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The application of the expectation-maximization (EM) algorithm to channel estimation results in a well-known iterative channel-
and-symbol estimator (ICSE). The EM-ICSE iterates between a symbol estimator based on the forward-backward recursion (BCJR
equalizer) and a channel estimator, and may provide approximate maximum-likelihood blind or semiblind channel estimates.
Nevertheless, the EM-ICSE has high complexity, and it is prone to misconvergence. In this paper, we propose the extended-
window (EW) estimator, a novel channel estimator for ICSE that can be used with any soft-output symbol estimator. Therefore,
the symbol estimator may be chosen according to performance or complexity specifications. We show that the EW-ICSE, an ICSE
that uses the EW estimator and the BCJR equalizer, is less complex and less susceptible to misconvergence than the EM-ICSE.
Simulation results reveal that the EW-ICSE may converge faster than the EM-ICSE.
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1. INTRODUCTION

Channel estimation is an important part of communica-
tions systems. Channel estimates are required by equaliz-
ers that minimize the bit error rate (BER), and can be
used to compute the coefficients of suboptimal but lower-
complexity equalizers such as the minimum mean-squared
error (MMSE) linear equalizer (LE) [1], or the decision-
feedback equalizer (DFE) [1]. Traditionally, a sequence of
known bits, called a training sequence, is transmitted for the
purpose of channel estimation [1]. These known symbols
and their corresponding received samples are used to esti-
mate the channel. However, this approach, known as trained
estimation, ignores received samples corresponding to the
information bits, and thus does not use all the information
available at the receiver. Alternatively, semiblind estimators
[2] use every available channel output for channel estima-
tion. Thus, they outperform estimators based solely on the
channel outputs corresponding to training symbols, and re-
quire a shorter training sequence. Channel estimation is still
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possible even if no training sequence is available, using a
technique known as blind channel estimation.

An important class of algorithms for blind and semib-
lind channel estimation is based on the iterative strategy de-
picted in Figure 1 [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14], which
we call iterative channel-and-symbol estimation (ICSE). In
these algorithms, an initial channel estimate is used by a
symbol estimator to provide initial estimates of the first-
order (and possibly also the second-order) statistics of the
transmitted symbol sequence. These estimates are used by a
channel estimator to improve the initial channel estimates.
The process is then repeated. The hope is that several it-
erations between these two low-complexity estimators will
lead to estimates that nearly maximize the joint likelihood
function.

The application of the expectation-maximization (EM)
algorithm, also known as the Baum-Welch algorithm [15,
16], to the blind channel estimation problem results in
the canonical ICSE that fits the framework of Figure 1.
An EM iterative channel-and-symbol estimator (EM-ICSE)
was first reported in [4], and it has some useful proper-
ties. First, it generates a sequence of estimates with nonde-
creasing likelihood, so that the channel estimates are capa-
ble of approaching the maximum-likelihood (ML) estimates.
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Figure 1: Iterative channel-and-symbol estimator.

Second, its symbol estimator is based on the forward-
backward recursion of Bahl et al. (BCJR) [17], which min-
imizes the probability of decision error. Third, the EM-ICSE
may be easily modified to exploit, in a natural and nearly op-
timal way, any a priori information the receiver may have
about the transmitted symbols. This a priori information
may arise because of pilot symbols (e.g., in semiblind esti-
mation) or error-control coding (e.g., in the context of turbo
equalization [6, 7, 8, 9]).

The application of iterative channel estimation to turbo
equalization is particularly important, since it leads to chan-
nel estimates that benefit from the presence of channel cod-
ing, thus performing well at low signal-to-noise ratios [6, 7,
8, 9]. This is particularly important because powerful codes
such as turbo codes [18, 19] allow reliable communication
at extremely low signal-to-noise ratios, which only exacer-
bates the estimation problem for traditional channel estima-
tors that ignore the existence of coding, as is the case with
most blind channel estimation techniques.

The EM-ICSE has two main drawbacks that we address
in this paper: its tendency to converge to inaccurate channel
estimates, and its high computational complexity. The prob-
lem of convergence to inaccurate estimates arises because the
EM-ICSE necessarily generates a sequence of estimates with
nondecreasing likelihood. This property makes the EM-ICSE
susceptible to getting trapped in a local maximum of the like-
lihood function. Also, the EM-ICSE has two sources of com-
plexity. First, the EM channel estimator involves the com-
putation and inversion of a square matrix whose order is
equal to the channel length. Second, and more important,
the complexity of the EM symbol is exponential in the chan-
nel length. In [11, 12], ICSEs are proposed that reduce the
complexity of the EM-ICSE by introducing a low-complexity
symbol estimator. However, these works focus only on the
symbol estimator, and use the same channel estimator as
the EM-ICSE, resulting in a computational complexity that
grows with the square of the channel memory.

In this work, we focus on the channel estimator of Figure
1. We will propose the simplified EM channel estimator
(SEM), a channel estimator for ICSE that avoids the matrix
inversion of the EM channel estimator. More importantly,
an ICSE based on the SEM channel estimator does not re-
quire the BCJR equalizer, and thus may be implemented with
any number of low-complexity alternatives to the BCJR al-
gorithm, such as those proposed in [20, 21]. Since the com-
plexity of the SEM channel estimator is linear in the channel
memory, the overall complexity of an ICSE based on the SEM
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Figure 2: Channel model.

channel estimator is also linear if a linear-complexity equal-
izer is used.

We will also investigate the convergence of an ICSE based
on the SEM estimator. We will see that, after misconver-
gence, the SEM channel estimates may have a structure that
can be exploited to escape the local maximum of the likeli-
hood function.We then propose the extended-window (EW)
channel estimator, a simple modification to the SEM channel
estimator that exploits this structure and greatly decreases
the probability of misconvergence, without significantly af-
fecting the computational complexity.

This paper is organized as follows. In Section 2 we
present the channel model and describe the problem we
will investigate. In Section 3, we briefly review the EM-
ICSE. In Section 4, we propose the SEM estimator, a linear-
complexity channel estimator for ICSE that is not intrin-
sically linked to a symbol estimator. In Section 5, we pro-
pose the EW estimator, an extension to the SEM estimator
of Section 4 that is less likely than EM to get trapped in a lo-
cal maximum of the joint likelihood function. In Section 6,
we present some simulation results, and we draw some con-
clusions in Section 7.

2. CHANNELMODEL AND PROBLEM STATEMENT

Consider the transmission of K zero-mean, uncorrelated
symbols ak belonging to some alphabet A, with unit energy
E[|ak|2] = 1, across a dispersive channel with memory µ and
additive-white Gaussian noise. The received signal at time k
can be written as

rk = hTak + nk, (1)

where h = (h0,h1, . . . ,hµ)T represents the channel impulse
response, ak = (ak, ak−1, . . . ,ak−µ)T , and nk represents white
Gaussian noise with variance σ2. Let a = (a0, a1, . . . ,aK−1)
and r = (r0, r1, . . . ,rN−1) denote the input and output se-
quences, respectively, whereN = K+µ. The resulting channel
model is depicted in Figure 2.

Notice that, as far as channel estimation is concerned, the
assumption that the transmitted symbols are uncorrelated is
not too restrictive. Indeed, most training sequences are cho-
sen so as to satisfy this assumption (thus minimizing the
Cramér-Rao bound [22]) and the presence of an interleaver
in most coded systems also ensures that the transmitted se-
quence is approximately uncorrelated. In other words, for
channel estimation purposes, assuming that the transmitted
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symbols are uncorrelated does not exclude the presence of a
training sequence or of a channel code. As we will see, it is
the symbol estimator in Figure 1 that exploits the presence of
a training sequence or of a channel code.

This paper concerns the joint estimation of a, h, and σ re-
lying solely on the received signal r. Ideally, we would like to
solve the joint-ML channel estimation and symbol detection
problem, that is, find

(
âML, ĥML, σ̂ML

) = argmax log ph,σ(r|a), (2)

where log ph,σ(r|a) is the log-likelihood function, defined as
the logarithm of the pdf of the received signal r conditioned
on the channel input r and parameterized by r and σ . Intu-
itively, the ML estimates are those that best explain the re-
ceived sequence, in the sense that we are less likely to observe
the channel output if we assume any other set of parameters
to be correct, that is, ph,σ(r|a) ≥ phML,σML

(r|aML) for all h, σ , a.
Besides this intuitive interpretation, ML estimates have many
interesting theoretical properties [22].

It is noteworthy that the maximization in (2) should be
performed over the set of valid transmitted sequences. Thus,
the joint-ML channel-and-symbol estimation problem in (2)
incorporates all possible scenarios: fully trained estimation
(all of a is known); semiblind estimation without coding
(parts of a are known, unknown parts of a can be any se-
quence of symbols); semiblind estimation with coding (parts
of a are known, a must be a valid codeword); blind estima-
tion without coding (none of a is known, a can be any se-
quence of symbols); and blind estimation with coding (none
of a is known, amust be a valid codeword).

Unfortunately, a direct solution to the problem in (2) is
too complex. Therefore, this paper focuses on iterative tech-
niques that provide an approximate solution to (2) with rea-
sonable computational complexity. In the sequel, we review
the EM-ICSE, an ICSE that computes a sequence of estimates
with nondecreasing likelihood and that, with proper initial-
ization or if the likelihood function is well-behaved, will con-
verge to the ML estimates.

3. THE EM-ICSE

The EM algorithm [15, 16] provides an iterative solution to
the blind identification problem in (2) that fits the paradigm
of Figure 1, as first reported in [4]. The EM channel estimator
(see Figure 1) for the (i + 1)th iteration of the EM-ICSE is
defined by

ĥ(i+1) = R−1i pi, (3)

σ̂2(i+1) =
1
N

N−1∑
k=0

E
[∣∣rk − ĥT(i+1)ak

∣∣2|r; ĥ(i), σ̂2(i)
]

= 1
N

N−1∑
k=0

∣∣rk∣∣2 − 2ĥT(i+1)pi + ĥT(i+1)Riĥ(i+1),

(4)

where

Ri = 1
N

N−1∑
k=0

E
[
akaTk |r; ĥ(i), σ̂2(i)

]
, (5)

pi = 1
N

N−1∑
k=0

rk E
[
ak|r; ĥ(i), σ̂2(i)

]
. (6)

The EM symbol estimator (see Figure 1) provides the val-

ues of ã(i)k = E[ak|r; ĥ(i), σ̂2(i)] and E[akaTk |r; ĥ(i), σ̂2(i)] that are
required by (5) and (6). The a posteriori expected values in

(5) and (6) are computed assuming that ĥ(i) and σ̂2(i) are the

actual channel parameters. Notice that ãk = E[ak|r; ĥ(i), σ̂2(i)]
is the a posteriori MMSE estimate of ak , and we refer to ãk as
a soft symbol estimate.

Also, note that Ri and pi of (5) and (6) can be viewed
as estimates of the a posteriori autocorrelation matrix of the
transmitted sequence and the cross-correlation vector be-
tween the transmitted and received sequences, respectively.
Thus, (3) and (4) are similar to the MMSE-trained channel
estimator [22], in which Ri and pi are computed with the ac-
tual transmitted sequence.

The computation of the expected values in (5) and
(6) require the knowledge of the a posteriori probabili-

ties E[ak|r; ĥ(i), σ̂2(i)] and E[akaTk |r; ĥ(i), σ̂2(i)]. For an uncoded
system, these can be exactly computed with the forward-
backward recursion or BCJR algorithm [17]. Because the
computational complexity of this algorithm grows expo-
nentially with the channel length, some authors [11, 12]
have proposed lower-complexity alternatives that compute
approximations to these a posteriori probabilities. In other
words, the algorithms of [11, 12] are approximations to the
EM-ICSE that also fit the framework of Figure 1, and that are
also based on the channel estimator of (3), (4), (5), and (6).

Unfortunately, in the presence of a channel code, an
exact computation of Ri and pi is prohibitively complex.
The most common solution in this case is to modify the
EM-ICSE, using a turbo equalizer as the symbol estimator

[6]. In other words, for coded systems, E[ak|r; ĥ(i), σ̂2(i)] and
E[akaTk |r; ĥ(i), σ̂2(i)] are based on the decoder output. Simi-
larly, the presence of training symbols is easily handled by the
symbol estimator, which only has to set the training symbols
as deterministic constants when computing Ri and pi. Based
on these two observations, we see that the channel estimator
of the EM-ICSE always ignores the presence of a training se-
quence or of a channel code. It is the symbol estimator that
exploits the structure of the transmitted symbols to improve
their estimates.

4. A SIMPLIFIED EM CHANNEL ESTIMATOR

In this section, we propose the simplified EM estimator
(SEM), an alternative to the EM channel estimator in (3), (4),
(5), and (6) that avoids the computation of Ri and the ma-
trix inversion of (3). To derive the SEM estimator, we note
that, from channel model (1) and the uncorrelatedness as-
sumption, we get hn = E[rkak−n]. This expected value may
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be computed by conditioning on r, yielding

E
[
rkak−n

] = E
[
E
[
rkak−n|r

]] = E
[
rk E

[
ak−n|r

]]
, (7)

where the last equality follows from the fact that rk is a con-
stant given r. Note that the channel estimator has no access
to E[ak|r], which requires exact channel knowledge. How-
ever, based on the iterative paradigm of Figure 1, at the ith

iteration the channel estimator does have access to ã(i)k =
E[ak|r; ĥ(i), σ̂2(i)]. Replacing this value in (7), and also replac-
ing a time average for the ensemble average, leads to the fol-
lowing channel estimator:

ĥ(i+1)n = 1
N
rkã

(i)
k−n for n = 0, 1, . . . ,µ. (8)

Notice that in (8) the channel is estimated by correlating the
received signal with the soft symbol estimates ãk. This is sim-
ilar to the fully trained channel estimator of [23, 24], known
as channel probing, except that the training symbols have
been replaced by their soft estimates.

As for estimating the noise variance, let â(i)k be a hard
decision of the kth transmitted symbol, chosen as the el-

ement of A closest to ã(i)k . Also, define the vector â(i)k =
(â(i)k , â(i)k−1, . . . ,â

(i)
k−µ)

T . We propose to compute σ̂2(i+1) using

σ̂2(i+1) =
1
N

N−1∑
k=0

∣∣rk − ĥT(i+1)â
(i)
k

∣∣2. (9)

Notice that in (9) we use hard instead of soft symbol esti-
mates. In our simulations, we found that doing so improved
convergence speed.

Remark 1. Combining the estimates (8) into a single vector,

we find that ĥ(i+1) = (ĥ(i+1)0 , . . . , ĥ(i+1)µ )T = pi. Thus, we may
view (8) as a simplification of the EM estimate R−1i pi that
avoids matrix inversion by approximating Ri by I. This ap-
proximation is reasonable, since Ri is an a posteriori esti-
mate of the autocorrelation matrix of the transmitted vector,
which, due to the uncorrelatedness assumption, is close to
the identity for large N . Furthermore, since this approxima-
tion results in a channel estimator that is less complex than
the EM channel estimator defined in (3) and (4), we refer to
the channel estimator defined by (8) and (9) as the simplified
EM estimator (SEM).

Remark 2. The SEM channel estimator requires only the soft

symbol estimates ã(i)k , so that an ICSE based on the SEM esti-
matormay be represented as in Figure 3. Note that any equal-
izer that produces soft symbol estimates can be used, which
allows for an even lower-complexity implementation of an
SEM-based ICSE, using equalizers such as those proposed in
[20, 21].

Remark 3. It is interesting to notice that, while substituting
the actual values of h or a for their estimates will always im-
prove the performance of the iterative algorithm, the same is
not true for σ . Indeed, substituting σ for σ̂ will often result

rk Symbol
estimator

ãk

ĥ, σ̂

SEM
estimator

Figure 3: Iterative channel-and-symbol estimation with the SEM
channel estimator.

in performance degradation. Intuitively, one can think of σ̂
as playing two roles: in addition to measuring σ , it also acts

as a measure of reliability of the channel estimate ĥ. In fact,
consider a decomposition of the channel output:

rk = ĥTak + (h− ĥ)Tak + nk. (10)

The term (h − ĥ)Tak represents the contribution to rk from
the estimation error. By using ĥ to model the channel in the
BCJR algorithm, we are in effect lumping the estimation er-
ror with the noise, resulting in an effective noise sequence
with variance larger than σ2. It is thus appropriate that σ̂

should exceed σ whenever ĥ differs from h. Alternatively, it
stands to reason that an unreliable channel estimate should
translate to an unreliable symbol estimate, regardless of how

well ĥTak matches rk. Using a large value of σ̂ in the BCJR
equalizer ensures that its output will have a small reliabil-
ity. Fortunately, the noise variance estimate produced by (9)
measures the energy of both the second and the third term

in (10). If ĥ is a poor channel estimate, ã will also be a poor
estimate for a, and convolving ã and ĥ will produce a poor
match for r, so that (9) will produce a large estimated noise
variance.

5. THE EXTENDED-WINDOWCHANNEL ESTIMATOR

Misconvergence is a common characteristic of ICSEs, espe-
cially in blind systems. To illustrate this problem, consider
estimating the channel h = (1, 2, 3, 4, 5)T with a BPSK con-
stellation and SNR = ‖h‖2/σ2 = 20 dB. An ICSE based on
the BCJR symbol estimator and the SEM channel estimator

converges to ĥ(20) = (2.1785, 3.0727, 4.1076, 5.0919, 0.1197)T

after 20 iterations, with K = 1000 bits, with initialization
ĥ(0) = (1, 0, 0, 0, 0)T and σ̂2(0) = 1. Although the algorithm

fails, ĥ(20) is seen to roughly approximate a shifted (or de-
layed) and truncated version of the actual channel. A possi-
ble explanation for this behavior is that the channel is maxi-
mum phase, while we used a minimum phase initialization.
This phase mismatch between ĥ and the initialization ĥ(0)

introduces a delay that cannot be compensated for by the
iterative scheme. In fact, after convergence, ak is approx-
imately sign(ãk+1), and h0 can be accurately estimated by
correlating rk with ãk+1. However, because the delay n in
(8) is limited to the narrow window 0, . . . ,µ, this correla-
tion is never computed. This observation leads us to propose
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the extended-window (EW) channel estimator, in which (8)
is computed for a broader range of n.

To determine how much the correlation window must
be extended, consider two extreme cases. First, suppose h ≈
(0, . . . ,0, 0, 1)T , so that rk ≈ ak−µ + nk. Also, assume that ĥ ≈
(1, 0, 0, . . . ,0)T . In this case, assuming a BPSK constellation,
the symbol estimator output is ãk = tanh(rk/σ2). Hence, as-
suming a large SNR, ãk ≈ ak−µ, so to estimate h0 and hµ we
must compute (8) for n = −µ and n = 0, respectively. Like-

wise, if h ≈ (1, 0, 0, . . . ,0)T and ĥ ≈ (0, . . . ,0, 0, 1)T , the sym-
bol estimator output ãk is such that ãk ≈ ak+µ, so to estimate
h0 and hµ we must compute (8) for n = µ and n = 2µ, re-
spectively. These observations, based on two extreme cases,
suggest the extended-window (EW) channel estimator, which
computes

gn = 1
N

N−1∑
k=0

rkã
(i)
k−n for n = −µ, . . . ,2µ. (11)

By doing this, we ensure that g = (g−µ, . . . ,g2µ)T has µ+1 en-
tries that estimate the desired correlations E[rkak−n], for n ∈
{0, . . . ,µ}. Its remaining terms are an estimate of E[rkak−n]
for n /∈ {0, . . . ,µ}, and hence should be close to zero. There-
fore, we define the EW channel estimates by

ĥ(i+1) =
(
gδ , . . . ,gδ+µ

)T
, (12)

where the delay parameter δ ∈ {−µ, . . . ,µ} is chosen so

that ĥ(i+1) represents the µ + 1 consecutive coefficients of g
with highest energy. In other words, δ is chosen to maximize

‖ĥ(i+1)‖2.
Notice that after convergence we expect that gδ ≈ h0.

Comparing (7) and (11), we note that this is equivalent to

saying that ak ≈ ã(i)k−δ . This delay must be taken into account
in the estimation of the noise variance. With that in mind,
we propose to estimate σ2 using a modified version of (9),
namely

σ̂2(i+1) =
1
N

N−1∑
k=0

∣∣rk − ĥT(i+1)â
(i)
k−δ
∣∣2. (13)

5.1. Computational complexity

We now compare the computational complexity of the EW
channel estimator of (11), (12), and (13) to that of the EM
channel estimator of (3) and (4). We ignore the cost of com-
puting ãk, and we consider the complexity in terms of sums
and multiplications per received symbol.

For each received symbol, the EW algorithm performs
3µ + 1 multiplications and 3µ + 1 additions to compute the
vector g in (11). The division by N , as well as the computa-
tion of δ, is done only once per block of N received symbols,
and thus can be ignored. The computation of each term in
the summation in (13) involves µ+2 multiplications and the
same number of sums. Hence, the total computational cost
of the EW channel estimator is 4µ + 4 multiplications and
4µ + 4 sums.

For the EM channel estimator, we consider that
E[akaTk |r; ĥ(i), σ̂2(i)] ≈ E[ak|r; ĥ(i), σ̂2(i)] E[ak|r; ĥ(i), σ̂2(i)]T . This
approximation is used in [11, 12], and allows for a simpler
complexity comparison. With this simplification, and noting

that E[akaTk |r; ĥ(i), σ̂2(i)] is a symmetric matrix, we see that the
computation of Ri in (5) requires (µ + 1)µ/2 multiplications
and an equal number of sums per received symbol. On the
other hand, the computation of pi in (6) requires µ + 1 mul-
tiplications and sums per received symbol. The linear system
in (3) is solved only once, so that its cost can be ignored. The
same can be said about most of the operations in (4), except
for its first term, which requires 1multiplication and sum per
received symbol. Thus, the total cost of this approximate EM
channel estimator is µ2/2+3µ/2+2 multiplications and sums
per received symbol.

6. SIMULATION RESULTS

In this section, we use simulations to compare the perfor-
mance of the fully blind EM-ICSE and the fully blind EW-
ICSE, assuming both ICSEs use the BCJR symbol estima-
tor. The results presented in this section all correct for the
aforementioned shifts in the estimates. In other words, when
computing channel estimation error or BER, the channel and
symbol estimates were shifted to best match the actual chan-
nel or the transmitted sequence. Note that this shift was done
only for the purpose of computing the errors, and hence did
not affect the estimates in the iterative procedure.

For comparison purposes, we also consider fully trained
channel estimators, in which all the transmitted bits are as-
sumed known by the channel estimator.We consider the fully
trained MMSE estimator which, as discussed in Section 3,
can be seen as a trained version of the EM channel estima-
tor. We also consider channel probing which, as discussed
in Section 4, can be seen as the trained counterpart of the
EW channel estimator. In the simulations of the trained es-
timators, we use the same block of received samples to esti-
mate the channel (assuming that all transmitted symbols are
known) and to estimate the transmitted symbols (with the
BCJR equalizer, using the trained channel estimates).

As a first test of the EW-ICSE, we simulated the trans-
mission of K = 600 BPSK symbols over the channel
h = (−0.2287, 0.3964, 0.7623, 0.3964,−0.2287)T from [12].
To stress the fact that the EW-ICSE is not sensitive to initial
conditions, we initialized ĥ randomly using ĥ(0) = uσ̂(0)/‖u‖,
where u ∼ N (0, I) and σ̂2(0) =

∑N−1
k=0 |rk|2/2N . By assign-

ing half of the received energy to the signal and half to the
noise, we are essentially initializing the SNR estimate to 0 dB.
In Figure 4, we show the convergence behavior of the EW-
ICSE estimates, averaged over 100 independent runs of this
experiment using SNR = ‖h‖2/σ2 = 9 dB. Only the con-

vergence of ĥ0, ĥ1, and ĥ2 is shown; the behavior of ĥ3 and

ĥ4 is similar to that of ĥ2 and ĥ0, respectively, but we show
only the coefficients with worse convergence. The shaded re-
gions around the channel estimates correspond to plus and
minus one standard deviation. For comparison, we show the
average behavior of the EM channel estimates in Figure 5.
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ĥ1

ĥ0

Figure 4: Estimates of h = (−0.2287, 0.3964, 0.7623, 0.3964,
−0.2287)T , produced by the EW-ICSE. Dashed lines correspond to
the actual channel coefficients.

1

0.8

0.6

0.4

0.2

0

−0.2

−0.4
0 2 4 6 8 10 12 14 16 18 20

Iteration

C
h
an
n
el
co
effi

ci
en
t

ĥ2
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Figure 5: EM estimates of h = (−0.2287, 0.3964, 0.7623, 0.3964,
−0.2287)T . Dashed lines correspond to the actual channel coeffi-
cients.

Unlike the good performance of the EW-ICSE, the EM es-
timates even fail to converge in the mean to the correct esti-

mates, especially ĥ0. This happens because the EM-ICSE of-
ten gets trapped in local maxima of the likelihood function
[16], while the EW-ICSE avoids many of these local max-
ima. The better convergence behavior of the EW-ICSE is even
more clear in Figure 6, where we show the noise variance es-
timates. Also, Figures 4, 5, and 6 suggest that the EW-ICSE
converges faster than the EM-ICSE.

In Figure 7 we show the channel estimation error for the
EW-ICSE and the EM-ICSE estimates as a function of SNR,
after 20 iterations. The number of iterations is enough for
both the EM-ICSE and the EW-ICSE to converge in this case.
We also show the estimation errors of the trainedMMSE esti-
mates and the trained channel probing estimates. The results
are averaged over 100 independent runs of this experiment.
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Figure 6: Estimates of σ2, produced by the EW-ICSE and the EM-
ICSE.
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Figure 7: Estimation error for the EM-ICSE and EW-ICSE, after 20
iterations. Also shown are the performances of the trained channel
probing and trained MMSE estimates.

In Figure 8, we show the average BER. Again, as we can see
in Figures 7 and 8, the EW-ICSE performs better than the
EM-ICSE.

It is interesting to notice in Figures 7 and 8 that for high
enough SNR the performance of the EW-ICSE approaches
that of its trained counterpart, the channel probing estima-
tor. One might also expect the performance of the EM-ICSE
to approach that of its trained counterpart, the MMSE algo-
rithm. However, as we can see from Figures 7 and 8, the EM-
ICSE performs worse than channel probing, which is in turn
worse than the MMSE estimator. The difference between the
EM and MMSE estimates may be explained by the miscon-
vergence of the EM-ICSE.

It should be pointed out that even though the channel
estimates provided by the MMSE algorithm are better than
the channel probing estimates, the BER of both estimates is
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1000 random channels.

similar. In other words, the channel probing estimates are
“good enough,” and the added complexity of the MMSE
estimator does not have much impact on the BER perfor-
mance in the SNR range considered here. Finally, we ob-
served that the BER performance of a BCJR equalizer with
channel knowledge cannot be distinguished from that of a
BCJR equalizer using the MMSE estimates.

To further support the claim that the EW-ICSE avoids
most of the local maxima of the likelihood function that trap
the EM-ICSE, we ran both the EM-ICSE and the EW-ICSE
on 1000 random channels of memory µ = 4, generated as
h = u/‖u‖, where u ∼ N (0, I). The estimates were initialized
to σ̂2(0) =

∑N−1
k=0 |rk|2/2N and ĥ(0) = (0, . . . ,0, σ̂(0), 0, . . . , 0)T ,

that is, the center tap of ĥ(0) is initialized to σ̂(0). We used SNR
= 18dB, and blocks of K = 1000 BPSK symbols. In Figure 9
we show the word error rate (WER) (fraction of blocks de-
tected with errors) of the EW-ICSE and the EM-ICSE versus
iteration. It is again clear that the EW-ICSE outperforms the
EM-ICSE. It should be noted that in this example the equal-
izer based on the channel probing estimates was able to detect
all transmitted sequences correctly.
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Figure 10: Histograms of estimation errors for the EW-ICSE and
the EM-ICSE over an ensemble of 1000 random channels.

The better performance of the EW estimates can also be
seen in Figure 10, where we show histograms of the estima-
tion errors (in dB) for the channel probing, the EW, and
the EM estimates, computed after 50 iterations. We see that
while only 3% of the EW estimates have an error larger than
−16 dB, 35% of the EM estimates have an error larger than
−16 dB. In fact, the histogram for the EW estimates is very
similar to that of the channel probing estimates, which again
shows the good convergence properties of the EW-ICSE. It is
also interesting to note in Figure 10 that the EM estimates
have a bimodal behavior: the estimation errors produced
by the EM-ICSE are grouped around −11 dB and −43 dB.
These groups are respectively better than and worse than the
channel probing estimates. This bimodal behavior can be ex-
plained by the fact that the EM algorithm often converges to
inaccurate estimates, leading to large estimation errors. On
the other hand, when the EM algorithm does work, it works
very well.

7. CONCLUSIONS

We presented the EW channel estimator, a linear-complexity
channel estimator for ICSE. We have shown that this tech-
nique can be seen as a modification of the EM channel es-
timator. A key feature of the EW estimator is its extended
window, which greatly improves the convergence behavior of
ICSEs based on the EW estimator, avoiding most of the local
maxima of the likelihood function that trap the EM-ICSE.
Furthermore, the computational complexity of the EW esti-
mator grows linearly with the channel memory, as opposed
to the quadratic complexity of the EM channel estimator.
Additionally, the EW estimator may be used with any soft-
output equalizer. This allows for even further complexity
reduction when compared to the EM-ICSE, which requires
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a BCJR equalizer. However, simulations show that, despite
its good convergence properties, the EW-ICSE is not glob-
ally convergent. The problem of devising an iterative strategy
that is guaranteed to always avoidmisconvergence, regardless
of initialization, remains open.
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