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The emergence of MIMO communications systems as practical high-data-rate wireless communications systems has created sev-
eral technical challenges to be met. On the one hand, there is potential for enhancing system performance in terms of capacity and
diversity. On the other hand, the presence of multiple transceivers at both ends has created additional cost in terms of hardware
and energy consumption. For coherent detection as well as to do optimization such as water filling and beamforming, it is essential
that the MIMO channel is known. However, due to the presence of multiple transceivers at both the transmitter and receiver, the
channel estimation problem is more complicated and costly compared to a SISO system. Several solutions have been proposed
to minimize the computational cost, and hence the energy spent in channel estimation of MIMO systems. We present a novel
method of minimizing the overall energy consumption. Unlike existing methods, we consider the energy spent during the chan-
nel estimation phase which includes transmission of training symbols, storage of those symbols at the receiver, and also channel
estimation at the receiver. We develop a model that is independent of the hardware or software used for channel estimation, and
use a divide-and-conquer strategy to minimize the overall energy consumption.
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1. INTRODUCTION

The use of multiple-input multiple-output (MIMO) chan-
nels formed using multiple transmit/receive antennas has
been demonstrated to have great potential for achieving high
data rates [1]. Of concern, however, is the increased complex-
ity associated with multiple transmit/receive antenna sys-
tems. First, increased hardware cost is required to imple-
ment multiple RF chains and adaptive equalizers. Second,
increased complexity and energy is required to estimate
large-size MIMO channels.

Energy conservation in MIMO systems has been consid-
ered in different perspectives. In [2], for instance, hardware-
level optimization is done to minimize energy. On the other
hand, in [3, 4], energy consumption is minimized at the re-
ceiver by using low-rank equalization. In [5], reducing the
order of MIMO systems by selection of antennae is given as
a viable option to minimize energy consumption both at the
receiver and transmitter, without degrading the system per-
formance. In [6], the transmission and circuit energy con-
sumption per bit of information transmitted is analyzed. The
authors claim in [6] that single-input single-output (SISO)

(1 × 1) systems gives best performance over MIMO (2 × 2)
systems for short-range transmission.

In this paper, we focus on MIMO channel estimation
subject to delay and error constraints. We propose an an-
tenna selection scheme for channel estimation that can min-
imize energy consumed both at the transmitter and the re-
ceiver. Note that antenna selection for data transmission [5]
requires at least partial knowledge of the full channel matrix.
Hence, the proposed scheme can be applied before the an-
tenna selection is done for data transmission.

We can summarize the novelty of the proposed scheme
as follows: (i) we concentrate exclusively on the channel es-
timation phase unlike in [6] where the authors have con-
sidered the data transmission phase; (ii) we propose an an-
tenna selection scheme to minimize energy during channel
estimation unlike [5] where information-theoretic perfor-
mance (channel capacity) during data transmission is con-
sidered for antenna selection; (iii) the proposed method can
be applied independent of the hardware or software used
for channel estimation. In fact, the hardware and software
can be optimized independently of the proposed method as
in [2].
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The rest of the paper is organized as follows. First, we
study the channel estimation error and the cost of compu-
tation of the MIMO system under consideration. Next, we
describe the generalized energy reduction scheme. After this,
we focus on minimizing energy at the transmitter and the
receiver separately. Next, we consider joint transmitter and
receiver energy minimization. To illustrate our method, we
consider a MIMO system with flat-fading channels of arbi-
trary size and give comparisons of energy and error variation
for different channel estimation schemes obtained by varying
the number of active transmit/receive antennas under a fixed
delay and error constraint.

2. CHANNEL ESTIMATION INMIMO FLAT-FADING
ENVIRONMENTS USING TRAINING

Before we proceed to formulate our problem, we need to have
a valid model of channel estimation. The basic equation of
the flat-fading MIMO system in concern is given in (1):

yi
︸︷︷︸

N×1

= H
︸︷︷︸

N×M
xi
︸︷︷︸

M×1
+ vi
︸︷︷︸

N×1
, i = 1, 2, . . . , (1)

where we consider a MIMO system withM transmitters and
N receivers. The received data vector is yi, the transmitted
data vector is xi, while the noise vector is vi at the ith time
interval. The channel matrix isH of sizeN×M. Let the noise
variance be σ2 and let the signal power level be P. By trans-
mitting J data blocks, we form the augmented matrix equa-
tion (2):

Y
︸︷︷︸

N×J
= H

︸︷︷︸

N×M
X
︸︷︷︸

M×J
+ V
︸︷︷︸

N×J
, (2)

where

Y = [

y1, . . . , yJ
]

, X = [

x1, . . . , xJ
]

, V = [

v1, . . . , vJ
]

(3)

and we form the least squares estimation of the channel as
[7]

̂H = YX†. (4)

The matrix pseudoinverse X† is formed as

X† = XH
(

XXH
)−1

. (5)

2.1. Channel estimation error

The channel estimation error is obtained from (2) and (4) as

ξ = ̂H−H = VX† (6)

and the average squared error (χ) is

χ
�= 1

NM
trace

(

ξξH
) = 1

NM
trace

(

X†X†HVHV
)

. (7)
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Figure 1: MSE variation with N , M, and J . We see that the MSE
is independent of N , has a linear variation with M, and is inversely
proportional to J .

We can find a lower bound to χ as follows [7]. We assume the
noise to be additive white and Gaussian. Then, taking expec-
tation of χ, we get the mean-squared error

MSE = E{χ} ≥ 1
NM

trace
(

X†X†HE
{

VHV
})

≥ 1
NM

trace
(

X†X†HNσ2I
)

≥ σ2

M
trace

(
(

XXH
)−1)

.

(8)

From [7], we see that

trace
(
(

XXH
)−1) ≥ M2

trace
(

XXH
) (9)

and under optimal training, with XXH = JPI, we get

MSE ≥ σ2

PJ
, (10)

which is the result derived in [7].
However, the aboveMSE is not always achievable in prac-

tice. First, the above derivation assumes the noise covariance
to be identity, which is only feasible if the training length is
infinitely large. Moreover, it is not always possible to design
an optimal training sequence. Hence, we need to choose a
more pragmatic, worst-case error formula to model our sys-
tem. If we consider our channel estimation scheme, we know
that the channel estimation error is inversely proportional to
the SNR and the data block length while it is directly propor-
tional to the interference, that is, the number of transmitters.

In order to investigate this behavior, we have simulated
random channels and have given the result in Figure 1. In or-
der to model this behavior as nearly as possible, we formulate
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the error as

MSE = cσ2
M

JP
, (11)

where σ2 is the noise power, P is the signal power, and c is
a real, positive constant of proportionality. We should note
that (11) is purely a heuristic formula that seems to model
the behavior seen in Figure 1 very well. Note also that it is
possible for us to calculate the error more precisely in terms
of X because the training is known. However, since X is also
a function of M, it is not possible to formulate the error in
explicit form and our analysis becomes more complicated.
Thus, we limit our analysis to (11) in the remainder of this
paper.

2.2. Channel estimation cost

It should be kept in mind that the variables in (1) are com-
plex numbers in general. However, we prefer to study the
number of computations required to obtain (4) in terms of
real floating-point operations.

Before proceeding in our analysis, we make some gener-
alized assumptions.

(i) We assume the computations are done in a sequential
manner. However, in real systems, most computations
are done in a blockwise manner [8, 9]. Moreover, more
than one floating-point operation can be performed
simultaneously. However, the analysis of such schemes
is beyond the scope of this paper.

(ii) The cost of multiplication is higher than the cost of
addition. However, how much higher this is depen-
dent on exact hardware implementation. For instance,
in [10, 11], it is given as 4 to 1. Moreover, the cost of di-
vision is higher than multiplication. In order to make
our analysis simpler, we consider cost of additions and
multiplications separately and we take the cost of di-
vision to be equal to two multiplications (reciprocal
operation and multiplication).

We should stress that for a given hardware model, a more
detailed and more accurate set of assumptions can be made.

We use the following basic rules, coupled with our as-
sumptions, as in [12]. Let us denote νm and νa as the energy
cost for one real floating-point multiplication and addition,
respectively.

(i) One complex addition requires two real additions, so
the cost is 2νa.

(ii) One complex multiplication, that is, (α1 + jβ1)(α2 +
jβ2), where (α1 + jβ1) and (α2 + jβ2) are the complex
numbers with real and imaginary parts, costs three real
multiplications and five real additions 3νm + 5νd. This
is done as α1α2 − β1β2 + j((α1 + β1)(α2 + β2)− α1α2 −
β1β2). The naive multiplication method requires one
more multiplication, 4νm + 4νa.

(iii) One division with complex numerator and real de-
nominator is equivalent to the cost of two real mul-
tiplications, 2νm.

(iv) One division with complex numerator and denomina-
tor (α1 + jβ1)/(α2 + jβ2) requires 7 real multiplications
and 6 real additions, that is, (α1 + jβ1)(α2− jβ2)/(α2 +
β2).

Next, let us consider the calculation of (5) in detail. The
steps involved in this are as follows.

(1) Calculation of XXH . The resulting matrix is of size
M×M. Each element of this matrix is an inner product of two
vectors of size 1 × J . This inner product requires J complex
multiplications and J−1 complex additions. Hence, the total
computation is M2J complex multiplications and M2(J − 1)
complex additions.We can cut this almost by half by noticing
that XXH is Hermitian. Finally, we have M(M + 1)J/2 com-
plex multiplications and M(M + 1)(J − 1)/2 complex addi-
tions. (Note that we can reduce this even more by noticing
that the main diagonal is real. However, we ignore this fact
for simplicity in our analysis.)

(2) Calculation of XH(XXH)−1. In terms of complexity
as well as numerical stability, it is not advisable to compute
X† via explicitly computing thematrix inverse (XXH)−1 [13].
Instead, we do this by solving a system of linear equations as
follows:

X† = XH
(

XXH
)−1

, (12)
(

X†
)T =

(
(

XXH
)T
)−1(

XH
)T
, (13)

(

X†
)T = (

LLH
)−1(

XH
)T
, (14)

LLH
(

X†
)T = (

XH
)T
, (15)

where LLH is the Cholesky decomposition of A = (XXH)T .
(X†)T are the unknowns that need to be found by solving the
linear system. Each column of (15) can be written as

LLH x̃i = xi, i = 1, 2, . . . , J. (16)

We need to solve a system as given in (16), J times to obtain
the matrix X†. First, forward elimination is used to solve for
zi in (17):

Lzi = xi, i = 1, 2, . . . , J. (17)

Next, back substitution is used to solve for x̃i in (18):

LH x̃i = zi, i = 1, 2, . . . , J. (18)

Since we have described the basic steps to be followed, let
us consider the complexity of each operation.

(i) The Cholesky decomposition can be given in pseu-
docode as [14] in Algorithm 1.

From Algorithm 1, we see that for each j, there are i − 1
complex multiplications and additions and 1 real division.
Since for fixed i, j varies from i+1 toM, the number of itera-
tions of j isM−i. Moreover, in order to calculate Lii, we need
i − 1 multiplications and additions and one square root op-
eration. We consider the cost of square root to be equivalent
to the cost of division.

To summarize, the total number of operations for each
value of i is (i− 1 + (i− 1)(M − i)) complex multiplications,
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Table 1: Computational cost of channel estimation.

Operation Complex × Complex + Divisions

X×XH M(M + 1)J/2 M(M + 1)(J − 1)/2 —

Cholesky decomposition M(M + 1)(M − 1)/6 M(M + 1)(M − 1)/6 M(M + 1)/2

Forward elimination JM(M − 1)/2 JM(M − 1)/2 JM

Back substitution JM(M − 1)/2 JM(M − 1)/2 JM

Y×X† NMJ NM(J − 1) —

Total
1/6(M3 −M) 1/6(M3 − 3M2 − 4M − 6NM) 1/2(M2 +M)

+J/2(3M2 −M +NM) +J/2(3M2 −M + 2NM) +2JM

for i := 1, . . . ,M

{

Lii :=
(

Aii −
∑i−1

k=1
∣

∣Lik
∣

∣
2

)1/2

for j := i + 1, . . . ,M

{

Lij :=
(

1/Lii
)

(

Aij −
∑i−1

k=1 LikL
∗
jk

)

}

}

Algorithm 1: Pseudocode for Cholesky decomposition.

(i − 1 + (i − 1)(M − i)) complex additions, and (1 +M − i)
divisions(square root). Accumulating this from i = 1, . . . ,M,
we getM(M +1)(M− 1)/6 complex multiplications,M(M +
1)(M − 1)/6 complex additions, andM(M + 1)/2 divisions.

(ii) The forward elimination involves the step

zj = 1
Lj j

(

x j −
j−1
∑

k=1
Ljkzk

)

, j = 1, . . . ,M. (19)

For fixed j, this involves j − 1 complex multiplications, j − 1
complex additions, and 1 division. This sums up to the final
cost of M(M − 1)/2 multiplications, M(M − 1)/2 additions
andM divisions.

The forward elimination has to be done for each column
of X†, that is, J times. Thus, the final cost is JM(M − 1)/2
complex multiplications, JM(M − 1)/2 complex additions,
and JM divisions.

(iii) The back substitution has the same complexity of
forward elimination. Thus, we have the same final cost of
JM(M − 1)/2 complex multiplications, JM(M − 1)/2 com-
plex additions, and JM divisions.

Using the above calculations, we can compute the total
cost of forming X†. This is given is Table 1.

(3) Calculation of product YX†. Once again, we have a
matrix product where each element of the resultant matrix

x0(t)

x1(t)

xM−1(t)

h00

h01

h10

h(N−1)0

y0(t)

y1(t)

yN−1(t)

...
...

Figure 2: MIMO channel.

is an inner product of vectors whose dimensions are 1 × J .
Hence, we haveNMJ complexmultiplications andNM(J−1)
complex additions.

A summary of our analysis is given in Table 1. From
Table 1, we can derive the total number of real floating-point
operations to be J((9/2)M2+(5/2)M+3NM)+(1/2)M3+M2+
(1/2)M multiplications and J((21/2)M2− (7/2)M +7NM) +
(7/6)M3 − (13/6)M −M2 − 2NM additions.

3. GENERALMETHODOLOGY

In this section, we describe the proposed method in a gen-
eral sense. The fundamental property that we assume in our
scheme is the modularity of hardware. For instance, when
a complex hardware system is built, it is done in a modular
way by assembling less complex blocks. Hence, a MIMO sys-
tem can be considered as a collection of SISO systems, with
respect to hardware. For instance, we assume that a 4-by-4
MIMO system can operate as a 2 by 2 system by turning off
some modules.

The MIMO system in concern, with M transmitters and
N receivers, can be given as in Figure 2. We call the set of
transmitters T and the set of receivers R. Their cardinalities,
|T| and |R|, are M and N , respectively. The objective is to
estimate the channels hi j , 0 ≤ i ≤ N − 1, 0 ≤ j ≤ M − 1, in
an energy-efficient manner. The channel estimation requires
the consumption of energy and time.

We make the following assumptions.

(A1) We first ignore electromagnetic interaction between
antenna elements. Thus, if we estimate hi j by having
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active only a subset of transmitters/receivers, the esti-
mate will be the same as the estimate we would get for
the same channel if all transmitters/receivers were ac-
tive. However, we refine our method taking correlation
into account at a later section.

(A2) The channels are frequency flat fading and during the
training phase, the channels remain time invariant.

We propose the following divide-and-conquer strategy.
Instead of estimating the full channel matrix at once (which
we call the naive method), we propose to estimate the full
channel matrix in K steps. On the kth step (k ∈ [1,K]),
we select the transmitters given by the set Tk (⊆ T) and the
receivers given by the set Rk (⊆ R) and estimate the chan-
nels between those transmitters and receivers. Let Pk be the
power level of each transmitter at the kth step, and let lk de-
note the length of training data to be used in channel estima-
tion. Moreover, let the noise power level at the receiver be σ2.
Hence, at the kth step, the average SNR at the receiver will be
proportional to Pk/σ2. We assume all transmitters have the
same path loss, that is, each transmitter is approximately at
the same distance from the receiver and the noise power level
is the same on all paths.

We will focus on minimizing the total energy consump-
tion, both at the receiver and transmitter. We define the fol-
lowing functions. Let gT be the energy spent by all the trans-
mitters. At the receivers, the energy consumption can be bro-
ken down into two components: the energy required to per-
form data acquisition and storage, which we denote by gI ,
and the energy needed to perform channel estimation or
computations, which we denote by gC . In our formulation,
gT , gI , and gC are functions of the variables K , Tk, Rk, lk, Pk,
k = 1, . . . ,K . For notational convenience, this dependence is
not shown in the sequel.

The total energy consumed can be given as

g = gT + gI + gC. (20)

Our objective is to minimize g. Next we consider the con-
straints involved.

(i) Avoiding trivial solutions. In order to estimate all the
channels, we need

⋃

k=1,...,K
Tk ⊗ Rk = T⊗ R, (21)

where ⊗ is the Cartesian product. In order to avoid trivial
solutions, we need

Tk 	= φ, Rk 	= φ, k ∈ [1,K], (22)

where φ is the null set.
(ii) Satisfying a channel MSE constraint. For acceptable

performance, the mean channel estimation error (MSE) at
each step εk should be below a minimum threshold,

εk = εk
(

Tk,Rk,Pk, lk
) ≤ ε, k ∈ [1,K]. (23)

The exact expression for εk is dependent on the channel es-
timation method. If we consider the power level at each step,
it should be lower than the maximum allowed by the trans-
mitter P:

Pk ≤ P, k ∈ [1,K]. (24)

(iii) Satisfying a transmission delay constraint. The train-
ing length at step k should be above a certain threshold lk
for the channel estimation to work (i.e., to have full rank X)
and the total data length would be below the maximum delay
allowed L:

lk ≤ lk, k ∈ [1,K],
K
∑

k=1
lk ≤ L. (25)

Our objective is to find Tk , Rk, Pk, and lk for k = 1, . . . ,K
subject to the above constraints (21), (22), (23), (24), and
(25) that minimize g given in (20). This is a typical set par-
titioning problem, where the objective is to find the optimal
partition of the sets T and R. In general, solving such prob-
lems would have to consider every possible partition in order
to find the optimal one. The complexity of such an approach
would be exponential in the set size. However, we pursue
simplified solutions in the following sections.

Before we proceed, let us consider the feasibility of the
problem. We see that all the parameters are bounded. Hence,
the feasibility region is bounded and in order to find feasible
solutions, we should choose the limits ε and L in a suitable
manner. For instance, if we choose ε = 0 or L = 0, it is ob-
vious that no solutions exist. Hence, by increasing either or
both of these values, we can increase the feasibility region. In
other words, we can trade off energy with channel estimation
error and delay.

3.1. Mutual coupling of antennas

In the preceding discussion under assumption (A1), we have
assumed the antennas to be uncorrelated. However, in real
life, this is far from the truth. In this section, we consider
mutual coupling between antennas at the transmitter and the
receiver and examine its effect on the channel estimate. First,
we break down the effective channel matrix into components
due to mutual coupling and fading, as given in (26):

H = F ˜HG. (26)

The receiver mutual coupling is given by the N × N ma-
trix F while the transmitter mutual coupling is given by the
M ×M matrix G. We assume a rich scattering environment
where the fading matrix ˜H (dimension N ×M) has full rank
and thus H is full rank. Let us consider the effective channel
formed between the transmitters Tk and the receivers Rk. We
assume arbitrary ordering of the transmitters and receivers
such that Tk and Rk can be grouped together. Then we can
partition the matrices in (26) into a 3 × 3 partition, in an
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arbitrary manner as

H =
⎡

⎢

⎣

H11 H12 H13

H21 H22 H23

H31 H32 H33

⎤

⎥

⎦ ,

F =
⎡

⎢

⎣

F11 F12 F13
F21 F22 F23
F31 F32 F33

⎤

⎥

⎦ ,

˜H =
⎡

⎢

⎣

˜H11 ˜H12 ˜H13

˜H21 ˜H22 ˜H23

˜H31 ˜H32 ˜H33

⎤

⎥

⎦ ,

G =
⎡

⎢

⎣

G11 G12 G13

G21 G22 G23

G31 G32 G33

⎤

⎥

⎦ .

(27)

The dimensions of the submatrices are such that the product
in (26) holds. In particular, F22 is size |Tk| × |Tk|, ˜H22 is size
|Tk| × |Rk|, and G22 is size |Rk| × |Rk|. The dimensions of
the other matrices are irrelevant to this discussion.

Next, we can express the channel between Tk and Rk as

H22 =
3
∑

j=1

( 3
∑

i=1
F2i ˜Hi j

)

G j2. (28)

However, if we apply the divide-and-conquer scheme,
with all transmitters and receivers except Tk and Rk being
turned off, the channel that we estimate in the kth step is

̂Hk = F22 ˜H22G22. (29)

Thus, we see that there is an error in the channel estimation
due to mutual coupling. However, we can correct this error
provided we know the mutual coupling matrices F and G
perfectly and have full rank. This is not an unreasonable re-
quirement because F and G are constant for a given antenna
configuration.

The procedure to correct the error due to mutual cou-
pling is as follows. At the kth step, after getting the estimate
̂Hk, we solve (29) to obtain ˜H22.

The number of computations required to solve this lin-
ear system of equations can be calculated as follows. We first
solve the system ˜H22G22 = F−122 ̂Hk and next solve the sys-
tem ˜H22 = F−122 ̂HkG−122 . This is similar to the analysis done in
Section 2.2. However, the matrices F22 and G22 are not Her-
mitian in general. So we need to use LU decomposition in
this case. Let us consider the solution of ˜H22G22 = F−122 ̂Hk

first. The LU decomposition of LU = F22 can be given as [14]
in Algorithm 2.

The LU decomposition as given in Algorithm 2 requires
T(T −1)(2T −1)/6 complex multiplications, T(T −1)(2T −
1)/6 complex additions, and T(T + 1)/2 complex divisions,

where T
�= |Tk|. The cost of forward elimination and back

substitution can be deduced from Section 2.2. Note that the
forward elimination requires no divisions because the main
diagonal of the lower triangular matrix consists of 1. We have
given the total number of computations required in Table 2,

where R
�= |Rk|.

for i := 1, . . . ,
∣

∣Tk

∣

∣

Lii := 1

for j := 1, . . . ,
∣

∣Tk

∣

∣

{

for i := 1, . . . , j

Ui j := Lij −
i−1
∑

k=1
LikUk j

for i := j + 1, . . . ,
∣

∣Tk

∣

∣

Lij :=
(

1/Uj j

)

(

Lij −
j−1
∑

k=1
LikUk j

)

}

Algorithm 2: Pseudocode for LU decomposition.

The cost of ˜H22 = F−122 ̂HkG−122 can be calculated in a simi-
lar manner. We have given the result in Table 3.

In the above result, the division can include a complex
divisor. Thus, the cost of complex division which is 7 real
multiplications and 6 real additions has to be taken into ac-
count. Finally, we get the total cost as (T3+2T2+4T+3RT2+
8RT+3R2T+4R+2R2+R3) real multiplications and (7/3T3−
1/2T2 +25/6T+7RT2−2RT+7R2T+25/6R−1/2R2 +7/3R3)
real additions, where T = |Tk| and R = |Rk|. This is the ad-
ditional cost due to mutual coupling of antennas that appear
in the proposed divide-and-conquer method.

After steps k = 1, . . . ,K , we would have formed the entire
matrix ˜H. Finally, we form the product F ˜HG to obtain the
actual channel matrix. The complexity of this operation is
3(N2M + NM2) real multiplications and (7N2M + 7NM2 −
4NM) real additions.

4. MINIMIZING ENERGY AT THE TRANSMITTER

We make the following assumptions.

(B1) We assume the receiver has no constraints on energy
because we only minimize energy at the transmitter.
This allows us to always make Rk = R. In other words,
we use all receivers at all steps.

(B2) We assume the antennas to be uncorrelated, so that the
channel estimate will not change with the selection of
Tk and Rk. Moreover, we assume the only variable af-
fecting the channel estimation error to be the sizes of
Tk and Rk and not the individual elements in them.

(B3) We assume retransmissions to be costly and hence se-
lect disjoint sets of transmitters, that is, Tk are disjoint.
In other words, each transmitter only transmits at one
step k.

From (11), the channel estimation error at the kth step is

εk = c1
σ2

Pklk

∣

∣Tk

∣

∣, (30)

where σ2 is the noise variance, and c1 is a real, positive con-
stant. The transmitter power level and the training length are
given by Pk and lk, respectively. The cardinality of the set Tk

is given as |Tk|.
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Table 2: Computational cost of ˜H22G22 = F−122 ̂Hk .

Operation Complex × Complex + Divisions

LU decomposition T(T − 1)(2T − 1)/6 T(T − 1)(2T − 1)/6 T(T + 1)/2

Forward elimination RT(T − 1)/2 RT(T − 1)/2 —

Back substitution RT(T − 1)/2 RT(T − 1)/2 RT

Total
1/6(2T3 − 3T2 + T) 1/6(2T3 − 3T2 + T) 1/2(T2 + T)

+RT(T − 1) +RT(T − 1) +RT

Table 3: Computational cost of ˜H22 = F−122 ̂HkG−122 .

Operation Complex × Complex + Divisions

LU decomposition R(R− 1)(2R− 1)/6 R(R− 1)(2R− 1)/6 R(R + 1)/2

Forward elimination RT(R− 1)/2 RT(R− 1)/2 —

Back substitution RT(R− 1)/2 RT(R− 1)/2 RT

Total
1/6(2R3 − 3R2 + R) 1/6(2R3 − 3R2 + R) 1/2(R2 + R)

+RT(R− 1) +RT(R− 1) +RT

The energy expenditure at the transmitter occurs mainly
due to transmission of training symbols. This energy is pro-
portional to the transmitter power level, the duration (or
length) of training, and the number of active transmitters.
Thus, total energy spent by all the transmitters can be given
as

gT =
K
∑

k=1
c2Pklk

∣

∣Tk

∣

∣, (31)

where c2 is a real, positive constant of proportionality. Due to
Rk = R, and Tk being disjoint, we can simplify (21) further.
We can leave Rk from the Cartesian product because Rk = R.
This reduces (21) to

⋃

k=1,...,K
Tk = T (32)

and since all Tk are disjoint, we get

K
∑

k=1

∣

∣Tk

∣

∣ = |T| =M. (33)

Solving for |Tk| is a standard integer partition problem.
For instance, ifM = 4, the ways we can select the number of
transmitters during the K steps are {4}(K = 1), {3, 1}(K =
2), {2, 2}(K = 2), {2, 1, 1}(K = 3), and {1, 1, 1, 1}(K = 4).
Thus, there are 5 possible ways in this case. If the number of
possible ways of selecting |Tk| is p(M) for |T| = M, we have
[15]

p(M) ≈ 1
4
√
3

(

eπ
√

(2/3)M

M

)

. (34)

We first select a partitioning scheme and keeping it fixed,
we solve the problem

min
Pi,li ,i∈[1,K]

K
∑

k=1
c2Pklk

∣

∣Tk

∣

∣ (35)

subject to (23), (24), and (25), where Tk, Rk and K are con-
stants. We find the minimum cost associated with the solu-
tion. For small values of M, that is, M ≤ 10, we can try all
possible partitions to find the best one with the minimum
cost.

Proposition 1. Under assumptions (A1)-(A2) and (B1)-(B3),
the channel estimation scheme that minimizes transmitter en-
ergy is to reduce the MIMO channel into a set of single-
input multiple-output (SIMO) channels and transmit using
one transmitter only at a time. Thus, each time a SIMO chan-
nel is estimated. The minimum energy is

g
T
= c1c2

σ2

ε
M (36)

as opposed to the energy of the naive method

gT = c1c2
σ2

ε
M2. (37)

The proof is given in Appendix A.
This result agrees with intuition since in this case there is

reduced interference from other transmitters. However, un-
der different assumptions and different channel estimation
schemes, we might get different results.
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5. MINIMIZING ENERGY AT THE RECEIVER

In contrast to the transmitter, the energy consumption at the
receiver is due to data acquisition and computation. From
Section 2.2, we see that the computational energy required is

gC,k = νm

(

lk

(

9
2

∣

∣Tk

∣

∣
2
+
5
2

∣

∣Tk

∣

∣ + 3
∣

∣Rk

∣

∣

∣

∣Tk

∣

∣

)

+
1
2

∣

∣Tk

∣

∣
3
+
∣

∣Tk

∣

∣
2
+
1
2

∣

∣Tk

∣

∣

)

+ νa

(

lk

(

21
2

∣

∣Tk

∣

∣
2 − 7

2

∣

∣Tk

∣

∣ + 7
∣

∣Rk

∣

∣

∣

∣Tk

∣

∣

)

+
7
6

∣

∣Tk

∣

∣
3 − 13

6

∣

∣Tk

∣

∣− ∣

∣Tk

∣

∣
2 − 2

∣

∣Rk

∣

∣

∣

∣Tk

∣

∣

)

,

(38)

where νm and νa are constants. The energy required for data
acquisition and storage is proportional to the amount of data
received (and processed). This is proportional to the number
of active receivers |Rk| and the length of training lk. Hence,
by conservation of energy, we have

gI ,k = c4
∣

∣Rk

∣

∣lk, (39)

where c4 is a real, positive constant of proportionality and the
total energy is

gR =
K
∑

k=1
gC,k + gI ,k. (40)

Our objective is to minimize gT subject to the constraints
(23), (24), and (25).

Proposition 2. Under assumptions (A1)-(A2) and (B2), the
channel estimation scheme that minimizes the energy con-
sumption at the receiver is to estimate each SIMO channel indi-
vidually by using one transmitter and all receivers at each step.
The minimum energy is

g
R
=M

(

νm
(

l(7 + 3N) + 2
)

+νa
(

l(7 + 7N)−2−2N)+c4Nl
)

(41)

as opposed to the energy of the naive method

gR =M
(

νm

(

l
(

9
2
M2 +

5
2
M + 3NM

)

+
1
2
M2 +M +

1
2

)

+ νa

(

l
(

21
2
M2 − 7

2
M + 7NM

)

− 13
6
−M − 2N

)

+ c4Nl
)

,

(42)

where l = c1σ2/Pε.

The proof is given in Appendix B.

5.1. Minimizing energywith correlated antennas

With mutual coupling between antennas, at each step, there
will be an additional cost as given in Section 3.1 of

g′C,k = νm
(
∣

∣Tk

∣

∣
3
+ 2

∣

∣Tk

∣

∣
2
+ 4

∣

∣Tk

∣

∣ + 3
∣

∣Rk

∣

∣

∣

∣Tk

∣

∣
2

+ 8
∣

∣Rk

∣

∣

∣

∣Tk

∣

∣ + 3
∣

∣Rk

∣

∣
2∣
∣Tk

∣

∣ + 4
∣

∣Rk

∣

∣

+ 2
∣

∣Rk

∣

∣
2
+
∣

∣Rk

∣

∣
3
)

+ νa

(

7
3

∣

∣Tk

∣

∣
3 − 1

2

∣

∣Tk

∣

∣
2
+
25
6

∣

∣Tk

∣

∣

+ 7
∣

∣Rk

∣

∣

∣

∣Tk

∣

∣
2 − 2

∣

∣Rk

∣

∣

∣

∣Tk

∣

∣ + 7
∣

∣Rk

∣

∣
2∣
∣Tk

∣

∣

+
25
6

∣

∣Rk

∣

∣− 1
2

∣

∣Rk

∣

∣
2
+
7
3

∣

∣Rk

∣

∣
3
)

(43)
and the final cost needs to be modified as

g′R = 3νm
(

N2M +NM2) + νa
(

7N2M + 7NM2 − 4NM
)

+
K
∑

k=1
gC,k + gI ,k + g′C,k.

(44)

In this case, the proposed optimal method in Proposition
2 has higher cost than the naive method because of the added
computations as well as due to the appearance of higher
power terms of |Rk| in the cost expression. Due to the same
reasons, we cannot derive an optimal solution analytically in
this case.

6. MINIMIZING ENERGY BOTH AT THE TRANSMITTER
AND RECEIVER

From Propositions 1 and 2, we can conclude that the opti-
mal scheme of channel estimation for a MIMO system (with
no mutual coupling) that minimizes both transmitter and
receiver energy consumption is to reduce the system into a
set of SIMO channels and estimate each SIMO channel in-
dividually. In other words, instead of transmitting the train-
ing symbols from all transmitters simultaneously, we have to
transmit them in a sequential manner by activating only one
transmitter at a time. In order to satisfy the delay require-
ment, each transmitter will be active only for a fraction of the
time it would have been active if all transmitters were trans-
mitting simultaneously.

6.1. Numerical example

In order to illustrate the result stated in the previous para-
graph, we consider an 8 × 8 MIMO system with flat fading
channels. In Table 4 and Figures 3, 4, and 5, we show results
of some possible schemes for channel estimation. Our con-
straints are, maximum error ε = 10−3 and delay L = 56. In
scheme 1, we used 56 symbols per each transmitter (total 448)
and employed the naive method to estimate the 8×8 system.
In scheme 2, we used Proposition 1 and used 7 symbols per
each transmitter (total 56) to estimate the 8 × 1 SIMO sys-
tems (8 times). In scheme 3, we transmitted 7 symbols from
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Table 4: Energy consumption for different channel estimation
schemes for 50 random 8-by-8 channels.

Scheme Total energy

1 448c2P + 448c4 + 28324νm + 61540νa

2 56c2P + 448c4 + 1752νm + 3384νa

3 56c2P + 56c4 + 3824νm + 8032νa

4 112c2P + 448c4 + 4012νm + 8108νa

each transmitter (total 56) and again used the naive method.
Finally, in scheme 4, we used 14 symbols per each transmitter
but reduced the system into four 8 × 2 systems (total 112)
to estimate the channel in 4 steps. In Figure 3, we see that
scheme 1 has the lowest error but highest energy consump-
tion. Either scheme 2 or 3 has the lowest energy consump-
tion. Scheme 3 has the lowest delay, but the channel cannot
be estimated because the training matrix does not have full
row rank. Thus we have omitted the results of scheme 3 from
figures. Schemes 2 and 4 have intermediate performance in
terms of error and energy. This is also illustrated in Figure 4,
where we have considered the number of estimation steps to
be performed (K) to be the independent variable. Thus, we
see that a tradeoff can be accomplished between error and
energy.

Although in this example schemes 2 and 4 have higher
channel estimation error, a better conclusion about perfor-
mance can be drawn only after numerical evaluation of the
performance in terms of the bit error rate. In order to inves-
tigate this, we have simulated transmission of 4-QAM data
through the same set of channels. An MMSE equalizer was
used at the receiver, constructed from the channel estimate
obtained as described in the previous paragraph. For each
channel, 10 Monte Carlo simulations were performed. We
have given the uncoded BER results in Figure 5 and we see
acceptable performance of the proposed scheme.

The constants P, c1, c2, νm, νa, c4 can be calculated given
the specific hardware, or can be experimentally measured.
We should stress that although we have assumed them to be
constants, for better results, some of them (such as c1) might
be taken as variables ofM, N , and SNR and can be incorpo-
rated into the optimization.

6.2. Minimizing energywith correlated antennas

With mutual coupling, the total cost to be minimized be-
comes

g′ = gT + g′R, (45)

where gT and g′R are given in (31) and (44), respectively. Min-
imization of each term in the summation of (45) individu-
ally would lead us to two different answers. We know that the
scheme proposed in Propositions 1 and 2 would minimize
gT but would increase g′R with respect to the naive solution.
However, if the cost saving in gT is greater than the loss in g′R,
we still might reduce the overall cost. The derivation of an
analytical solution for this problem is impossible due to the
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Figure 3: MSE variation with SNR for different channel estimation
schemes for 50 random 8-by-8 channels.
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Figure 4: MSE variation with the number of steps taken (K) by
different schemes at SNR 20 dB.

fact that the associated costs are disparate in nature. How-
ever, given the exact cost functions, numerical optimization
is possible for a specific hardware setup. This will be tackled
in future work.

7. CONCLUSIONS

Using a generic model for channel estimation error and en-
ergy consumption of a MIMO system, we have shown that
under flat-fading and least-squares channel estimation, the
optimal channel estimation scheme in terms of minimiz-
ing energy consumption is to convert the MIMO system
into a set of SIMO channels by activating each transmitter
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Figure 5: BER variation SNR for different channel estimation
schemes for 50 random 8-by-8 channels.

individually and performing channel estimation on each
SIMO system. However, the energy reduction comes at an
increase in estimation error. In our formulation, we have as-
sumed a homogeneous, isotropic, uncorrelated set of trans-
mitters and receivers. There is room in this area for future
work on adapting this method to a MIMO channel formed
by a disparate set of transmitters and receivers with differ-
ent power, computation, and storage capabilities and differ-
ent radiation patterns. Future work will consider application
of the proposed scheme to actual hardware.

APPENDICES

A. PROOF OF PROPOSITION 1

If we assume the partition Tk, Rk is already given for all k,
the problem at hand reduces to a typical nonlinear continu-
ous optimization problem. In order to solve this, we first find
the extremal points and see if they satisfy the Karush-Kuhn-
Tucker (KKT) conditions [16].

The Lagrangian (ignoring the lower bounds for lk) is

L =
K
∑

k=1
c2Pklk

∣

∣Tk

∣

∣ +
K
∑

k=1
λ1,k

(

c1
σ2

Pklk

∣

∣Tk

∣

∣− ε
)

+
K
∑

k=1
λ2,k

(

Pk − P
)

+ λ3

( K
∑

k=1
lk − L

)

,

(A.1)

where λ1,k, λ2,k, λ3 are the multipliers. For optimality, we
need

∂L

∂lk
= c2Pk

∣

∣Tk

∣

∣− λ1,kc1
σ2

Pkl
2
k

∣

∣Tk

∣

∣ + λ3 = 0, (A.2)

∂L

∂Pk
= c2lk

∣

∣Tk

∣

∣− λ1,kc1
σ2

P2
k lk

∣

∣Tk

∣

∣ + λ2,k = 0. (A.3)

We select a solution as follows. From (24), we select Pk = P.
We select

lk = c1
σ2

Pε
∣

∣Tk

∣

∣, (A.4)

where ε is the maximum error limit we need. If we substi-
tute this into (30), we get the error at kth step εk = ε, thus
satisfying (23) as well.

If Tk = T, |Tk| =M and from (25), we need

l1 = L ≥ c1
σ2

Pε
M. (A.5)

Hence,

K
∑

k=1
lk = c1

σ2

Pε

K
∑

k=1

∣

∣Tk

∣

∣ = c1
σ2

Pε
M ≤ L (A.6)

and we see that by selecting lk according to (A.4), (25) is au-
tomatically satisfied. Hence, we have a feasible solution. Next
we check its optimality. Since (25) is satisfied and active, we
have λ3 > 0. From (A.2) we have

λ1,k =
(

λ3 + c2P
∣

∣Tk

∣

∣

) Pl2k
c1σ2

∣

∣Tk

∣

∣

, (A.7)

which is positive. Next from (A.3) we have λ2,k = λ3(lk/P),
which is again positive. Hence, the solution is optimal. By
substitution of P = Pk and (A.4) in (31), we get (A.8). The
minimum transmitter energy given the partition of T is

gT = c1c2
σ2

ε

K
∑

k=1

∣

∣Tk

∣

∣
2
. (A.8)

Thus, we have solved the nonlinear continuous optimiza-
tion problem. The next step is to find the partition that mini-
mizes the cost. We see that the partition that minimizes (A.8)
consists of all ones, that is, {1, 1, . . . , 1}. In other words, in
order to minimize transmission energy, we should estimate
channels selecting each transmitter individually. Substituting
|Tk| = 1 into (A.8), we get (36); and substituting K = 1,
|Tk| =M into (A.5), we get (37).

B. PROOF OF PROPOSITION 2

Note that there is no transmitter power term Pk in (40) and
we can select Pk = P. Next we select the data length as in
(A.4). Next we make the following observations.

(i) Suppose we partition R such that |Rk′ | < |R|. This
implies we have turned off some receivers at some point and
thus we need some transmitters to transmit more than once.
Let the partition scheme where transmitters transmit more
than one be given as Tk′ , as opposed to the partition scheme
Tk where they transmit only once. Then we have

K ′
∑

k′=1

∣

∣Tk′
∣

∣
i ≥

K
∑

k=1

∣

∣Tk

∣

∣
i
, i = 1, 2, . . . , (B.1)

because we need to estimate all the channels. Thus, if we se-
lect a partition scheme where not all receivers are active, we
get an increase in cost.



Sarod Yatawatta et al. 11

(ii) If we keep all receivers active at each step, Rk = R, we
can select a partition for transmitters such that

∑K
k=1 |Tk| =

|T|. In this case, the partition scheme that minimizes the cost
is T = {1, 1, . . .} because in this case

M
∑

k=1

∣

∣Tk

∣

∣
i =M, i = 1, 2, . . . . (B.2)

Thus, in this case, we need to use all the receivers and the
only possible partition for Rk is R. Hence, we can conclude
that the channel estimation scheme that minimizes receiver
energy consumption is to estimate each SIMO channel indi-
vidually. Substituting |Tk| = 1, K = M, |Rk| = |R| into (40)
we get (41) and substituting K = 1, |Tk| = M, into (A.5) we
get (42).
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