1
ρ
I
)−1

hi, (13)

where Hi denotes the matrix obtained by striking out the
ith column of H. There is no straightforward closed-form
expression of q(m, ρ) for the linear MMSE detector in the
Rayleigh fading channel. An approximation of qmmse(m, ρ)
can be obtained by using recent results on linear multiuser
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detectors in large random networks [27], where the SIR is
shown to approach a Gaussian distribution as N approaches
infinity, with α = m/N fixed. However, simulations show that
such approximations are not accurate enoughwhenN is rela-
tively small, so in this paper we use exact success probabilities
obtained through simulations for the linear MMSE detector.
Nevertheless, when ρ →∞, the success probability of the lin-
ear MMSE detector has a simple form, given by the following
lemma.

Lemma 3. For Rayleigh fading channels (cf. (9) for the defini-
tion of the I(x; a, b) function),

qmmse(m,∞) =



1, m ≤ N ,

1− I
(

β

1 + β
;N ,m−N

)
, m > N.

(14)

Proof. See Appendix C.

4. THROUGHPUT AND ENERGY OPTIMIZATIONS

In this section, we first derive the general expressions of the
throughput and the effective energy for the round-robin and
slotted-ALOHA schemes, and then study the two optimiza-
tion problems, throughput maximization and throughput-
constrained energy minimization for both MAC schemes.

4.1. Throughput and effective energy of
round-robin and slotted-ALOHA

4.1.1. Round-robin

Round-robin is a fair scheduling scheme and is relatively easy
to implement:m sensors in close proximity form a group. For
simplicity we assume that n is a multiple ofm, so there are to-
tally K = n/m groups. Groups are scheduled for access one
by one, and when a group is scheduled in a slot, all the sen-
sors in that group transmit simultaneously. It is easily seen
that in an ergodic fading channel (shown at the beginning of
Section 3), the throughput of round-robin is

λrr(m, ρ) = mq(m, ρ). (15)

With P = ρσ2/G, the effective energy of round-robin is given
by

Ee,rr(m, ρ) = ρσ2T/G

q(m, ρ)
. (16)

4.1.2. Slotted-ALOHA

To employ the decorrelating detector or the linear MMSE
detector in a slotted-ALOHA system requires that the re-
ceiver knows the number and the channels of the transmit-
ting nodes. For example, the sensors can signal their inten-
tion of transmission in a short reservation period at the be-
ginning of each slot. We consider the type of slotted-ALOHA

where the transmission probability for all packets (new or re-
transmissions) is the same. Denoting the transmission prob-
ability of each user by p, the throughput of slotted-ALOHA
is given by

λsa =
n∑

k=1

(
n

k

)
pk(1− p)n−kkq(k, ρ). (17)

The average number of transmissions per slot is a = np. In
the case n is large and p is small, we can approximate the
binomial probabilities with Poisson probabilities and obtain

λsa(a, ρ) = e−a
n∑

k=1

ak

k!
kq(k, ρ) = e−a

n∑
k=1

ak

(k − 1)!
q(k, ρ).

(18)

The average success probability is Pr[succ] = λsa(a, ρ)/a, thus
the effective energy is given by

Ee,sa(a, ρ) = ρσ2T/G

λsa(a, ρ)/a
. (19)

The receiver can simply inform the sensors of the trans-
mission probability, or the sensors can compute the opti-
mum transmission probability if they have the knowledge of
n. Slotted-ALOHA also has built-in fairness, since the trans-
mission probability is independent of the channel states of
individual sensors.

4.2. Throughputmaximization

Aswe have shown, the throughput depends on both theMAC
scheme as well as the type of the linear detector used. For a
given MAC scheme with a given linear detector, the through-
put is a function of the SNR ρ and the average number of
transmissions per slot a (for round-robin, a = m, and for
slotted-ALOHA, a = np). These parameters can be cho-
sen judiciously such that the throughput is maximized. The
performance of various MAC schemes with different linear
detectors can then be compared, in terms of the maximum
throughput. In the following we focus on the joint optimiza-
tion of a and ρ; the optimization of a single parameter is
straightforward and is therefore omitted.

First assume that a is fixed. Since Pr[succ] increases with
ρ, the maximum throughput for any fixed a is achieved when
ρ → ∞. Therefore the maximum throughput jointly op-
timized over a and ρ is obtained by letting ρ → ∞, and
searching for the optimal a that achieves the global maxi-
mum. In practical systems, the sensors’ power amplifier has
a maximum output limit [5], which in turn poses an upper
limit on ρ, denoted by ρmax. Then the maximum through-
put is achieved at ρmax, and the problem again reduces to
a single-parameter optimization problem. Nevertheless, the
maximum throughput with no power constraint (ρ → ∞)
is of special interest as it represents the upper bound on the
throughput that can be achieved by a MAC scheme with a
given type of linear detector. In the following we discuss this
case in detail.
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For a given MAC scheme with a given linear detector,
we define the maximum asymptotic throughput as the max-
imum throughput achievable with a given number of re-
ceive antennas as SNR ρ approaches infinity, and denote it by
Λ(∞)

.= maxa λ(a,∞). The maximum asymptotic through-
put plays an important role in throughput-constrained en-
ergy minimization to be discussed in Section 4.3, in the sense
that any throughput constraint larger than Λ(∞) cannot be
attained. With a general linear detector, we have the follow-
ing proposition.

Proposition 1. The maximum asymptotic throughput of
round-robin and slotted-ALOHA are, respectively, given by

Λrr(∞) = max
m

mq(m,∞);

Λsa(∞) = max
a

e−a
n∑

k=1

ak

(k − 1)!
q(k,∞).

(20)

The above expressions can be evaluated for different detectors
using (9), (12), and (14).

Remark 1. With the decorrelating detector, the maximum
asymptotic throughput of the twoMAC schemes are, respec-
tively, given by

Λdec
rr (∞) = N withm = N ;

Λdec
sa (∞) = max

a
e−a

N∑
k=1

ak

(k − 1)!
.

(21)

The above are direct consequences of applying (12).
Note that with the decorrelator, the maximum asymptotic
throughput of slotted-ALOHA can be much smaller than
that of round-robin. For example, when N = 10, the max-
imum asymptotic throughput of slotted-ALOHA with the
decorrelator is 5.831, which is achieved at a = 7.297.

Remark 2. While no straightforward closed-form expres-
sions for maximum asymptotic throughput are available for
the matched filter and the linear MMSE detector, some qual-
itative results are possible. For round-robin, comparing (9),
(12), and (14) reveals

(1) Λmmse
rr (∞) ≥ Λmf

rr (∞), with the equality held when
N = 1,

(2) Λmmse
rr (∞) ≥ Λdec

rr (∞); the equality holds if and only if
the throughput of the linear MMSE withm = N + 1 is
smaller than withm = N , that is,

(N + 1)
[
1− I

(
β

1 + β
;N , 1

)]
≤ N , (22)

which yields

β ≥ 1
(N + 1)1/N − 1

. (23)

In other words, the linear MMSE detector can sup-
port a throughput larger than the number of receive
antennas N (and surpass the decorrelator) if and only
if β < 1/((N +1)1/N − 1). Note that the right-hand side
of the above inequality is a strictly increasing function
of N , going from 1 to +∞.

(3) The relative performance of the decorrelator and the
matched filter depends on β. It can be shown that
when β ≥ 1, Λdec

rr (∞) ≥ Λmf
rr (∞).

Remark 3. As for slotted-ALOHA, since we have qmmse(m,
∞) ≥ max{qmf (m,∞), qdec(m,∞)} for all m, the maximum
asymptotic throughput with the linear MMSE is always the
best, while it is not immediate whether the matched filter or
the decorrelator is the worst.

4.3. Throughput-constrained energyminimization

In this section we study the optimization to achieve the great-
est energy efficiency, that is, to minimize the effective energy.
In particular, we study the minimization of the effective en-
ergy subject to a throughput constraint λ ≥ ∆. There are two
reasons for doing this. First, it is only fair to compare the en-
ergy efficiency of different MAC schemes if they achieve the
same throughput. Second and more importantly, in a practi-
cal sensor network, there is usually a minimum throughput
constraint, which may arise from a QoS demand from the
end user, or from a mild delay constraint to ensure the stabil-
ity of the network. As discussed in Section 4.2, the maximum
asymptotic throughput is the upper limit on the through-
put supportable by each MAC scheme with a given linear de-
tector, so the given throughput constraint must not exceed
this limit, otherwise it cannot be met. Comparing (16) and
(19), we observe that σ2T/G is a common factor and is fixed.
Therefore to minimize Ee it suffices to find

min
a,ρ

aρ

λ(a, ρ)
(24)

subject to

λ(a, ρ) ≥ ∆. (25)

In the following we briefly describe both single-parameter
optimization as well as joint optimization.

4.3.1. Fixed ρ

For a fixed ρ, the throughput constraint ∆ can be met if and
only if Λ(ρ)

.= maxa λ(a, ρ), the maximum throughput given
ρ, satisfies Λ(ρ) ≥ ∆. When ρ is fixed, for each MAC scheme,
the values of a that satisfy λ(a, ρ) ≥ ∆ form a closed inter-
val (of reals or integers). Since Pr[succ] decreases with a, the
effective energy is minimized by the minimum a with which
the throughput constraint is satisfied, that is,

aopt(ρ) = min
{
a | λ(a, ρ) ≥ ∆

}
. (26)
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Figure 1: Maximum asymptotic throughput of round-robin with
different linear detectors.

4.3.2. Fixed a

When a is fixed, the throughput constraint ∆ can be met if
and only if λ(a,∞)

.= limρ→∞ λ(a, ρ), the maximum through-
put given a, satisfies λ(a,∞) ≥ ∆. Since the throughput is a
monotone increasing function of ρ, we can find the smallest
ρ that meets the throughput constraint, which is denoted by
ρmin(a) = min{ρ | λ(a, ρ) ≥ ∆}. Thus the minimum effective
energy for fixed a is given by

Ee,min(a) = min
ρ≥ρmin(a)

aρ

λ(a, ρ)
. (27)

4.3.3. Joint optimization

If we can jointly optimize a and ρ and there is no power con-
straint, the throughput constraint ∆ can be met as long as the
maximum asymptotic throughput Λ(∞) ≥ ∆. The joint op-
timization can proceed in two steps: first, find the minimum
effective energy when a is fixed, as described above; then find
the global minimum across all a. This is characterized by the
following proposition.

Proposition 2. For a given throughput constraint ∆, if ∆ ≤
Λ(∞), the minimum effective energy jointly optimized over a
and ρ is given by

Ee,min = min
a

Ee,min(a) = min
a

min
ρ≥ρmin(a)

aρ

λ(a, ρ)
, (28)

while if ∆ > Λ(∞), the throughput constraint cannot be met.

5. NUMERICAL RESULTS ANDDISCUSSIONS

In this section we present the numerical results and
draw someobservations on the comparative performance of
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Figure 2: Maximum asymptotic throughput of round-robin and
slotted-ALOHA with different linear detectors, β = 1.

different MAC schemes, as well as on the comparative per-
formance of different linear detectors.

5.1. Maximum throughput

Example 1 (comparison of detectors; joint optimization). In
Figure 1 we plot the maximum asymptotic throughput (re-
sult of joint optimization) of round-robin with three linear
detectors when β = 1 and β = 3. Note that the two curves
for the decorrelator coincide. When β = 1, the maximum
asymptotic throughput of the linear MMSE detector exceeds
that of the decorrelator (which is N) for all values of N ex-
cept N = 1, since 1/((N + 1)1/N − 1) > 1 for all N > 1.
When β = 3, the maximum asymptotic throughput of the
linear MMSE detector exceeds that of the decorrelator when
N ≥ 8, with which 1/((N + 1)1/N − 1) > 3. As β gets larger,
it requires a larger N for the linear MMSE detector to sur-
pass the decorrelator in terms of the maximum asymptotic
throughput.

Example 2 (comparison of MAC schemes and detectors;
joint optimization). Figure 2 shows the maximum asymp-
totic throughput of round-robin and slotted-ALOHA with
three linear detectors when β = 1. Note that the relative
performance loss of slotted-ALOHA with respect to round-
robin is much larger with the decorrelator than with the
matched filter and the linear MMSE detector. When N is
small, the matched filter outperforms the decorrelator for
slotted-ALOHA, and when N is large, the opposite is true.
For both MAC schemes the linear MMSE detector assumes
great superiority, and can achieve a maximum asymptotic
throughput greater than N with the linear MMSE detector
when β = 1.
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Figure 3: Minimum effective energy with throughput constraint
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5, N = 10, β = 1, σ2T/G = 1.

5.2. Minimum effective energywith
throughput constraint

In the following we present the results of throughput-
constrained energy minimization described in Section 4.3.
We show the results of optimization with fixed a and joint
optimization. For all simulations in this section we use the
following values: N = 10, β = 1, and σ2T/G = 1 (scaling
factor of Ee).

Example 3 (comparison of MAC schemes; fixed a). Assume
that the decorrelator is used, Figure 3 plots the minimum ef-
fective energy of three MAC schemes with the throughput
constraint ∆ = 5 when a is fixed. Note that the through-
put constraint implies that m ≥ 5 for round-robin, and
5.21 ≤ a ≤ 9.43 for slotted-ALOHA. We observe that except
for m = 5 (where the minimum effective energy of round-
robin goes to infinity and is not shown in the figure), round-
robin is muchmore energy-efficient than slotted-ALOHA for
the same value of a.

Example 4 (comparison of MAC schemes; joint optimiza-
tion). Assume that the decorrelator is used, when ∆ =
5, Figure 3 reveals that the minimum effective energy is
achieved at m = 6 for round-robin, and at about a = 6.2 for
slotted-ALOHA. The minimum effective energy correspond-
ing to different throughput constraints obtained through
jointly optimizing a and ρ is shown in Figure 4, and the cor-
responding optimal a is shown in Figure 5. Note that the
largest throughput achievable by round-robin is Λ(∞) =
N = 10, and that of slotted-ALOHA is 5.831. The minimum
effective energy curve for round-robin is not smooth at val-
ues of m where a jump in the optimal group size m occurs.
For slotted-ALOHA, the optimal a is a smooth function of
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Figure 4: Minimum effective energy with throughput constraint
for different MAC schemes with the decorrelator (joint optimiza-
tion), N = 10, β = 1, σ2T/G = 1.

∆, and so is the minimum effective energy. It can be seen
from Figure 4 that the minimum effective energy increases
rapidly as ∆ approaches the maximum asymptotic through-
put for eachMAC scheme: the minimum effective energy ap-
proaches infinity for slotted-ALOHA and round-robin, re-
spectively, as ∆ → 5.831 and as ∆ → 10. When ∆ is relatively
small (e.g., ∆ ≤ 3), slotted-ALOHA does not incur much
extra energy expenditure than round-robin. As ∆ increases,
the energy saving by round-robin relative to slotted-ALOHA
becomes increasingly larger, and round-robin can support a
throughput that cannot be achieved by slotted-ALOHA.

Example 5 (comparison of linear detectors; joint optimiza-
tion). The throughput-constrained minimum effective en-
ergy for round-robin with various linear detectors is shown
in Figure 6. When N = 10, the maximum asymptotic
throughput of round-robin with the matched filter, the
decorrelator, and the linear MMSE detector are about 6.4,
10, and 13.8, respectively, (cf. Figure 1). Again, it can be seen
that the minimum effective energy approaches infinity as the
throughput constraint approaches the maximum asymptotic
throughput. When ∆ is small, we can use any one of the three
detectors, but with different energy expenditures. As ∆ gets
larger, we are left with fewer choices of the detector that can
be used. The linear MMSE detector is certainly favorable in
all scenarios.

6. MULTIUSER SCHEDULING UNDER
SHADOW FADING

With the assumption of independent fading across the space,
multiuser diversity can be explored in a multiuser envi-
ronment to achieve a scheduling gain for delay-tolerant
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applications. It has been shown that in a single-antenna sys-
tem, the information capacity is maximized by the so-called
“opportunistic transmission,” that is, allowing only the user
with the best channel to transmit in every slot [28]. Mul-
tiuser scheduling for systems with spatial diversity has been
studied in [22, 23, 24, 25], and all these works aim to max-
imize the information capacity. Consider a similar setup as
round-robin, that is, sensors form groups of sizem, the opti-
mal scheduler under the multipacket reception model should
maximize the throughput in terms of the number of success-
fully received packets in each slot. That is, in each slot, the
optimal scheduler selects the group with the highest number
of sensors that meet the SIR threshold. Although such an op-
timal scheduler is theoretically appealing, its realization re-
quires the receiver’s knowledge of the spatial signatures of all
sensors at the beginning of each slot, which is infeasible when
the number of sensors is large.

Another verified problem with multiuser scheduling for
a system described in Section 2 is that, under pure Rayleigh
fading, multiuser scheduling has a vanishing relative schedul-
ing gain as m and N increases (indicating a tradeoff be-
tweenmultiple antennas andmultiuser diversity) [25].While
shadow fading generally increases the dynamism of individ-
ual link quantity, which leads to larger outage probability and
is unfavorable to real-time applications, it can actually en-
hance the scheduling gain in a multiuser environment for
delay-tolerant applications [25]. By slightly modifying our
system model, we can investigate the multiuser scheduling
gain that is realizable under the shadow fading.

We assume that the sensors in each group are adjacent to
each other such that they experience the same shadow fad-
ing while sensors in different groups experience independent
identically distributed shadow fading. In each slot, the sched-
uler selects the group with the highest shadowing coefficient.
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Figure 6: Minimum effective energy with throughput constraint
for round-robin with different linear detectors (joint optimization),
N = 10, β = 1, σ2T/G = 1.

Although this scheduler is not optimal in terms of through-
put, it only requires about 1/Nm amount of channel knowl-
edge compared to the optimal scheduler. Ideally, the receiver
is a mobile agent which moves at the end of each slot to in-
duce a dynamic environment such that all groups have simi-
lar chances to enjoy the best channel in the long run. Fairness
can be further guaranteed by employing other methods, such
as those in [29, 30].

Denote the channel gain of the kth (k = 1, . . . ,K) group
byGk, then for the kth group the systemmodel in (1) is mod-
ified as

y =
√
Gk

m∑
i=1

hixi + n. (29)

Gk is modeled as log-normal-distributed, which has area
mean E[Gk] = G = GL(dB), and decibel spread σL(dB).
The average SNR is given by ρ = PG/σ2. Denote Gk = ezk ,
then zk ∼ N (κGL, (κσL)2) is a Gaussian variable, where
κ = ln 10/10.

Lemma 4 (see [31]). If Z1, . . . ,ZK are i.i.d. Gaussian with
mean µ and variance σ2, as K →∞,

max
1≤k≤K

Zk −→ µ + σ
√
2 lnK. (30)

Applying the lemma to zk as defined above, we have
max zk → κGL + κσL

√
2 lnK(dB), or maxGk → G · eκσL

√
2 lnK .

Denote the individual SNR ρk = PGk/σ2, we then have
max ρk → PG/σ2 · eκσL

√
2 lnK .= ξρ, where ξ = eκσL

√
2 lnK

roughly characterizes the scheduling gain in terms of the im-
provement of SNR. The throughput and the effective energy
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of the scheduling algorithm respectively converge to

λsch(m, ρ) = mq(m, ξρ), (31)

Ee,sch(m, ρ) = ρσ2T/G

q(m, ξρ)
. (32)

In comparison, the throughput and effective energy of the
same system via using the round-robin approach are given
by

λrr(m, ρ) = Eρk
[
mq(m, ρk)

]

= m
∫ +∞

−∞
q
(
m, ez

) e−(ln z−ln ρ)2/2(κσL)2
z
√
2πκσL

dz

.= mq(m, ρ),

Ee,rr(m, ρ) = ρσ2T/G

q(m, ρ)
.

(33)

The throughput of multiuser scheduling and round-
robin in shadow fading, both with the decorrelator, are de-
picted in Figure 7, where N = 10,n = 1000, σL = 8 dB,
β = 1, and two SNR values,−10 dB and 0 dB, are shown. The
throughputs of round-robin without shadowing (i.e., pure
Rayleigh fading) are also plotted for comparison. We observe
that even for round-robin, shadowing is beneficial when the
SNR is low, while the opposite is true when SNR is high:

shadowing degrades the throughput. This can be readily ex-
plained by Jensen’s inequality by observing the property of
the q(m, ρ) function: for all three detectors, it can be shown
that the q(m, ρ) function is convex in the low-SNR range and
is concave in the high-SNR range, and approaches q(m,∞) as
ρ → ∞ (see (9), (12), and (14)). Meanwhile, the throughput
of multiuser scheduling is almost invariant of the SNR, and
is roughly equal to the number of transmissions. This means
that despite the average SNR, the group of the best channel
has an effective SNR with which the success probability is 1.
This demonstrates that multiuser scheduling is most useful
when the SNR is low, which is of particular significance for
sensor networks.

It is not difficult to show from (31) that the multiuser
scheduling algorithm has the same maximum asymptotic
throughput as round-robin. However, the fact that q(m, ξρ)
can be made virtually 1 for a modest ρ when the number of
sensors is large implies that there is no loss in the energy con-
sumption, and that the minimum effective energy remains
low for all throughput constraints ∆ < Λ(∞).

7. CONCLUSIONS

In this paper we have presented a detailed investigation of
two important aspects in the sensor network design, the
throughput and the energy efficiency, which are typically two
inconsistent measures. We have considered the uplink reach-
back problem with simultaneous transmissions and multiple
receive antennas. Simultaneous transmissions are favored for
dramatically increased throughput and supported by the ad-
vanced signal processing exploited in the physical layer. We
consider both coordinated and random medium access con-
trol schemes represented, respectively, by round-robin and
slotted-ALOHA. We measure the energy efficiency with the
effective energy, defined as the average energy consumption
for each successfully transmitted packet. We optimize the av-
erage number of transmissions per slot a and the transmis-
sion power per sensor node, to meet two objectives: through-
put maximization, and throughput-constrained effective en-
ergy minimization. There are interesting connections be-
tween these two optimization problems. In particular, the
maximum asymptotic throughput as the SNR goes to infin-
ity defines the upper limit on the throughput constraint that
can be achieved.

Under the assumption of Rayleigh flat-fading channel,
we show that slotted-ALOHA suffers from the greatest per-
formance loss when paired with the decorrelator. While
slotted-ALOHA has similar minimum effective energy as
round-robin for small throughput constraints, it soon turns
energy-inefficient as the throughput constraint increases. For
both MAC schemes, the linear MMSE detector significantly
outperforms the decorrelator and the matched filter in both
the throughput and the energy efficiency. Finally we consider
the shadowing effect on the system performance and show
that multiuser scheduling greatly boosts the throughput in
low-SNR region and hence is of particular significance for
sensor network applications.
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APPENDICES

A. PROOF OF LEMMA 1

For the matched filter, whenm = 1,

SIRi = ρ
∥∥hi∥∥2, (A.1)

where ‖hi‖2 ∼ χ22N . Thus

Pr
[
SIRi ≥ β

] = Pr
[∥∥hi∥∥2 ≥ β

ρ

]
= 1− Γ

(
β

ρ
,N
)
, (A.2)

where Γ(a, x) is the regularized gamma function given by
Γ(a, x) = ∫ x

0 t
a−1e−tdt/

∫∞
0 ta−1e−tdt. When m > 1, we can

write the SIR in (7) as

SIRi =
∥∥hi∥∥2

1/ρ + h†i
(
HiH

†
i

)
hi/
∥∥hi∥∥2 , (A.3)

whereHi denotes the matrix obtained by deleting the ith col-
umn of H. HiH

†
i has a complex central Wishart distribution

with m − 1 degrees of freedom and covariance matrix Im−1,
denoted as HiH

†
i ∈ CWN (m − 1, Im−1). Since hi and Hi are

independent, according to [32, Theorem 3.2.8] we have

Y
.= h†i

(
HiH

†
i

)
hi∥∥hi∥∥2 ∼ χ22(m−1), (A.4)

and Y is independent of hi. Denote X
.= ‖hi‖2 ∼ χ22N . There-

fore, the probability of success is

Pr
[
SIRi ≥ β

]

= Pr
[
X ≥ β

(
Y +

1
ρ

)]

= 1
(m− 2)!

∫∞
0

[
1− Γ

(
βy +

β

ρ
,N
)]

ym−2e−ydy.

(A.5)

In summary,

qmf(m, ρ)

=




1− Γ
(

β
ρ ,N

)
, m = 1,

1
(m− 2)!

×
∫∞
0

[
1− Γ

(
βy +

β

ρ
,N
)]

ym−2e−ydy, m > 1.

(A.6)

As ρ →∞, whenm > 1, we have

SIRi = X

Y
= N

m− 1
X/2N

Y/2(m− 1)
.= N

m− 1
F, (A.7)

where F = (X/2N)/(Y/2(m − 1)) has an F2N ,2(m−1) distribu-
tion. Therefore,

Pr
[
SIRi ≥ β

] = Pr
[
F ≥ β

m− 1
N

]

= 1− I
(

β

1 + β
;N ,m− 1

)
,

(A.8)

where I(x; a, b) is the regularized beta function given by
I(x; a, b) = ∫ x0 ta−1(1− t)b−1dt/

∫ 1
0 t

a−1(1− t)b−1dt. It is obvi-
ous that when ρ → ∞, Pr[SIRi ≥ β] = 1 for m = 1, thus we
have

qmf (m,∞) =



1, m = 1,

1− I
(

β

1 + β
;N ,m− 1

)
, m > 1.

(A.9)

B. PROOF OF LEMMA 2

Denote them×mmatrix by Z
.= H†H, then Z has a complex

central Wishart distribution, that is, Z ∈ CWm(N , IN ). It is
known that whenm ≤ N , the determinant of Z is distributed
as
∏m

i=1 χ
2
2(N−i+1), and whenm > N , Z is singular [32]. There-

fore we have whenm ≤ N ,

zi
.= 1(

Z−1
)
ii

= det(Z)
det
(
Z[i]
) = det

(
Zsc
[i]

)
, (B.1)

where Z[i] denotes the matrix obtained by striking out the
ith row and the ith column of Z, and Zsc

[i] denotes the Schur-
complement of Z[i], which is also complex Wishart dis-
tributed, that is, Zsc

[i] ∈ CW1(N −m + 1, IN−m+1). Therefore,
zi = det(Zsc

[i]) ∼ χ22(N−m+1). We get for the decorrelating de-
tector, whenm ≤ N ,

Pr
[
SIRi ≥ β

] = Pr
[
zi ≥ β

ρ

]
= 1− Γ

(
β

ρ
,N −m + 1

)
,

(B.2)

while when m > N , since SIRi = 0, Pr[SIRi ≥ β] = 0. In
summary,

qdec(m, ρ) =


1− Γ

(
β

ρ
,N −m + 1

)
, m ≤ N ,

0, m > N.
(B.3)

C. PROOF OF LEMMA 3

For the linear MMSE detector, when m < N , consider the
limiting SIR as ρ →∞:

lim
ρ→∞ SIRi = lim

ρ→∞h
†
i

(
HiH

†
i +

1
ρ
I
)−1

hi

= lim
ρ→∞ ρh

†
i

(
ρHiH

†
i + I

)−1
hi.

(C.1)
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Denote the spectral decomposition of matrix HiH
†
i =

UDU†, where D is the matrix containing the eigenvalues of
HiH

†
i in decreasing order, and U is the unitary matrix con-

taining the eigenvectors of HiH
†
i . Putting in the above and

evaluating the limit, we get

lim
ρ→∞ SIRi = ρh†i UQU

†hi = ρv†i Qvi, (C.2)

where Q = diag(0, . . . , 0, 1, . . . , 1), and the number of 1’s
is the number of zero eigenvalues of HiH

†
i , which is N −

m + 1, and v = U†hi. Since hi is circularly-symmetric com-
plex Gaussian, v has the same distribution as hi. There-
fore, limρ→∞ SIRi = ρ

∑N−m+1
i=1 ‖vi‖2 ∼ ρχ22(N−m+1), which is

the same as the decorrelator. Thus q(m,∞) = limρ→∞ 1 −
Γ(β/ρ,N −m + 1) = 1.

Whenm > N ,HiH
†
i is invertible, so as ρ →∞,

SIRi −→ h†i
(
HiH

†
i

)−1
hi. (C.3)

Since hi and Hi are independent, and HiH
†
i ∈ CWN (m −

1, Im−1), using [32, Theorem 3.2.12] we obtain

Z
.=

∥∥hi∥∥2
h†i
(
HiH

†
i

)−1
hi
∼ χ22(m−N), (C.4)

and Z is independent of hi. Denoting X
.= ‖hi‖2, we get

h†i
(
HiH

†
i

)−1
hi = X

Z
= N

m−N

X/2N
Z/2(m−N)

.= N

m−N
F,

(C.5)

where F = (X/2N)/(Z/2(m−N)) has an F2N ,2(m−N) distribu-
tion. Therefore,

Pr
[
SIRi ≥ β

] = Pr
[
F ≥ β

m−N

N

]

= 1− I
(

β

1 + β
;N ,m−N

)
.

(C.6)

In summary,

qmmse(m,∞) =


1, m ≤ N ,

1− I
(

β

1 + β
;N ,m−N

)
, m > N.

(C.7)
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