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We propose a decentralized algorithm for organizing an ad hoc sensor network into clusters. Each sensor uses a random waiting
timer and local criteria to determine whether to form a new cluster or to join a current cluster. The algorithm operates without
a centralized controller, it operates asynchronously, and does not require that the location of the sensors be known a priori. Sim-
plified models are used to estimate the number of clusters formed, and the energy requirements of the algorithm are investigated.
The performance of the algorithm is described analytically and via simulation.
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1. INTRODUCTION

Unlike wireless cellular systems with a robust infrastructure,
sensors in an ad hoc network may be deployed without in-
frastructure, which requires them to be able to self-organize.
Such sensor networks are self-configuring distributed sys-
tems and, for reliability, should also operate without cen-
tralized control. In addition, because of hardware restrictions
such as limited power, direct transmission may not be estab-
lished across the complete network. In order to share infor-
mation between sensors which cannot communicate directly,
communication may occur via intermediaries in a multihop
fashion. Scalability and the need to conserve energy lead to
the idea of organizing the sensors hierarchically, which can
be accomplished by gathering collections of sensors into clus-
ters. Clustering sensors are advantageous because they

(i) conserve limited energy resources and improve energy
efficiency,

(ii) aggregate information from individual sensors and ab-
stract the characteristics of network topology,

(iii) provide scalability and robustness for the network.

This is an open access article distributed under the Creative Commons
Attribution License, which permits unrestricted use, distribution, and
reproduction in any medium, provided the original work is properly cited.

This paper proposes a decentralized algorithm for orga-
nizing an ad hoc sensor network into clusters. Each sensor
operates independently, monitoring communication among
others. Those sensors which have many neighbors that are
not already part of a cluster are likely candidates for creating
a new cluster by declaring themselves to be a new “cluster-
head.” The clustering algorithm via waiting timer (CAWT)
provides a protocol whereby this can be achieved and the
process continues until all sensors are part of a cluster. Be-
cause of the difficulty of the analysis, simplified models are
used to study and abstract its performance. A simple formula
for estimating the number of clusters that will be formed in
an ad hoc network is derived based on the analysis, and the
results are compared to the behavior of the algorithm in a
number of settings.

2. LITERATURE REVIEW

Several clustering algorithms have been proposed in recent
years [1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 12, 13, 14, 15, 16, 17, 22].
Many of the algorithms are heuristics intended to minimize
the number of clusters. Some of the algorithms organize the
sensors into clusters while minimizing the energy consump-
tion needed to aggregate information and communicate the
information to the base station. Perhaps the earliest of the
clustering methods is the identifier-based heuristic called the
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linked cluster algorithm (LCA) [5], which elects sensor to be
a clusterhead if the sensor has the highest identification num-
ber among all sensors within one hop of its neighbors. The
connectivity-based heuristic of [6, 8] selects the sensors with
the maximum number of 1-hop neighbors (i.e., highest de-
gree) to be clusterheads.

The weighted clustering algorithm (WCA) [9] considers
the number of neighbors, transmission power, mobility, and
battery usage in choosing clusters. It limits the number of
sensors in a cluster so that clusterheads can handle the load
without degradation in performance. These clustering meth-
ods rely on synchronous clocking for the exchange of in-
formation among sensors which typically limits these algo-
rithms to smaller networks [10].

The Max-Min D-cluster algorithm [1] generates D-hop
clusters with a complexity of O(D) without time synchro-
nization. It provides load balancing among clusterheads in
the network. Simulation results suggest that this heuristic is
superior to the LCA and connectivity-based solutions.

The low-energy adaptive clustering hierarchy (LEACH)
of [11] utilizes randomized rotation of clusterheads to bal-
ance the energy load among the sensors and uses localized
coordination to enable scalability and robustness for clus-
ter set-up and operation. LEACH-C (centralized) [12] uses a
centralized controller. The main drawbacks of this algorithm
are nonautomatic clusterhead selection and the requirement
that the position of all sensors must be known. LEACH’s
stochastic algorithm is extended in [13] with a deterministic
clusterhead selection. Simulation results demonstrate that an
increase of network lifetime can be achieved compared with
the original LEACH protocol. In [14], the clustering is driven
by minimizing the energy spent in wireless sensor networks.
The authors adopt the energy model in [11] and use the sub-
tractive clustering algorithm and fuzzy C-mean (FCM) algo-
rithm to form clusters. Although the above algorithms care-
fully consider the energy required for clustering, they are not
extensively analyzed (due to their complexity) and there is
no way of estimating how many clusters will form in a given
network.

The ad hoc network design algorithm (ANDA) [15]max-
imizes the network lifetime by determining the optimal clus-
ter size and the optimal assignment of sensors to clusterheads
but requires a priori knowledge of the number of cluster-
heads, number of sensors in the network, and the location
of all sensors.

The distributed algorithm in [3] groups sensors into a
hierarchy of clusters while minimizing the energy consump-
tion in communicating information to the base station. They
use the results provided in [18] to obtain optimal parameters
of the algorithm and analyze the number of clusterheads at
each level of clustering.

Most of these design approaches are deterministic pro-
tocols in which each sensor must maintain knowledge of the
complete network [12, 15] or identify a subset of sensors with
a clusterhead to partition the network into clusters in heuris-
tic ways [1, 2, 4, 5, 6, 7, 8, 9, 22]. The algorithms proposed in
[11, 12, 13, 14] focus on reducing the energy consumption
without exploring the number of clusters generated by the

protocols, though [1, 9] demonstrate the average number of
clusterheads via simulations. For most of the algorithms, no
analysis of the number of clusters is available.

The method of this paper is a randomized distributed al-
gorithm in which each sensor uses a random waiting timer
and local criteria to decide whether to be a clusterhead. The
algorithm operates without a centralized controller, it oper-
ates asynchronously and does not require that the location of
the sensors be known. Based on simplified models, an esti-
mate of the number of clusterheads and a simple prediction
formula are derived to approximate and describe the behav-
ior of the proposed algorithm. To examine the energy usage
of the algorithm, the result provided in [19] is used to in-
vestigate situations where the minimum transmission range
ensures that the network have a strong connectivity. The per-
formance of the algorithm is investigated both by simulation
and analysis.

3. THE CLUSTERING ALGORITHMVIAWAITING TIMER

This section describes a randomized distributed algorithm
that forms clusters automatically in an ad hoc network. The
main assumptions are

(i) all sensors are homogeneous with the same transmis-
sion range,

(ii) the sensors are in fixed but unknown locations; the
network topology does not change,

(iii) symmetric communication channel: all links between
sensors are bidirectional,

(iv) there are no base stations to coordinate or super-
vise activities among sensors. Hence, the sensors must
make all decisions without reference to a centralized
controller.

Each active sensor broadcasts its presence via a “Hello”
signal and listens for its neighbor’s “Hello.” The sensors that
hear many neighbors are good candidates for initiating new
clusters; those with few neighbors should choose to wait. By
adjusting randomized waiting timers, the sensors can coordi-
nate themselves into sensible clusters, which can then be used
as a basis for further communication and data processing.

After deployment, each sensor sets a random waiting
timer. If the timer expires, then the sensor declares itself to
be a clusterhead, a focal point of a new cluster. However,
events may intervene that cause a sensor to shorten or can-
cel its timer. For example, whenever the sensor detects a new
neighbor, it shortens the timer. On the other hand, if a neigh-
bor declares itself to be a clusterhead, the sensor cancels its
own timer and joins the neighbor’s new cluster.

Assume the initial value of the waiting time of sensor i,

WT(0)
i , is a sample from the distribution C+α·U(0, 1), where

C and α are positive numbers, and U(0, 1) is a uniform dis-
tribution. In the clustering phase of the network, each sen-
sor broadcasts aHellomessage at a random time. This allows
each sensor to estimate how many neighbors it has. A Hello
message consists of (1) the sensor ID of the sending sensor,
and (2) the cluster ID of the sending sensor. At the begin-
ning, the cluster ID of each sensor is zero. Note that a sensor



688 EURASIP Journal on Wireless Communications and Networking

(1) Each sensor initializes a random waiting timer with a valueWT (0)
i .

(2) Each sensor transmits the Hellomessage at random times:
draw a sample r from the distribution λ ·WT (0)

i ·U(0, 1), where 0 < λ <
0.5,
wait r time units and then transmit the Hello.

(3) Establish and update the neighbor identification:
if a sensor receives a message of assigning a cluster ID at time step k
(a) join the corresponding cluster,
(b) draw a sample r′ from the distributionWT (k)

i ·U(0, 1),
(c) wait r′ time units and then send an updated Hellomessage with

the new cluster ID,
(d) stop the waiting timer. (Stop!)

else
collect neighboring information.

end
(4) Decrease the random waiting time according to (1).
(5) Clusterhead check:

if WTi = 0 and the neighboring sensors are not in another cluster
(a) broadcast itself to be a clusterhead,
(b) assign the neighboring sensors to cluster ID i. (Stop!)

elseif WTi = 0 and some of the neighboring sensors are in other clusters
join any nearby cluster after τ seconds, where τ is greater than any
possible waiting time. (Stop!)

else
go to step (3).

end

Algorithm 1: The CAWT: an algorithm for segmenting sensors into clusters.

ID is not needed to be unambiguously assigned to each sen-
sor before applying the CAWT. The following are two possi-
ble ways for each sensor to determine its sensor ID: (1) each
sensor can automatically know an ID number (like an IP ad-
dress or an RFID tag), and (2) each sensor could pick a ran-
dom number when it first turns on, which is a “random” ID
assignment. If the range of numbers is large compared to the
number of sensors, then it is unlikely that two sensors (within
radio range) would pick the same number.

Sensors update their neighbor information (i.e., a
counter specifying how many neighbors it has detected) and
decrease the random waiting time based on each “new”Hello
message received. This encourages those sensors with many
neighbors to become clusterheads. The updating formula for
the random waiting time of sensor i is

WT(k+1)
i = β ·WT(k)

i , (1)

whereWT(k)
i is the waiting time of sensor i at time step k and

0 < β < 1.
If both of the following conditions apply, then sensor i

declares itself a clusterhead:

(i) the random waiting timer expires, that is,WTi = 0;
(ii) none of the neighboring sensors are already members

of a cluster.

If sensor i satisfies the above conditions, it broadcasts a mes-
sage proclaiming that it is beginning a new cluster; this also
serves to notify its neighbors that they are assigned to join the

new cluster with ID i. When a sensor joins the cluster, it sends
an updated Hello message and stops its waiting timer. The
complete procedure of the initialization phase is outlined in
the CAWT of Algorithm 1.

After applying the CAWT, there are three different kinds
of sensors: (1) the clusterheads, (2) sensors with an assigned
cluster ID, and (3) sensors which are unassigned. These unas-
signed sensors may join the nearest cluster later depending
on the neighboring information or the demand of specific
applications, such as sensor location estimation problem.
Thus, the topology of the ad hoc network is now represented
by a hierarchical collection of clusters.

4. SIMPLIFIEDMETHODS OF CLUSTERING

Because of the complexity of the CAWT, it is difficult to eval-
uate the algorithm directly other than via simulation. Since
the connectivity among sensors and the number of neighbor-
ing sensors play important roles in the CAWT, it is reasonable
to investigate the performance from the perspective of these
parameters. Therefore, we abstract the behavior of the algo-
rithm using two simplified models which approximate the
desired global behavior and serve to analyze its performance.

4.1. The neighboring densitymodel

The first simplified model is the neighboring density model
(NDM) which is detailed in Algorithm 2. The basic idea of
NDM is to suppose that the probability of each sensor of be-
ing a clusterhead, pi, is proportional to the number of the
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(a) Assign a probability to sensor i, pi, proportional to the number of the
neighboring sensors, Ni. That is, pi ∝ Ni/

∑n
i=1Ni.

(b) Let Bi be the set of neighboring sensors of sensor i.
I is the index set of clusterheads.

(c) P(k), P
(k)
, and P̃(k) are 1 by n vectors to store the probability distribution

at time step k.
(d) Assign k = 0 and P(0) = (p1, p2, . . . , pn).

while sum(P(k)) > 0
(1) Select a clusterhead

if j = arg maxi{p(k)i }
j ∈ I ,

end
(2) Update the probability distribution

p̃i
(k) = p(k)i · 1{i /∈Bj , Bi∩Bj=∅, j=arg maxi{p(k)i }},

p̃ j
(k) = 0.

(3) Normalize the updated probability distribution.
if sum(P̃(k)) > 0

pi
(k) = p̃i

(k)
/ sum(P̃(k)).

else
P
(k) = P̃(k).

end
(4) Store the normalized probability distribution.

P(k) = P
(k)
,

set k = k + 1.

end

Algorithm 2: The neighboring density model: a procedure for analyzing the CAWT.

neighboring sensors, Ni. That is,

pi ∝ Ni∑n
i=1Ni

. (2)

If the sensor is not already chosen as a clusterhead and
its neighboring sensors are not already in other clusters, then
the sensor with the largest pi is chosen to be a clusterhead and
it assigns probability 0 to its neighbors. Thus, a sensor be-
comes a clusterhead if it has the highest neighboring density
among all sensors which have not yet become cluster mem-
bers. Moreover, if a sensor is not a member of a cluster and
some of its neighbors have already become cluster members,
this sensor should choose to wait and join the nearest cluster
later. After normalizing the updated probability distribution
of sensors, the procedure repeats until all sensors are mem-
bers of a cluster. The rationale for this choice is that, if the
random waiting time of each sensor is long enough (in the
sense that each sensor is able to collect sufficient neighboring
information), then the model is likely to closely approximate
the behavior of the CAWT on any given ad hoc network. The
close connection between the model and the algorithm is ex-
plored via simulation.

4.2. The averagedmodel

This subsection models the CAWT by a simplified averaging
procedure. Assume that a single clusterhead and an average
number of neighboring sensors E(k)[Ni] are removed during
each iteration k. Assume that each sensor will be removed

with probability p(k)rm = rk/mk, where rk is the number of sen-
sors to be removed andmk is the number of sensors remain-
ing at iteration k. Denote the collection of sensors at itera-
tion k by Vk. Since a clusterhead and its neighboring sensors
are removed at each iteration, the collection of sensors at the
next iteration, Vk+1, is simply a new and smaller network.
Theorem 1 can be applied to approximate the distribution of
the number of clusterheads at iteration k byN (µk, σ2k ), where

µk =
∑mk

i=1 p
(k)
i , σ2k =

∑mk
i=1 p

(k)
i (1 − p(k)i ), mk is the number

of sensors in Vk, p
(k)
i is the updated probability distribution

of sensors at iteration k, i ∈ Ik, and Ik is the index set of sen-
sors at iteration k. Once the procedure terminates, the num-
ber of iterations is an estimate of the number of clusterheads
formed in the network. A statement of the averaged model I
is given in Algorithm 3.

4.3. Analysis of the averagedmodel

This section analyzes the averaged model of Algorithm 3 and
derives a simple expression for the expected number of clus-
terheads in a given network. Later sections show via sim-
ulation that this is also a reasonable estimate of the num-
ber of clusterheads given by the implementable CAWT of
Algorithm 1.

4.3.1. The Lindeberg theorem

This section reviews the probability that is used when analyz-
ing the performance of the model. Readers may see [20] for
a complete discussion and proof of the theorem.
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(a) Let N (k)
b be the sum of neighboring sensors at iteration k.

N (k)
b =∑mk

i=1N
(k)
i .

i ∈ Ik ; Ik is the index set of sensors at iteration k.
(b) Let E(k)[Ni] be the average number of neighbors at iteration k.
(c) Assign the probability p(k)i to sensor i, proportional to the number of

neighboring sensors, N (k)
i . That is, p(k)i ∝ N (k)

i /N (k)
b .

(d) Assign k = 0,m0 = n, r0 = 0.
while (mk − rk) > 0

rk = �E(k)[Ni]�∗ + 1,
mk+1 = mk − rk ,
k = k + 1.

end
∗�·� is the ceiling function.

Algorithm 3: Averaged model I: procedure for analyzing the CAWT.

Suppose for each n that

(
X11,X12, . . . ,X1r1

)
,(

X21,X22, . . . ,X2r2

)
,

...(
Xn1,Xn2, . . . ,Xnrn

)
(3)

are independent random vectors. The probability space may
change with n. Put Sn = Xn1 + · · · + Xnrn . In the network
application, rn = n, Xni = Xi, 0, and (3) is called a triangu-
lar array of random variables. Let Xi take the values 1 and 0
with probability pi and qi = 1 − pi. We may interpret Xi as
an indicator that sensor i is chosen to be a clusterhead with
probability pi and Sn is the number of clusters in the network.

Denote Yi = Xi − pi. Hence,

SYn ≡
n∑
i=1

Yi =
n∑
i=1

Xi −
n∑
i=1

pi = Sn −
n∑
i=1

pi,

E
[
Yi
] = E

[
Xi
]− pi = 0,

σ2Yi
= σ2Xi

= pi
(
1− pi

)
,

s2n =
n∑
i=1

σ2Yi
=

n∑
i=1

σ2Xi
=

n∑
i=1

pi
(
1− pi

)
.

(4)

For our case, the Lindeberg condition [20] reduces to

lim
n→∞

n∑
i=1

1
s2n

∫
|Yi|≥εsn

Y 2
i dP ≤ lim

n→∞

n∑
i=1

1
s2n

∫
|Yi|≥εsn

dP = 0, (5)

which holds because all the random variables are bounded
by 1 and [|Yi| ≥ εsn]→ 0 as n→∞.

Theorem 1. Suppose that Yi is an independent sequence of
random variables and satisfies E[Yi] = 0, σ2Yi

= E[Y 2
i ],

SYn =
∑n

i=1 Yi, and s2n =
∑n

i=1 σ
2
Yi
. If the Lindeberg condition

(5) holds, then SYn /sn → N (0, 1).

By Theorem 1, the distribution of the number of clusters
can be approximated byN (

∑n
i=1 pi, s2n) since E[Sn] = E[SYn ]+∑n

i=1 pi =
∑n

i=1 pi and
∑n

i=1 σ
2
Xi
=∑n

i=1 σ
2
Yi
= s2n.

4.3.2. Special case

Assume that n sensors are deployed in a circle and the dis-
tance between each pair of neighboring sensors is equal. In
addition, because of the radio range, assume that each sen-
sor can detect two neighboring sensors. Hence each sensor
may be chosen as a clusterhead with probability pi = 1/n.
As mentioned before, let Xi be the indicator that sensor i is
chosen to be a clusterhead with probability pi and let Sn be
the number of clusterheads in the network. Based on these
assumptions, the expectation and variance of Sn are

E
[
Sn
] = n∑

k=1
kPr
(
Sn = k

) = npi,

s2n =
n∑
i=1

σ2Xi
= npi

(
1− pi

)
.

(6)

4.3.3. Analysis

This section shows that, with appropriate simplification, the
averaged model (AM) can be used to make simple prediction
of the behavior of the CAWT.

To obtain the mean and variance of the number of clus-
terheads of each iteration, the probability distribution of
these random variables must be updated. However, it is not

simple to calculate p(k)i at each iteration since the process of
selecting a clusterhead at each iteration is complex. The fol-
lowing simplified analysis restructures the connectivity of the
network so that each sensor has the same average neighbor-
ing density at each iteration. Therefore, we have

E(k+1)[Ni
] = N (k)

b − rk · E(k)
[
Ni
]

mk+1
. (7)

This simplified averaged model is summarized in averaged
model II in Algorithm 4.
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(a) Let N (k)
b be the sum of neighboring sensors of sensors at iteration k.

N (k)
b =∑mk

i=1N
(k)
i .

i ∈ Ik ; Ik is the index set of sensors at iteration k.

(b) Let E(k)[Ni] be the average number of neighbors at iteration k.

E(0)[Ni] = N (0)
b /m0.

(c) Assign the probability p(k)i to sensor i, proportional to the number of

neighboring sensors, N (k)
i . That is, p(k)i ∝ N (k)

i /N (k)
b .

(d) Assign k = 0,m0 = n, r0 = 0.
while (mk − rk) > 0

mk+1 = mk − rk ,
E(k+1)[Ni] = (N (k)

b − rk · E(k)[Ni])/mk+1,
rk+1 = �E(k+1)[Ni]�∗ + 1,
k = k + 1.

end
∗�·� is the ceiling function.

Algorithm 4: Averaged model II: procedure for analyzing the CAWT.

Thus, the distribution of the number of clusterheads can
be approximated by N(µch, σ2ch), where

µch =
Nit∑
k=1

µk =
Nit∑
k=1

mk∑
i=1

p(k)i ,

σ2ch =
Nit∑
k=1

σ2k =
Nit∑
k=1

mk∑
i=1

p(k)i

(
1− p(k)i

)
,

(8)

where Nit is the number of iterations.
Moreover, suppose that the expectation of the number of

neighboring sensors of each sensor in the network is used to
approximate the number of neighboring sensors that will be
removed at each iteration (i.e., the sensors which will even-
tually join the new cluster). Thus,

E(k)[Ni
] = E

[
Ni
] = 1

n

n∑
i=1

Ni, ∀k. (9)

Then

rk =
⌈
E
[
Ni
]⌉

+ 1, (10)

and a simple formula for predicting the number of cluster-
heads is

Nch = n⌈
E
[
Ni
]⌉

+ 1
. (11)

The comparison of the performance of the CAWT and
the simplified models will be illustrated in Section 6.

5. ANALYSIS OF ENERGY CONSUMPTION

This section considers the energy consumption of the CAWT
assuming homogenous sensors. The total power require-
ments include both the power required to transmit mes-
sages and the power required to receive (or process) mes-
sages.

In the initialization phase, each sensor broadcasts a Hello
message to its neighboring sensors. Therefore, the number
of transmissions NTx is equal to the number of sensors in the
network, n, and the number of receptions NRx is the sum of
the neighboring sensors of each sensor. That is,

NTx = n, NRx =
n∑
j=1

Nj. (12)

As a sensor, say sensor i, meets the conditions of being a
clusterhead, it broadcasts this and assigns cluster ID i to its
neighboring sensors. Its neighboring sensors then transmit
a signal to their neighbors to update cluster ID information.
During this clustering phase, (1+Ni) transmissions and (Ni+∑

j∈Ci
Nj) receptions are executed, where Ci is the index set

of neighboring sensors of sensor i. This procedure is applied
to all clusterheads and their cluster members. Now let Nc

Tx

and Nc
Rx

denote the number of transmissions and receptions
for all clusters, respectively. Hence,

Nc
Tx
=
∑
i∈I

(
1 +Ni

)
,

Nc
Rx
=
∑
i∈I

( ∑
j∈Ci

Nj +Ni

)
,

(13)

where I is a index set of clusterheads. Therefore, the total
number of transmissions NT and the number of receptions
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Figure 1: Clusters are formed in a random network of 50 sensors with (a) R/l = 0.15, (b) R/l = 0.2, and (c) R/l = 0.25.

NR are

NT = NTx +Nc
Tx
= n +

∑
i∈I

(
1 +Ni

)
,

NR = NRx +Nc
Rx
=

n∑
j=1

Nj +
∑
i∈I

( ∑
j∈Ci

Nj +Ni

)
.

(14)

Suppose that the energy needed to transmit is ET , which
depends on the transmitting range R, and the energy needed
to receive is ER. From (14), the total energy consumption,
Etotal, for cluster formation in the wireless sensor network is

Etotal = NT · ET +NR · ER. (15)

Observe that the above analysis is suitable for any trans-
mitting range. However, overly small transmission ranges
may result in isolated clusters whereas overly large trans-
mission ranges may result in a single cluster. Therefore, in
order to optimize energy consumption and encourage link-
ing between clusters, it is sensible to consider the mini-
mum transmission power (or range R) which will result in
a fully connected network. This range assignment problem
is investigated in [19], which proposes lower boundson the

magnitude of Rdn (with respect to l), Rdn ∈ O(ld), and
shows that Rdn ≈ ld ln(l) may be a good initial value for the
search of optimized range assignment strategies to provide
a high probability of connectivity. As usual, n is the num-
ber of sensors and l is the length of sides of a d-dimensional
cube. The performance of the total energy consumption of
the CAWT with different selections of R is examined via sim-
ulation.

6. SIMULATION RESULTS

The simulations of this section examine the performance of
the CAWT and validate the simplified models for which ana-
lytical results have been derived.

Assume that n sensors are uniformly distributed over a
square region in a two-dimensional space. Parameters for the
randomwaiting timer, number of sensors, and ratio of trans-
mitting range R to the side length l of the square, R/l, are in-
vestigated to provide a simulation-based study of the CAWT.
Note that the entire experiments are conducted in a square
region with side length l = 1000 unit length.

The first set of experiments examines the variation of the
average number of clusterheads with respect to the ratio R/l.
With random waiting time parameters C = 100, α = 10, and
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Figure 2: Average number of clusterheads as a function of the ratio
R/l.

β = 0.9, Figure 1 depicts typical runs of the algorithm based
on the same network topology but with different R/l ratios.
The results show that each cluster is a collection of sensors
which are up to 2 hops away from a clusterhead. Figure 2
shows the relationship between the average number of clus-
terheads and the R/l ratio with varying the number of sen-
sors. The average number of clusterheads in each case is the
sample mean of the results of 200 typical runs. Observe that
the average number of clusterheads decreases as the ratio R/l
increases (i.e., the transmission power increases). Since larger
transmission power allows larger radio coverage, a cluster-
head has more cluster members, which reduces the number
of clusters in the network. Figure 2 also shows that when the
transmission range is small, the network with a lower sensor
density will have a larger percentage of isolated sensors which
eventually become clusterheads in their own right. This is
because the network is only weakly connected with these val-
ues. On the other hand, when the transmission power is large
enough to ensure strong connectivity of the network, the av-
erage number of clusterheads stabilizes as the number of sen-
sors increases.

The second set of experiments in Figure 3 evaluates
the performance of the neighboring density model (NDM),
which compares cluster formation when using the NDM and
the CAWT. The outputs of the two methods are not identi-
cal due to the randomness of the waiting timer. Nonetheless,
both these clustering structures are qualitatively similar given
the same network settings, suggesting that the NDMprovides
a good approximation to the CAWT.

The third set of experiments compares the estimates
of the number of clusterheads when applying the CAWT,
the neighboring density model (NMD), the averaged model
(AM), and the prediction formula. In each method, the re-
sults of 200 typical runs are merged. For the CAWT, the

NDM, and the prediction formula cases, the estimates of
the number of clusterheads are given by the sample mean
and sample variance of the results of typical runs. For the
AM case, the estimates of mean and variance of the num-
ber of clusterheads are generated in each typical run, which
means the best estimate may not be obtained by averaging
the typical runs. The covariance intersection (CI) method of
[21] provides the best estimate given the information avail-
able. The CI algorithm takes a convex combination of mean
and covariance estimates that are represented in information
space. Since these typical runs are independent, the cross-
correlations between these estimates are 0. Therefore, the
general form is

P−1cc = ω1P
−1
a1a1 + · · · + ωnP

−1
anan ,

P−1cc c = ω1P
−1
a1a1a1 + · · · + ωnP

−1
ananan,

(16)

where
∑n

i=1 ωi = 1, n > 2, ai is the estimate of the mean
from available information, Paiai is the estimate of the vari-
ance from available information, c is the new estimate of the
mean, and Pcc is the new estimate of the variance. We choose
to weight each typical run equally.

In order to compare the CAWT and the simplified mod-
els, Figures 4a and 4b show the standard deviation of the
mean number of clusterheads. The plots vary the number
of sensors n and the transmission power R/l. Also shown
in Figures 4c and 4d are the confidence intervals for the
mean number of clusterheads at a 90% confidence level. The
graphs suggest that the NDMapproximates the CAWT some-
what better than the AM. This is reasonable because the
NDM retains global connectivity information while the AM
uses only the average density information. Though the NDM
outperforms AM, these results provide evidence that the AM
provides a way to roughly predict the performance of the
CAWT.

The fourth set of experiments considers the total energy
consumption of the CAWT. Assume that the communication
channel is error-free. Since each sensor does not need to re-
transmit any data, two transmissions are executed, one for
broadcasting the existence and the other for assigning a clus-
ter ID to its cluster members or updating the cluster ID in-
formation of its neighbors. Hence, the total number of trans-
missions is 2n. Under these circumstances, sensor i will re-
ceive 2Ni messages. Then, the total number of receptions is
2
∑n

i=1Ni. Figures 5 and 6 show the average number of trans-
missions and receptions of random networks after applying
the proposed algorithm. Figure 6 also shows that the num-
ber of receptions tends to increase as the ration R/l increases.
This implies that energy consumption is higher for the net-
work with larger transmission power. This can be attributed
to the fact that larger transmission power allows sensors to
detect more neighbors, which increases the number of recep-
tions when assigning cluster ID or updating cluster ID infor-
mation. Therefore, in order to minimize energy use and keep
strong connectivity in the network, an appropriate selection
of the transmission range R is essential. In [19], the authors
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Figure 3: Cluster formation in a random network with 100 sensors and (a) the CAWT with R/l = 0.15, (b) the NDM algorithm with
R/l = 0.15, (c) the CAWT with R/l = 0.2, and (d) the NDM algorithm with R/l = 0.2.

suggest that

R ≈ l
d

√
log l
n

(17)

may be a good choice for the initial range assignment for
sensors in the d-dimensional space. Hence, if l = 1000m
and n = 100, then R ≈ 173.21m. This means that for
R/l ≈ 0.173, it may lead to a strongly connected network and
energy conservation.

The final set of experiments compares the cluster forma-
tion when using theMax-MinD-cluster formation algorithm
[1] and the new decentralized clustering algorithm with ran-
dom waiting timer. The Max-Min heuristic generalizes the
clustering heuristics so that a sensor is either a clusterhead or
at most D hops away from a clusterhead. This heuristic has
complexity of O(D) rounds which is better than most clus-
tering algorithms in the literature (see [5, 6, 7, 8, 22]) with
time complexity of O(n), where n is the number of sensors
in the network. In the proposed CAWT, each sensor initiates
2 rounds of local flooding to its 1-hop neighboring sensors,

one for broadcasting sensor ID and the other for broadcast-
ing cluster ID, to select clusterheads and form 2-hop clus-
ters. Hence, the time complexity isO(2) rounds. This implies
that the CAWT and the Max-Min heuristic with D = 2 have
the same time complexity O(2). Thus the Max-Min heuristic
with D = 2 provides a good way to benchmark the perfor-
mance of the CAWT.

As shown in Figure 2 and by the figures in [1], load bal-
ancing may not be achieved without an appropriate trans-
mission range since this may lead to either too large or
too small cluster sizes. Hence, the cluster formation is ex-
amined with respect to the R/l ratio and network den-
sity suggested in (17) when using both the CAWT and the
Max-Min heuristic. Figures 7 and 8 show that both the
average number of the CAWT clusterheads and the Max-
Min clusterheads increase approximately linearly with in-
creased network density though the Max-Min heuristic has
more clusterheads and slightly smaller cluster sizes than
the CAWT. Figure 8 also demonstrates that a good selec-
tion of transmission range may lead to a minimal varia-
tion of the cluster size with increased network density. This
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Figure 4: The number of clusterheads formed in a random network using (1) the CAWT, (2) NDM, (3) AM, and (4) the prediction formula,
respectively, with varying R/l ratios. Parts (a) n = 50 and (b) n = 100 show the standard deviation over 200 runs. Parts (c) n = 50 and (d)
n = 100 show the confidence intervals at the 90% level.

may help to achieve the load balance among the cluster-
heads.

The above set of experiments imply that the CAWT is
competitive with the Max-Min heuristic in terms of time
complexity and cluster formation. The authors in [1] show
that the Max-Min heuristic may fail to provide a good cluster
formation in some network configurations and more study
is needed to determine appropriate times to trigger the Max-
Min heuristic. In comparison, the CAWTmay be reliably ap-
plied to any network topology and network density.

7. CONCLUSION

This paper has presented a randomized, decentralized algo-
rithm for organizing the sensors of an ad hoc network into

clusters. A random waiting timer and a neighbor-based cri-
teria were used to form clusters automatically. Two simpli-
fied models are introduced for the purpose of understanding
the performance of the CAWT. Simulation results indicated
that the simplified models agree well with the behavior of
the algorithm. Under the assumption of fixed transmission
power and homogenous sensors, the energy requirements of
the method were determined.

There are several ways this work may be generalized.
For a fixed clusterhead selection scheme, a clusterhead with
constrained energymay drain its battery quickly due to heavy
utilization. In order to spread the energy usage over the
network and achieve a better load balancing among clus-
terheads, reselection of the clusterheads may be a useful
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Figure 5: The number of transmissions in random networks as a
function of the number of sensors and R/l ratio.
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Figure 6: The number of receptions in random networks as a func-
tion of the number of sensors and R/l ratio.

strategy. Also, if the sensors are moving slowly, then the
algorithm is flexible and cheap enough to be applied it-
eratively as the network configuration changes. This can
be achieved by modifying the conditions under which the
random timing counter is incremented or decremented.
From an adaptive cross-layer design perspective, the ran-
dom timer may be adjusted using current channel conditions
(signal-to-interference-and-noise ratio (SINR), link connec-
tivity, etc.) and energy constraints (energy level of neighbor-
ing sensors) from the physical layer. Moreover, the random
timer may adapt based on the mobility of the sensor and the
constraints from the MAC layer to achieve network robust-
ness and scalability. Therefore, such “adaptive clustering pro-
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Figure 7: The average number of clusterheads as a function of the
number of sensors and R/l ratio using the CAWT (and the two sim-
plified models) and the Max-Min heuristic. n = 100, R/l = 0.1732;
n = 200, R/l = 0.1225; n = 300, R/l = 0.10; n = 400, R/l = 0.087;
n = 500, R/l = 0.0775.
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Figure 8: The average cluster size with the same network settings as
in Figure 7.

tocols” may provide a reliable method of cluster organization
for wireless ad hoc sensor networks.
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