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In a wireless ad hoc network, messages are transmitted, received, and forwarded in a finite geometrical region and the transmission
of messages is highly dependent on the locations of the nodes. Therefore the study of geometrical relationship between nodes in
wireless ad hoc networks is of fundamental importance in the network architecture design and performance evaluation. However,
most previous works concentrated on the networks deployed in the two-dimensional region or in the infinite three-dimensional
space, while in many cases wireless ad hoc networks are deployed in the finite three-dimensional space. In this paper, we analyze
the geometrical characteristics of the three-dimensional wireless ad hoc network in a finite space in the framework of random
graph and deduce an expression to calculate the distance probability distribution between network nodes that are independently
and uniformly distributed in a finite cuboid space. Based on the theoretical result, we present somemeaningful results on the finite
three-dimensional network performance, including the node degree and the max-flow capacity. Furthermore, we investigate some
approximation properties of the distance probability distribution function derived in the paper.
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1. INTRODUCTION

A wireless ad hoc network can be considered as one consist-
ing of a collection of nodes, and the relationship between
them is peer to peer. That is to say, it adopts a non central-
ized and self-organized structure. On the one hand, in con-
trast to other networks, all the nodes in wireless ad hoc net-
works can transmit, receive, and forward messages, thus it
does not require supports of the backbone networks. These
characteristics make it superior to those schemes requiring
infrastructure supports in respect of fast deploying at rela-
tively low cost. Thereby, it may be especially useful in battle-
field, disaster relief, scientific exploration, and so forth. On
the other hand, the locations of nodes are random, which
makes it more difficult to analyze the performance of wire-
less ad hoc networks.

Generally, wireless ad hoc networks can be modelled in
the framework of random graph. Nodes and links of a net-
work are considered as vertices and edges of a random graph
G(V ,E), respectively, where V is the set of vertices, each with
a random location, and E is the set of existing edges between
vertices. In the symmetrical case, all nodes of the network are
assumed to have the same transmission power and thus the
same covering radius R, which is determined by the inverse

power lawmodel of attenuation and a predetermined thresh-
old of power level for successful reception [1], that is,

P0

(
R

d0

)−n
= Pthreshold, (1)

where P0 is the power received at a close-in reference point
in the far-field region of the antenna at a small distance d0
from the transmitting antenna and n is the path loses com-
ponent depending on the environment. In the model, there
exists an edge (or a link) between node s and node t if the
distance between them d(s, t) is not larger than the covering
radius R (Figure 1). Both Ramamoorthy et al. [2] and Li [3]
adopted such kind of models, called random symmetric pla-
nar point graph and random geometric graph, respectively.
Further studies go along in the framework of random graph
theory. For example, Li [3] studied network connectivity and
Ramamoorthy et al. [2] studiedmax-flow capacity analysis of
network coding. The random graph model provides a mean-
ingful framework for analyzing the wireless ad hoc network,
especially when its topology is random.

It is obvious that the distance d(s, t) between nodes s and
t in the wireless ad hoc network is of great importance for
further investigations. According to the model above, d(s, t)
determines whether two randomly chosen nodes s and t are
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Figure 1: Random graph model of wireless ad hoc network.

able to communicate with each other directly with a given
covering radius, and it also determines the characteristics
of the whole network, such as the network topology and
the max-flow capacity. Moreover, in their landmark paper,
Gupta and Kumar [4] took into account the distance be-
tween the source and terminal of messages in measuring the
transport capacity of wireless networks. Since the probabil-
ity distribution gives a relatively thorough description of a
random variable, in [5], we analyzed the distance probabil-
ity distribution between nodes in the finite two-dimensional
region under the assumption that they are independent and
uniformly distributed, and presented the results for the rect-
angular region and the hexagonal region. In this paper, we
will study the case of the finite three-dimensional wireless
networks, which represents a wide category of practical net-
works, such as those deployed in the air space, in a building,
or in other three-dimensional sensor networks. A formula to
calculate the distance probability distribution between nodes
in a finite cuboid space is deduced.

The node degree, defined as the number of a node’s
neighbors with which the node can communicate directly
without relay, is an important measure of network. It de-
scribes local connectivity and also influences global prop-
erties. For networks in the infinite two-dimensional region,
based on the inverse power law model of attenuation with
lognormal shadowing fading, Orriss and Barton [6] proved
that the number of audible stations of a station, correspond-
ing to the node degree in this paper, obeys the Poisson dis-
tribution. This also comprehends the special case of random
graph model above, which does not allow random shadow-
ing. Verdone [7] extended the discussion to the infinite three-
dimensional space and got the same conclusion. However,
there are many differences between networks in the finite
space and those in the infinite space due to the edge effect
of the finite region [2]. For a wireless ad hoc network in
the finite two-dimensional region, we presented, in [5], that
the probability distribution of node degree is much more

Y b

B d(A,B)

aA

R t

Z

0r

S(t,A,R)X

1

Figure 2: Illustration for the three-dimensional cuboid space.

complicated, even in the absence of random shadowing. In
this paper, we will extend the result in [5] to the finite three-
dimensional network.

The max-flow capacity of a network [8] is another im-
portant performance measure and is the upper bound of
transmission capacity of a network. In the single-source
single-terminal transmission, Ahuja et al. [9] proved that the
max-flow capacity between the source node and the termi-
nal node can be achieved only by routing. And in the single-
source multiple-terminal transmissions, Ahlswede et al. [10]
and Li et al. [11] showed that the global max-flow capac-
ity, which is the minimum of the max-flows between each
pair of source and terminal, can be achieved by applying net-
work coding. Ramamoorthy et al. [2] investigated the ca-
pacity of network coding for random networks by studying
the relationship between max-flow capacity of network and
the probability of links’ existence in random networks in a
unit square region. In this paper, based on the random graph
model, we will present further results on themax-flow capac-
ity of the three-dimensional networks in a finite space, under
the assumption that each link has unit capacity.

The rest of this paper is organized as follows. In Section 2,
we deduce the distance probability distribution function be-
tween nodes that are independent and uniformly distributed
in cuboid space. Then, on the basis of the distribution func-
tion, somemeaningful results on the wireless ad hoc network
characteristics are presented, including the node degree in
Section 3 and the max-flow capacity in Section 4. Some nu-
merical results are presented in Section 5 on the approxima-
tion property of the distance probability distribution func-
tion. Finally, we conclude the paper in Section 6.

2. DISTANCE PROBABILITY DISTRIBUTION
BETWEEN NODES IN CUBOID SPACE

As mentioned in Section 1, the study of the distance prob-
ability distribution is of great importance for further study.
In this section, we discuss the probability distribution of dis-
tance between nodes in a cuboid space under the assumption
that all nodes are independent and uniformly distributed in
the space.

As shown in Figure 2, let A and B denote two arbitrary
nodes in cuboid spaceC of a×1×b (a ≤ 1 ≤ b). The distance
between A and B is denoted by d(A,B) and its probability
distribution by F(R) = P(d(A,B) ≤ R). In [5], we presented
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the probability distribution of distance between nodes in the
rectangular region, which is the basis for the discussion of the
three-dimensional case. The results in [5] is as follows.

Theorem 1. Let A′ and B′ be two points which are indepen-
dent and uniformly distributed in a 1 × b (1 ≤ b) rectangular
region. Then the probability distribution function of distance
between A′ and B′, that is, f (r) = P(d(A′,B′) ≤ r), is

f (r) = EA′
[
S(A′, r)

]
S

, (2)

or equivalently

EA′
[
S(A′, r)

] = S× f (r), (3)

where S = 1 × b denotes the area of the rectangular region,
S(A′, r) denotes the area whereDisc(A′, r) and the rectangular
region overlap, where Disc(A′, r) represents a disc with radius
r and center A′, and EA′[S(A′, r)] denotes the expectation of
S(A′, r) in location of A′. Further, the expression of f (r) is as
follows:

f (r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

f1(r) = πr2

b
− 4(b + 1)r3

3b2
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2b2
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f2(r) = bπ − 1
b2

r2 − 2r2

b
arccos

1
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+
2
(
2r2 + 1

)
3b

√
r2 − 1− 4

3b
r3 +

1
6b2

, 1 ≤ r < b,

f3(r) = πr2

b
− 2r2

b

(
arccos

b

r
+ arccos

1
r

)
+
2
(
2r2 + 1

)
3b

√
r2 − 1

+
2
(
2r2 + b2

)
3b2

√
r2 − b2 − r4

2b2
− b2 + 1

b2
r2 +

b4 + 1
6b2

, b ≤ r <
√
b2 + 1,

f4(r) = 1, r ≥ √b2 + 1.

(4)

Now come back to the three-dimensional case. First, letA
be settled and B uniformly distributed in the cuboid space C,
as shown in Figure 2. Let Sphere(A,R) denote a sphere with
center A and radius R, and V(A,R) denote the volume of
the space where Sphere(A,R) and the cuboid space C over-
lap. It is obvious that the probability of d(A,B) ≤ R, de-
noted by FA(R), is equal to that one where point B falls inside
Sphere(A,R). Thus,

FA(R) = V(A,R)
V

, (5)

where V = a × b denotes the volume of cuboid C. Further-
more, if point A is also uniformly distributed in the cuboid C
and is independent of the location of point B, the probability
of d(A,B) ≤ R, denoted by F(R), is the expectation of FA(R)
with uniformly distributed location of point A, that is,

F(R) = EA
[
FA(R)

] = EA

[
V(A,R)

V

]
. (6)

Next, we will discuss the calculation of F(R). Let S(t,A,R)
denote the area of an X-axial cross section of the space where
Sphere(A,R) and the cuboid space C overlap, with distance t
from A. Thus,

V(A,R) =
∫
T
S(t,A,R)dt, (7)

where T denotes the integral region of t. Then, we get the
following expression:

F(R) = EA

[
V(A,R)

V

]

= EA

[
1
ab

∫
T
S(t,A,R)dt

]

= 1
ab

∫
T
EA
[
S(t,A,R)

]
dt

= 1
ab

∫
T
P(t,A,R)

[
b × f (r)

]
dt

= 1
a

∫
T
P(t,A,R) f (r)dt,

(8)

where r denotes the radius of the X-axial cross section of
Sphere(A,R) with distance t from the sphere center A, and
EA[S(t,A,R)] = P(t,A,R)[b× f (r)] denotes the expectation
of S(t,A,R) in random location of A. P(t,A,R) is defined as
the probability that the center of the X-axial cross section of
Sphere(A,R) with distance t from A is inside the cuboidal
space C, which reflects the distribution of point A along the
X-axis. And b × f (r) denotes the expectation of S(t,A,R)
with the qualification that the center of the section is inside
the cuboid space C, which is derived from (3) and reflects
the distribution of A in the Y − Z plane. Thus, the problem
in three-dimensional space can be reduced to the combina-
tion of one in one-dimension and one in two-dimension. It
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is obvious that

r =
√
R2 − t2, |t| ≤ R,

P(t,A,R) =
⎧⎪⎨
⎪⎩
1
a

(
a− |t|), |t| ≤ a;

0, otherwise.

(9)

Thus,

F(R) = 1
a

∫
T

a− |t|
a

f (r)dt = 2
a

∫
T+

a− t

a
f (r)dt, (10)

where T+ denotes the integral region of t ≥ 0. Further, sub-
stituting t with

√
R2 − r2, we have

F(R) = 2
a

∫
Er
P(r) f (r)dr, P(r) = r√

R2 − r2
− r

a
, (11)

where f (r) is as presented in (4) and integral region Er is
[0,R] for the case R < a and [

√
R2 − a2,R] for R ≥ a, respec-

tively. It is not hard to see that F(R) has the following two
different expressions:

F(R) = 2
a

∫
Er
P(r) f (r)dr

=
⎧⎨
⎩
F1(R), a ≤ 1 ≤ b and

√
a2 + 1 < b;

F2(R), a ≤ 1 ≤ b and
√
a2 + 1 ≥ b,

(12)

where F1(R) and F2(R) each have segmented expressions,
that is,

F1(R) =
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Figure 3: The distance probability distribution between nodes that
are independent and uniformly distributed in a 0.5 × 1 × 2 cuboid
space. The curve marked by “∗” is the result of simulation and that
by “◦” is the theoretical result.

Hitherto, we have given the expression to calculate the
distance probability distribution between nodes that are in-
dependent and uniformly distributed in an a× 1× b cuboid
space. It is not hard to derive an explicit formula from the
above expressions. Moreover, since F(R) is a single integral
and both P(r) and f (r) have relatively simple expressions,
one can use the above expressions to get his required results
through numerical method in practice, instead of using the
complicated explicit expression. Hence, we omit the explicit
expression in detail here.

Simulation is conducted in a 0.5×1×2 cuboid space. Each
time, two nodes are generated independently and uniformly
in the space and the distance between them are calculated. A
total of 10000 such trials are carried out. The simulation and
theoretical results on the distance probability distributions
between nodes are plotted in Figure 3, which demonstrates
the correctness of our theoretical expression.

3. NODE DEGREE

Recall that in a wireless ad hoc network, the degree of a
node is defined as the number of its neighbors, that is, the
number of nodes that can receive its message directly with-
out relay [3]. It is obvious that one node’s degree is equiv-
alent to the number of the nodes located in its power cov-
ering range except itself (Figure 1). From the viewpoint of
successful exchange of messages, node degree is an impor-
tant factor which represents the local topological status of the
wireless ad hoc network. To a certain extent, the node loca-
tions and their corresponding degrees would affect the con-
figuration of the wireless ad hoc network and even the total
network throughput. Verdone [7] proved that in an infinite

three-dimensional space, the node degree obeys the Poisson
distribution. However, in the case of a finite space, the ex-
plicit expression of the probability distribution of the node
degree is more complicated, even in the absence of random
shadowing. In this section, we will discuss this problem based
on the result in Section 2.

Suppose the nodes of an n-node wireless ad hoc network
are independent and uniformly distributed in a cuboid space
with the same covering radius R. According to the discussion
in Section 2, for an arbitrary settled node A = (x, y, z) in
the network, it is obvious that its degree obeys the binomial
distribution with parameters n− 1 and FA(R), that is,

PA
{
d(A) = k

} =
(
n− 1
k

)
FA(R)k

[
1− FA(R)

](n−k−1)
,

FA(R) = V(A,R)
V

,

(14)

where V(A,R), V , and FA(R) are as defined in Section 2.
Furthermore, if node A is uniformly distributed in the finite
space, the probability distribution of node degree can be for-
mulated as follows:

P
{
d(A) = k

} = EA
[
PA
{
d(A) = k

}]

= EA

[(
n− 1
k

)
FA(r)k

[
1− FA(R)

](n−k−1)]
.

(15)

Based on the expression, one can calculate the probability
distribution of the node degree through numerical method.
In the terminology of communication, such a probability
distribution equals the probability distribution of the num-
ber of nodes with which a randomly chosen node can com-
municate directly. In the symmetrical case, where all nodes
have the same covering radius, this probability distribution
also equals that of the number of nodes that may interfere
with the reception of a certain nodes if they transmit signals
simultaneously.

Note that P{d(A) = k} is neither the binomial distribu-
tion with parameter F(R), that is,

P
{
d(A) = k

} =
(
n− 1
k

)
F(R)k

[
1− F(R)

](n−k−1)
, (16)

nor the widely used Poisson distribution with parameter λ =
(n− 1)F(R), that is,

P
{
d(A) = k

} = λk

k!
e−λ, (17)

where F(R) is the distance probability distribution between
nodes, which is equal to the probability that two randomly
chosen nodes can communicate with each other directly
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Figure 4: The probability of the node degree equals 10 in a 20-node network in 1× 1× 1 cuboid space.

within the covering radius R. Though the Binomial distri-
bution and the Poisson distribution seem reasonable at first
sight, both of them would lead to significant bias in the case
of the finite three-dimensional space, while our theoretical
result in (15) agrees with that of the simulation, as shown
in Figure 4. It is worth noticing that the expectation of d(A)
has the same expression as that of the binomial distribution,
which is given as follows:

E
[
d(A)

] =
n−1∑
k=0

kEA
[
PA
{
d(A) = k

}]

= EA

[ n−1∑
k=0

kPA
{
d(A) = k

}]

= EA
[
(n− 1)FA(R)

]

= (n− 1)F(R).

(18)

Simulation about node degree are carried out in a 1×1×1
rectangular region and 100 nodes are deployed each time.
The results of the mean values of the node degrees derived
from simulation and theory are shown in Figure 5. It indi-
cates that our theoretical results have a good matching with
that of the simulation.

4. NETWORK CAPACITY

As mentioned above, the max-flow capacity is another im-
portant parameter on the performance of network. However,
in the case of wireless ad hoc networks, it is extremely diffi-
cult to formulate the max-flow capacity as a simple expres-
sion due to the dependence among the wireless links as men-
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Figure 5: The average value of node degree of 100-node network in
1× 1× 1 cuboid space.

tioned in [2]. In this section, we discuss this problem and
present two results, partly based on large amount of simula-
tions.

Figure 6 presents some examples of simulations and il-
lustrates our observations. The simulations are set in the
cuboid spaces of various sizes, and various node densities
are checked for each size combination. It is assumed that all
nodes in a network have the same covering radius R, and
that each of all existing links has unit capacity. Max-flows
are computed for some source-destination pairs that are
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Figure 6: The normalized max-flow capacity of networks in the
cuboid spaces, (a) 1× 1× 1, (b) 1× 1× 5, and (c) 0.5× 1× 2.

randomly chosen in each random graph, and the algorithm
of the C++ program follows that in [12]. The mean value of
the max-flows is then normalized by (n − 1), where n is the
number of nodes in the network. There are two meaningful
results, which are the extensions of those in [5].

Firstly, the mean max-flow capacity of an n-node net-
work is approximately (n − 1)k(R), where k(R) is a func-
tion in covering radius R. This can be illustrated by the fact
that the normalized mean values of the max-flows for the
networks with different node numbers but the same cov-
ering radius are approximately the same, especially as the
node number (or rather the node density in space) and the
covering radius are relatively large. In other words, there
exists a linear relationship between the mean value of the
max-flow and the node number of a wireless ad hoc net-
work when the covering radius keeps constant. Another im-
portant observation is that, if the covering radius R is rel-
atively small, the normalized mean value of the max-flow
decreases sharply once the node number (or node density)
falls below a threshold, which results in a poor connection
of the network. This can be explained intuitively: a net-
work tends to collapse into some independent components,
with no connection existence between any two of them,
whichmakes the number of disconnected node pairs increase
sharply and hence the mean value of the max-flow capacity
decreases. The quantified and more exact depiction of the
phenomenon requires further investigation and is beyond
this paper.

Secondly, k(R) is no greater than the probability distri-
bution of distance between nodes, that is, F(R), as illustrated
in Figure 6. This conclusion can be proved by using some ba-
sic results in graph theory as follows. It is well known that
the max-flow of a graph is equal to its min-cut, and that for a
network with unit link capacity, its min-cut is no greater than
the minimal degree of source node and terminal node as in
[8]. As shown in Section 3, F(R) reflects the mean value of
node degree, including that of the source and that of the ter-
minal. Thus, it is easy to understand that k(R) is no greater
than F(R). In fact, for any two positive random variables x
and y, mean[min(x, y)] ≤ min[mean(x),mean(y)] is always
true.

5. APPROXIMATIONOF F(R)

Consider the case of the cuboid space where the length a is
relatively small. It is easy to see that the three-dimensional
case would reduce to the two-dimensional case as the value
of a approaches to 0. Thus, it makes sense to use f (r) for
the two-dimensional case to approximate F(R) for the three-
dimensional case, as long as a is small enough. Our simula-
tion suggests that the performance would be fairly nice when
a/b is relatively small, as shown in Figure 7, while the bias of
the approximation would become larger as a/b increases, as
shown in Figure 8. The exact performance of this kind of ap-
proximation will be examined in this section in terms of both
the relative error and the absolute error. Some simulation re-
sults are presented.



8 EURASIP Journal on Wireless Communications and Networking

0 0.2 0.4 0.6 0.8 1 1.2

Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
P
ro
ba
bi
lit
y
di
st
ri
bu

ti
on

F(R), a = 0.15, b = 1
f (r), b = 1

(a)

0 1 2 3 4 5 6 7 8 9 10

Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
ba
bi
lit
y
di
st
ri
bu

ti
on

F(R), a = 0.5, b = 10
f (r), b = 10

(b)

Figure 7: The comparison between f (r) and F(R) when a = 0.15,
b = 1 (a) and a = 0.5, b = 10 (b). The label “Distance” refers to R
for F(R) and r for f (r).

5.1. Relative error of the approximation

The relative error is defined as follows:

ErrorRelative =
∣∣F(R)− f (r)

∣∣
F(R)

∣∣∣∣
r=R

, (19)

where F(R) refers to the formula for the three-dimensional
case and f (r) refers to that for the two-dimensional case
(Figure 9). We get the following observations from the simu-
lation results.

(i) The relative error of approximation decreases as R in-
creases.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Distance

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro
ba
bi
lit
y
di
st
ri
bu

ti
on

F(R), a = 0.4, b = 1.2
F(R), a = 0.7, b = 1.2

F(R), a = 0.9, b = 1.2
f (r), b = 1.2

Figure 8: The comparison between f (r) and F(R) when a/b in-
creases. The label “Distance” refers to R for F(R) and r for f (r).

(ii) The relative error of approximation, at a given relative
distance R/a, increases as a/b decreases.

(iii) In the range R > 1.8a, the relative error is upper
bounded by 5.5%.

(iv) In the range R < 1.8a, the relative error is becoming
larger sharply, as R approaches 0.

5.2. Absolute error of the approximation

The absolute error is defined as follows:

ErrorAbsolute =
∣∣F(R)− f (r)

∣∣
r=R. (20)

Simulation is carried out to examine the influence of a and
b on the absolute error. Results are plotted in Figure 10, and
we get the following observations.

(i) The absolute error increases as a increases.
(ii) The absolute error decreases as b increases.
(iii) The absolute error is upper bounded by 0.01 when a <

0.15.
(iv) The absolute error peaks occur at points being around

R = 0.86a for all cases.

6. CONCLUSIONS

In this paper, we investigated the probability distribution of
distance between nodes independently and uniformly dis-
tributed in a finite three-dimensional cuboid space, and
presented an explicit formula. Some meaningful observa-
tions about the wireless ad hoc network in the cuboid space
were obtained, including the node degree and the max-flow



Guansheng Li et al. 9

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Relative distance (R/a)

0.5

1

1.5

2

2.5

3
R
el
at
iv
e
er
ro
r
be
tw
ee
n
f(
r)

an
d
F
(R
)

a = 0.5, b = 2
a = 0.3, b = 5

a = 0.01, b = 100

(a)

2 2.5 3 3.5 4 4.5 5

Relative distance (R/a)

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

R
el
at
iv
e
er
ro
r
be
tw
ee
n
f(
r)

an
d
F
(R
)

a = 0.5, b = 2
a = 0.3, b = 5

a = 0.01, b = 100

(b)

Figure 9: The relative error of using f (r) to estimate F(R) (a) for
0.1 < R/a < 1.8 and (b) 1.8 < R/a < 5.

capacity. The reduced dimensional approximation of the dis-
tance probability distribution between nodes are also pre-
sented.
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