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fort.
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1. INTRODUCTION

The most common computer-aided circuit analysis tech-
nique is the time-domain transient analysis using the time-
marching approach to solve the system of ordinary differ-
ential equations (ODEs) that represent the circuit. This ap-
proach is used in Spice andmany other circuit simulators. Al-
though still very useful, this technique presents a number of
shortcomings for the analysis of RF and microwave circuits.
Amongst these shortcomings is the huge amount of mem-
ory and computation time required for the analysis of cir-
cuits with widely separated time scales and/or excitations [1].
This is often the case for mixers, power amplifiers, and oscil-
lators. Several techniques have been developed to overcome
this problem. Some of them are available in modern circuit
simulators and are widely used. In this paper we present an
overview of these methods with special attention to the anal-
ysis of oscillators.

We consider transient analysis methods first. In Section 3
we focus on methods used to directly calculate the steady-
state response of circuits. In Section 4 oscillator analysis
is discussed with emphasis on methods based on multiple
time dimensions. Case studies of a Colpitts oscillator and
a voltage controlled Clapp-Gouriet oscillator are presented
and discussed in Section 5.

2. TRANSIENT ANALYSIS

A generic circuit can be described by the following system of
differential-algebraic equations:

Gu(t) + C
du(t)
dt

+
dQ
(
u(t)

)

dt
+ I
(
u(t)

) = S(t), (1)

here u(t) is the vector of state variables (nodal voltages and
selected branch currents), G is a matrix of conductances, C is
the matrix representing the linear charge terms, Q(u(t)) and
I(u(t)) are vector functions corresponding to the nonlinear
devices, and S(t) is a vector that represents the sources.

The traditional time-marching technique consists in re-
placing the derivatives of the state variables for an approx-
imation using a numerical integration rule. For example, if
the backward Euler rule is used, we have

du
(
tn+1

)

dt
≈ u

(
tn+1

)− u
(
tn
)

tn+1 − tn
. (2)

The same procedure is applied to theQ vector and the result-
ing nonlinear algebraic system of equations is solved using
the Newton method for each time step:
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Gun+1 + C
un+1 − un

h
+
Q
(
un+1

)−Q
(
un
)

h
+ I
(
un+1

) = Sn+1,

(3)

here un+1 = u(tn+1), un = u(tn), Sn+1 = S(tn+1), and h =
tn+1 − tn for simplicity. This analysis is the most general
nonlinear circuit analysis. It is applicable to autonomous or
nonautonomous circuits with any kind of excitation.

If a circuit presents rapid and slow variations simultane-
ously, this analysis becomes inefficient because a small time-
step is required to follow the fast variations with a long total
simulation time. Consider, for example, a simulation to es-
timate the spectral regrowth in an amplifier driven by a dig-
itally modulated carrier [2]. If the rapid variations are os-
cillatory, the circuit can be analysed using a more efficient
approach. Different implementations of this approach exist
(e.g., see [3–5]), but the underlying theory is common to all
of them and is presented in [1]. Consider a voltage described
by the following function:

v1(t) =
[
1− exp

(
− t

τa

)][
1 + sin

(
2π
τb

t
)]

, (4)

where τa and τb are time constants. A graphical representa-
tion of this function with τa = 5 seconds and τb = 20ms is
shown in Figure 1. Many sample points are required to rep-
resent this function. For example, 5000 samples were needed
in Figure 1 for a total time of 5 seconds. Envelope-following
methods [4, 5] take advantage on the fact that the oscilla-
tions do not change much in adjacent periods. They follow
the shape of the envelope of signals using a time-step much
greater than one period of the rapid oscillation and calcu-
late the full response of the circuit with a small time-step
only once in a while. Envelope-following methods have been
recognised [6] as the most promising methods for the anal-
ysis of radio components such as mixers. It was proved in
[1] that the idea in envelope-following methods can be seen
as a particular case of a more general approach called multi-
partial differential equations (MPDE). The main idea in the
time domain envelope-following (TD-ENV) method using
the MPDE approach is to represent signals in more than one
time dimension according to the scale of variation. The sig-
nals must be periodic in at least one of the dimensions and
the period must be constant and known. Note that this con-
dition excludes autonomous circuits. We consider oscillators
in Section 4. For example, v1(t) is replaced by the following
bidimensional function:

v̂1
(
t1, t2

) =
[
1− exp

(
− t1

τa

)][
1 + sin

(
2π
τb

t2

)]
. (5)

This function is plotted in Figure 2, for the same values of τa
and τb used before. Only 100 sample points were necessary to
represent the waveform in the same time interval. The orig-
inal function can be easily recovered by setting t1 = t and
t2 = t. Equation (1) must be modified as follows:

Gû + C
(
∂û

∂t1
+

∂û

∂t2

)
+
∂Q(û)
∂t1

+
∂Q(û)
∂t2

+ I(û) = Ŝ
(
t1, t2

)
,

(6)
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Figure 1: The voltage v1 as a function of time.

where û and Ŝ represent the bivariate versions of the state
variables and the source vector, respectively. The time plane
with the boundaries is shown in Figure 3. In the figure, T is
the period along the t2 axis. It was demonstrated in [1] that
a solution of (6) with t1 set equal to t2 (the diagonal lines
in Figure 3) is also a solution to (1). To obtain the transient
response of the circuit, a steady-state problem in the t2 di-
rection must be solved for every time-step along t1. The ef-
ficiency of the method is better when the size of the time-
step along t1 is many times greater than T . Unfortunately
this is not always possible because fast variations along t1
occur frequently. This problem can be alleviated using an
adaptive time-step in the direction of t1. A time-step control
algorithm for this purpose is presented in [7]. Another fac-
tor that has a great effect in the rate of variations along t1 is
the choice of boundary conditions. The boundary conditions
of the MPDE are determined by the initial conditions of the
original ODE only at t1 = 0 and t2 = 0. Work [8] presents a
method to choose the boundary conditions in the rest of the
t1 = 0 line to avoid fast variations along the t1 dimension.
The solution of the steady-state problem along the t2 dimen-
sion can be accomplished using several methods described
in Section 3. One popular choice is to use harmonic balance.
Recently an approach using wavelets in the t2 dimension was
presented [9].

The MPDE method was presented here for two time di-
mensions, but if the problem presents more than two rates,
more time dimensions can be used as necessary. Work [10]
considers a phase-locked loop (PLL) simulation using three
time scales.

3. STEADY-STATE ANALYSIS

Steady-state methods are of great interest for the analysis of
RF and microwave circuits. The most widely used steady-
state analysis method is harmonic balance (HB). Some of the
advantages of this method are that the solution directly gives
the harmonic content of the circuit response and that it is
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Figure 3: The time plane used for the MPDE method.

easier to include RF circuit components that are better mod-
elled in frequency domain such as transmission lines, filters,
and others.

InHB each element of the u(t) vector in (1) is represented
by a set of phasors,

un(t) = �
{ K∑

k=0
Uk

ne
jkωt

}

, (7)

where n is the state variable number, k is the harmonic num-
ber, and ω = 2π/T . Equation (1) can now be expressed for
each angular frequency (kω) as follows:

(
G + CΩk

)
Uk + Ik +ΩkQk = Sk. (8)

In this equation Ωk is a diagonal matrix with nonzero ele-
ments equal to jkω. The Sk vector represents the sources at
angular frequency kω. The nonlinear devices in the circuit
are normally modelled in time domain and the Ik and Qk

vectors are formed taking the kth harmonic component of
the Fourier transform of the respective time-domain vectors.
The nonlinear devices could be modelled directly in the fre-
quency domain using Volterra series [11]. For weekly non-
linear circuits Volterra series result in more accurate models
and are also useful for analytical calculations for design [6].

The unknowns in (8) are the Fourier coefficients (Uk).
The system of algebraic equations formed by applying (8) for
all harmonics is normally solved using the Newton method.
The number of simultaneous unknowns in this equation
is equal to (2K + 1)n. In many cases this number can be

very large in the order of several tens of thousands. In these
cases the solution can still be found with a reasonable CPU
time using inexact Newton methods [12] and Krylov sub-
space methods [2] (note that for smaller problems the regu-
lar Newton method is more efficient).

Another relevant development is the exploitation of
frequency-domain latency in HB [13–15]. These techniques
take advantage of the fact that in most circuits the number
of harmonics necessary to represent each variable (voltage,
current) is not the same. By using a different number of har-
monics in each variable, a significant reduction in the com-
putational effort is achieved.

There are many problems of interest where the signals are
not strictly periodic but quasiperiodic. For example, consider
the following voltage waveform:

v2(t) = V2 cos
(
ω1t
)
cos
(
ω2t
)
. (9)

No period can be defined for this signal if ω1/ω2 is not a ra-
tional number. Even in the case that the signal is strictly peri-
odic, it is frequently more convenient to treat it as quasiperi-
odic. Two approaches exist to treat this problem in HB. The
first of them is called artificial frequency mapping and the
second is to use a multidimensional Fourier transform [16].

It is often acknowledged [17–19] that for strongly non-
linear circuits the HB method may not be the best because
a large number of harmonics is necessary to represent the
signals. The most common alternative to HB is the shooting
method [20]. The shooting method works by solving (3) for
one period of the excitation and finding what initial condi-
tions result in the same state of the circuit at the end of the
period. Other approaches using wavelets [17] and adaptive
basis functions [18] are still in the research stage and are not
widely used yet. The state variables in these methods are rep-
resented as a linear combination of a set of basis functions.
Equation (1) can then be transformed into a nonlinear alge-
braic equation.

3.1. Steady-state analysis and theMPDE

TheMPDE approach is also useful for steady-state analysis of
quasiperiodic excitations by considering each period in a dif-
ferent time dimension. Equation (6) is applicable with peri-
odic boundary conditions in both t1 and t2 dimensions. The
MPDE approach is thus not only useful to analyse circuits
with widely separated excitation frequencies but also for cir-
cuits with closely spaced excitation frequencies [19]. The HB
with multidimensional Fourier transform approach can be
seen as a particular case of the MPDE when both time di-
mensions are considered in the frequency domain.

4. ANALYSIS OF OSCILLATORS

Oscillator analysis is a difficult task [20–26]. Except for regu-
lar time-marching transient analysis (3), all the methods that
were reviewed so far must be modified to analyse oscillators.

For transient analysis, an alternative to the traditional
time-marching approach called warped multitime partial
differential equation (WaMPDE) was presented in [22, 27,



4 EURASIP Journal on Wireless Communications and Networking

28]. This approach deals with the fact that the period (or
equivalently, the local frequency) in one of the time dimen-
sions is no longer constant. In the WaMPDE this is solved
by warping one of the time scales in MPDE to have a con-
stant normalised period. As a result the local frequency is
normalised to a constant value and the warped time becomes
a function of time. The t1 time axis in the MPDE is now re-
named τ2 (they are otherwise equivalent) and the warped
time scale is named τ1. The relation between τ1 and τ2 is
given by

τ1 =
∫ t

0
ω
(
τ2
)
dτ2, (10)

where ω(τ2) is the unknown local frequency. Substituting t1
and t2 in (6) we obtain the WaMPDE nodal equation:

Gû + C
(
ω
(
τ2
) ∂û

∂τ1
+

∂û

∂τ2

)

+ ω
(
τ2
)∂Q(û)

∂τ1
+
∂Q(û)
∂τ2

+ I(û) = Ŝ
(
τ1, τ2

)
.

(11)

An additional equation is required to balance the introduc-
tion of the unknown local frequency. This equation is formed
by imposing a smooth phase variation along τ2 [22].

Often the HB method is used in the τ1 dimension. Then
each element of the u(t) vector in (1) is represented by

ûn
(
τ1, τ2

) = �
{ K∑

k=0
Uk

n

(
τ2
)
e jkτ1

}

, (12)

where again k is the harmonic number and the period in the
warped time scale (τ1) is normalised to 2π (i.e., ω = 1). We
can reformulate now (11) for each harmonic (k):

(
G + CΩk

)
Uk + C

∂Uk

∂τ2
+ΩkQk +

∂Qk

∂τ2
+ Ik − Sk = 0.

(13)

As stated before, the phase of one of the variables must then
be fixed to restore the number of unknowns to be equal to
the number of equations. That can be achieved by setting the
imaginary part of one of the variables to be zero,

�(U1
n

) = 0. (14)

Equation (13) is discretised in the τ2 direction using the
backward Euler (BE) rule, trapezoidal rule, or any other nu-
merical integration method. The resulting algebraic nonlin-
ear system is then solved with the Newton-Raphson method
for each value of τ2. This technique is referred in this work as
time-frequency envelope transient (TFET).

4.1. Transient

Given initial conditions for (1), the corresponding bound-
ary conditions in the TFET analysis can be obtained from a
short section of the transient response of the oscillator ob-
tained from a time-marching simulation [29]. The choice of

accurate boundary conditions is important if a good agree-
ment between time-marching and TFET analyses is desired.

To improve the efficiency of the simulation, the num-
ber of harmonics for each variable un can be adaptively con-
trolled [15]. This is sometimes referred as frequency-domain
latency exploitation. This is achieved as follows. At the end of
the calculation for each step of τ2, the magnitudes of the last
two harmonics are considered. If they are greater than some
threshold value, then the number of harmonics for that vari-
able (l) is increased by one. If they are smaller than another
threshold, then l is decreased by one. Otherwise it is left un-
changed. One advantage of this approach is that the number
of harmonics is increased or reduced as needed. Each row
of (13) (nodal equation at one frequency) is considered at a
number of frequencies equal to the number of harmonics of
the corresponding nodal voltage. In this way the number of
equations is always kept equal to the number of unknowns.

An adaptive time-step control algorithm is used in order
to minimise the number of time steps [29]. The time-step
along τ2 is adaptively changed according to a local truncation
error estimation,

hnew = hold

(
εmax

ε

)1/m
, (15)

where εmax is the maximum acceptable truncation error, ε
is the current truncation error, and m is a number that de-
pends on the integration method being used (m = 3 for
trapezoidal integration). This substantially reduces the com-
putational cost and improves the accuracy of the TFET.

4.2. Steady-state

For the steady-state analysis of oscillators, harmonic bal-
ance (HB) has been the dominant approach in recent years.
Though HB is one of the most important frequency-domain
techniques, it still has some limitations. In particular a good
initial guess is needed tomake HB converge to the desired os-
cillatory solution. It is especially difficult to get a good initial
guess of the oscillator frequency. Several methods have been
proposed to improve this limitation. For example, in [25]
the HB equations are modified by including the Kurokawa
condition to eliminate the DC solution. In [26] a voltage
source probe at the fundamental frequency that is an open
circuit at all other frequencies is inserted to avoid the DC so-
lution. By means of an iterative process the amplitude and
frequency of the probe are adjusted until there is no current
through the probe. At this point the autonomous solution is
found. A similar probe concept with the addition of a con-
tinuation method has been proposed more recently [23] to
improve convergence. Accelerated transients have been used
[15, 20, 30] to find the steady-state regime. In order to ac-
celerate the finding of the steady-state regime, the transient
behaviour of the circuit is artificially reduced in [30]. In [20]
an envelope-transient analysis is used to improve the conver-
gence of the shooting method.

Another new approach improving the convergence of
the HB analysis of oscillators was presented in [15]. This
approach is based on an accelerated TFET method and is
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summarised here. A TFET simulation is started with the
boundary conditions set to the DC bias point values. An ex-
citation current,

iS
(
τ1, τ2

) =
⎧
⎨

⎩
I0 cos

(
τ1
)

if τ2 ≤ ta,

0 otherwise,
(16)

is injected from the ground node into one of the nodes where
oscillations are expected. Here, I0 is a small real number (nor-
mally a few μA) and ta is set equal to the initial time-step size
along τ2 (h). The purpose of iS is to start oscillations by mov-
ing the system away from the equilibrium point. The system
will then naturally tend to reach the desired oscillatory steady
state. The key of this work is to accelerate the TFET simula-
tion to reach a point in τ2 close to the steady state in themini-
mum possible number of Newton iterations and then use the
state at that point as the initial guess of a regular autonomous
HB analysis. Since the focus is on the steady state, it is not
necessary to calculate the transient evolution with great pre-
cision as long as it converges close to the actual steady state
of the circuit. Thus the time-step along τ2 and other parame-
ters in the simulation are controlled to minimise the number
of Newton iterations [15]. When the local frequency func-
tion becomes constant and the difference between two peri-
odic solutions along τ2 becomes small, the accelerated TFET
is stopped and a regular oscillator HB analysis is started us-
ing the last solution along τ2 as the initial guess. Note that
the regular oscillator HB analysis is obtained by setting all
derivatives with respect to τ2 to be zero in (13).

5. CASE STUDIES ANDDISCUSSION

In this section we perform a transient and steady-state anal-
ysis of two oscillators: a Colpitts oscillator and voltage con-
trolled oscillator (VCO). In each oscillator, the regular time
domain simulation is provided followed by a WaMPDE-
based simulation, and then both results are compared.

5.1. Colpitts oscillator

The Colpitts oscillator taken from [31] uses a capacitive volt-
age divider in the LC tank circuit. In the circuit shown in
Figure 4, the component values are: C1 = C2 = 2 pF, Cc =
400 pF, Ce = 100 pF, L1 = 1 μH, R1 = 8 kΩ, R2 = 2 kΩ,
Rc = 2.4 kΩ, Re = 1.3 kΩ, Vcc = 11V, BF = 100, and
BR = 1.

5.1.1. Transient analysis

This oscillator exhibits an extremely long initial transient
compared with the oscillation period. Part of the transient
simulation is presented in Figure 5. The CPU time in a
1.5GHz computer using Matlab was 57 seconds for a simula-
tion stop time of 10 μs. Clearly time-marching simulation is
very time-consuming for the analysis of this circuit. In or-
der to obtain an accurate result, the acceptable truncation
error in this simulation was reduced until no phase differ-
ence could be observed with further reductions. In this way

Vcc

Rc

R1

Cc

Q1

R2 RE CE

C1 C2

L1
Vout

Figure 4: Schematic of a Colpitts oscillator.
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Figure 5: Transient response of the Colpitts oscillator.

we can take the result of this time-marching simulation as a
reference for both magnitude and phase information.

We now discuss the simulation results using the TFET
approach. The TFET simulation starts from the specified ini-
tial conditions and the stop time along τ2 is set to 0.07 sec-
onds. The initial number of harmonics is 11 and the adaptive
harmonic balance automatically adjusts this number as re-
quired. The adaptive time-step algorithm increases the step
size according to the local truncation error. These two pro-
visions largely speed up the simulation. Total CPU time is
199 seconds. A time-marching simulation would require ap-
proximately 15 hours to produce the same result. Figure 6
shows the multitime expression of the output voltage.

Very good agreement between TFET simulation and the
time-marching simulation has been achieved as shown in the
top of Figure 7. There is a phase error accumulation along τ2
shown at the bottom of Figure 7. The relative amplitude error
and absolute phase error of the first harmonic in TFET and
ODE simulations are presented in Figure 8. The amplitude
error is very small, but the phase error may be important in
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Figure 7: TFET solution compared to time-marching solution.

some cases. It should be noted that a comparable phase error
would be obtained with a time-marching simulation if the
acceptable truncation error is not set to a very small num-
ber. The phase error in the TFET simulation can be reduced
if the acceptable local truncation error in the TFET simula-
tion is reduced as the results of Figure 9 indicate. However,
the reduction in the acceptable local truncation error in-
creases the number of time steps along τ2 and this results in a
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Figure 8: Relative error in the magnitude of the first harmonic.
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Figure 9: Comparison of time-marching and TFET with a smaller
maximum local truncation error.

significantly longer simulation time. Finally, Figure 10 shows
the size of the Jacobian matrix and the size of the time-step
along τ2 for each step in τ2. The size of the Jacobian matrix
is proportional to the total number of harmonics considered
in the simulation. As the variations in τ2 become smooth,
the time-step is increased and the size of the Jacobian matrix
is increased as more harmonics are generated in the nodal
voltages.
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5.1.2. Steady-state analysis

The excitation current (iS) was applied to the base node with
I0 set to 10 μA. The bidimensional plot of the output voltage
as a function of τ1 and τ2 is shown in Figure 11. The CPU
time of the accelerated TFET and HB analyses combined is
52 seconds.

The oscillator frequency determined by the warped func-
tion ω(τ2) is 5.04MHz as shown in Figure 12. This figure il-
lustrates the robustness of the proposed method. Different
initial frequencies converge to the correct value.

In Figure 13 the steady state is compared with the fi-
nal line of the multitime simulation. This shows how close
the result from the accelerated TFET to the steady state is.
Figure 14 shows the Jacobian matrix size and the number of
Newton iterations at each time-step (sample number).The
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adaptive control of the time-step along τ2 keeps the number
of Newton iterations small for each value of τ2. The Jacobian
matrix size increases as the number of harmonics increases.

5.2. Clapp-Gouriet oscillator

In this section, we present the analysis of a VCO circuit
based on the Clapp-Gouriet configuration [32]. Figure 15
shows the electrical schematic of the VCO. In this circuit
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Figure 14: Jacobian size and number of Newton iterations.
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Figure 15: A VCO using Clapp-Gouriet configuration.

C1 = 82 pF, C2 = 220 pF, C3 = 47 pF, C4 = 330 pF,
L1 = 102.55 μH, R1 = 220 kΩ, R2 = 22 kΩ, R3 = 47Ω,
Rc = 2.2 kΩ, Re = 220Ω, Rl = 100Ω, Vcc = 12V, BF = 70,
and BR = 5. The oscillator frequency is tuned by a diode con-
nected to a control voltage, Vdc. The circuit is analysed with
a sinusoidal control voltage,

Vdc = 3 + sin
(
2π104t

)
V. (17)

The initial transient is shown in Figure 16. In TFET anal-
ysis, the initial number of harmonics is set to 8 and the adap-
tive HB algorithm automatically adjusts this number for each
node every time-step along τ2. The bidimensional plot of the
output voltage is shown in Figure 17.

Good agreement between time-marching and TFET
analyses is achieved as shown in Figure 18. A plot showing
the first harmonic magnitude and phase difference between
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Figure 16: Transient response of the VCO.

1

0

−1

−2

−3
8

6
4

2
0 0

2

4

O
u
tp
u
t
vo
lt
ag
e
(V

)

The warped time The re
al tim

e (s)
×10−4

Figure 17: Bidimensional representation of output voltage of VCO.

the time-marching and TFET analyses is shown in Figure 19.
As with the previous case study, there is some phase error
that can be reduced by reducing the tolerance of the local
truncation error. Finally, Figure 20 shows the size of the Ja-
cobian matrix and the size of the time-step along τ2 for each
step in τ2. It can be observed that both quantities follow the
variations of the transient and the control voltage.

6. CONCLUSIONS

We have presented a review of simulation methods cur-
rently available for the transient and steady-state analysis of
nonlinear RF and microwave circuits. Although the time-
marching approach used in Spice will continue to be widely
used, envelope-following methods are particularly effective
for RF and microwave circuits and they are becoming a
popular choice. Recent improvements to oscillator analysis
were summarised and case studies of a Colpitts oscillator
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Figure 19: Comparison of ODE and warped MPDE in first har-
monic.

and a voltage controlled Clapp-Gouriet oscillator were pre-
sented. In both cases there was good agreement between
time-marching and TFET analyses, but it was noted that
some phase error may occur if the local truncation error tol-
erance is not kept small enough. This may be an important
consideration for the analysis of PLLs and should be fur-
ther investigated. The simulations indicated that the adaptive
HB technique significantly reduces the computational effort
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Figure 20: Size of the Jacobian matrix and the size of the time-step
along τ2 for each step in τ2 for the VCO.

by reducing the size of the Jacobian matrix in the Newton
method. It was shown that an accelerated TFET analysis can
be effectively used to improve the convergence of the HB os-
cillator analysis.

ACKNOWLEDGMENT

This work was supported by Natural Sciences and Engineer-
ing Research Council of Canada (NSERC).

REFERENCES

[1] J. Roychowdhury, “Analyzing circuits with widely separated
time scales using numerical PDE methods,” IEEE Transactions
on Circuits and Systems I: Fundamental Theory and Applica-
tions, vol. 48, no. 5, pp. 578–594, 2001.

[2] V. Rizzoli, A. Neri, F. Mastri, and A. Lipparini, “A
Krylov-subspace technique for the simulation of integrated
RF/microwave subsystems driven by digitally modulated car-
riers,” International Journal of RF and Microwave Computer-
Aided Engineering, vol. 9, no. 6, pp. 490–505, 1999.
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[30] R. Larchevéque and E. Ngoya, “Compressed transient analysis
speeds up the periodic steady state analysis of nonlinear mi-
crowave circuits,” in Proceedings of IEEE MTT-S International
Microwave SymposiumDigest, vol. 3, pp. 1369–1372, San Fran-
scisco, Calif, USA, June 1996.

[31] R. R. Spencer and M. S. Ghausi, Introduction to Electronic Cir-
cuit Design, Prentice Hall, Upper Saddle River, NJ, USA, 2003.

[32] J. A. Smith, Modern Communication Circuits, McGraw-Hill,
New York, NY, USA, 2nd edition, 1997.

Lei (Lana) Zhu received her Bachelor de-
gree of Electrical Engineering from South-
east University in China in August 1998.
From 1994 to 2001, she was a Junior De-
sign Engineer and later a Design Engineer in
Electrical Engineering Design Department
of Nanjing Power Supply Bureau, China.
She received herM.S. degree from Lakehead
University, Canada, in November 2005. Her
research interest includes circuits analysis
and simulation in multiple time axes, oscillator design, phase-
locked loops, and general communication circuits. Currently she
works at Manitoba Hydro, Canada.



L. Zhu and C. E. Christoffersen 11

Carlos E. Christoffersen received the Elec-
tronic Engineer degree at the National Uni-
versity of Rosario, Argentina, in 1993. From
1993 to 1995, he was a Research Fellow of
the National Research Council of Argentina
(CONICET). He received an M.S. degree
and a Ph.D. degree in electrical engineer-
ing in 1998 and 2000, respectively, from
North Carolina State University (NCSU).
Currently he is an Assistant Professor in
the Department of Electrical Engineering at Lakehead University,
Thunder Bay, Canada. He is a Member of the IEEE. His current
research interests include analogue and RF circuit computer-aided
design including electromagnetic and thermal interactions.


	Introduction
	Transient Analysis
	Steady-State Analysis
	Steady-state analysis and the MPDE

	Analysis of Oscillators
	Transient
	Steady-state

	Case Studies and Discussion
	Colpitts oscillator
	Transient analysis
	Steady-state analysis

	Clapp-Gouriet oscillator

	Conclusions
	Acknowledgment
	REFERENCES

