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1. INTRODUCTION

Direct sequence-code division multiple access (DS-CDMA)
is a widely accepted multiple access technique already in
use in several real-life systems, such as the universal mobile
telecommunications standard (UMTS). Among its proper-
ties, that is, low power, high capacity, resistance to multipath,
the latter is perhaps the most favourable. However, in many
cases, in order to perform equalization, diversity combining,
or multiuser detection at the receiver of a DS-CDMA system,
knowledge of the multipath channel impulse response (CIR)
is necessary. Thus, an efficient and accurate estimation of the
CIR is highly desirable, in order to mitigate interference and
achieve reliable data detection.

The wireless channel can be characterized either by the
conventional tapped-delay line (TDL) model or by a para-
metric model where the CIR is expressed in terms of time
delays and gains of dominant paths. As the chip rate in-
creases, the channel experienced by DS-CDMA systems be-
comes sparse, making the parametric model more effec-
tive, since fewer parameters are adequate for accurate chan-
nel representation. Moreover the parametric model is more
suitable for receiver structures such as RAKE [1], and for po-
sitioning purposes.

The channel estimation task becomes more difficult at
the uplink due to the multiple access nature of DS-CDMA
systems. In the presence of multipath, it is difficult to time
synchronize mobile transmitters so that their signals arrive
simultaneously at the base station (BS). Thus, the uplink of
DS-CDMA systems is usually asynchronous, the orthogonal-
ity of signature sequences is violated, and multiple access in-
terference (MAI) affects seriously channel estimation accu-
racy.

To combat MAI interference and multipath fading, joint
multiuser detection and parametric channel estimation ap-
proaches have been proposed in [2–4]. The increased com-
plexity of these algorithms renders them impractical in sys-
tems accommodating a large number of users in rich mul-
tipath environments. Thus, the channel estimation prob-
lem is usually treated separately from the detection one.
Blind subspace-based channel estimationmethods have been
developed, which estimate either the parameters of all ac-
tive users jointly [5–9], or the parameters of a single user
[10]. The above methods require long observation intervals,
which limit their tracking capability in rapidly varying chan-
nels. Maximum likelihood (ML) optimization is another ap-
proach usually adopted for multipath channel parameter es-
timation of a single user. ML-based methods make use of
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training signals and model MAI as colored noise. In [11, 12]
interfering users are considered unknown at the BS, whereas
in [13–15] channel estimates from MAI users are exploited
during the estimation of a new user, but specific PN se-
quences are required. The only method that uses relatively
few training symbols, exploits available information con-
cerning other active users, and does not require specific sig-
nals to be employed, is the one proposed in [16]. Themethod
in [16] follows an ML-based approach and employs a de-
flation scheme originating from the SAGE algorithm [17].
Specifically, the optimization is performed with respect to a
single path, and after this path has been estimated, its con-
tribution is subtracted from the received data. The deflation
scheme applies similarly to the rest of the paths.

In this paper we propose a new method for estimating
the multipath delays and gains in the uplink of a DS-CDMA
system. First, we show that the estimation problem can be
described via a nonlinear least squares (LS) cost function,
which is separable with respect to the unknown parameter
sets, that is, time delays and gains. Then, we prove that the
time delays’ cost function is approximately decoupled, which
allows the development of a computationally efficient lin-
ear search method for the estimation of the unknown time
delays. Finally, the gain parameters are estimated by solv-
ing a low-order linear LS problem. The new method consti-
tutes an interesting alternative interpretation of the channel
parameters’ estimation problem. Moreover, the problem is
formulated in a novel way allowing for easier analysis and
manipulations. Simulations results show that the proposed
method exhibits a lower mean squared estimation error than
the method of [16], at the expense of a negligible increase of
the computational complexity.

The outline of this paper is as follows. In Section 2, the
signal model is defined and the estimation problem is for-
mulated. In Section 3, the LS cost function is derived and
the proposed algorithm is developed. Simulation results are
presented in Section 4, while some conclusions are drawn in
Section 5.

2. PROBLEM FORMULATION

Let us consider the reverse link of a DS-CDMA system ac-
commodating K simultaneously active users. If T is the sym-
bol period, {bk(i)} the transmitted symbols, and pk(t) the
spreading waveform of kth user, then the baseband signal
transmitted by this user can be expressed as

sk(t) =
∑

i

bk(i)pk
(
t − iT

)
. (1)

Let N be the spreading factor, Tc = T/N the chip period,
{ck(n), n = 0, . . . ,N − 1} the chip sequence, and g(t) the
chip pulse. Then, the spreading waveform pk(t) is given by

pk(t) =
N−1∑

n=0
ck(n)g

(
t − nTc

)
. (2)

The signal sk(t) of each user is transmitted over a specu-
lar multipath channel with P discrete paths having impulse

response

hk(t) =
P∑

p=1
ak,pδ

(
t − τk,p

)
, (3)

where ak,p and τk,p are the gain and the delay of the pth path,
respectively, and δ(·) is the Dirac function. The signal re-
ceived by the BS is the superposition of the signals from all
users, that is,

x(t) =
K∑

k=1

P∑

p=1
ak,psk

(
t − τk,p

)
+w(t) (4)

contaminated by additive, white, Gaussian noise w(t) of
power spectral density N0. The received signal is oversam-
pled by a factor of Q samples per chip period, while a raised
cosine function is used as the chip pulse.1

The delay spread of the physical channel hk(t), usually
encountered in the applications of interest, is restricted to
a few chip periods [18]. Also, taking into account the asyn-
chronous access of the kth user to the channel, the first delay
τk,1 could appear anywhere in the interval [0,NTc) of the BS
timing. Thus, a time support of two symbols can be adequate
for the total CIR, which is the convolution of the physical
channel, hk(t), with the chip sequence {ck(n)}.

Our goal is the estimation of the physical channel param-
eters for one user assuming that the parameters of all other
(K − 1) users have already been estimated. To this end and
using the formulation presented above, the samples collected
at the BS receiver over a period ofM symbols can be written
in vector form as

x =
K∑

k=1
Sk
(
τk
)
ak +w, (5)

where ak, τk are the vectors of delays and gains of user k, w is
theMQN×1 noise vector, and Sk(τk) is expressed as follows:

Sk
(
τk
) = (BH

k ⊗ IQN
)(
CH
k ⊗ IQ

)
G
(
τk
)
. (6)

Bk is a 2 × M data matrix with Hankel structure, Ck is a
2N × 2N convolution matrix with its first row containing
the chip sequence as [cTk 0TN ], c

T
k = [ck(0), . . . , ck(N − 1)],

and G(τk) is a 2QN × P matrix whose columns contain the
oversampled delayed chip pulses denoted in vector form as
g(τk,p), p = 1, . . . ,P. Note that each column of G(τk) is a
function of a single delay parameter only. Symbol ⊗ stands
for the Kronecker product and IQ is the Q × Q identity ma-
trix.

Considering that a new user (called hereafter the desired
user) is entering the system, (5) can be rewritten as

x = S(τ)a + η, (7)

1 Note that other pulse shaping functions can be used as well.
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where the user index has been dropped for simplicity2 and
η comprises the MAI from previously estimated users and
thermal noise.

We assume that the spreading sequences of all the users
are known at the BS, while the desired user is in training
mode and has been synchronized to the BS. Although the
channel parameters of the interfering users have already been
estimated, their symbol sequences have not been detected
yet. Hence, MAI can be treated as a stochastic random pro-
cess [16]. Specifically, MAI vector η can bemodelled as a zero
mean Gaussian vector with covariance matrix Rη = E[ηηH].
Since the channel parameters and the signature sequences of
the interfering users are deterministic, the expectation op-
erator is applied over the transmitted symbols and thermal
noise.

Having defined the problem, we proceed with the defini-
tion of the cost function appearing in the estimation problem
and the derivation of the new algorithm.

3. DERIVATION OF THE NEWALGORITHM

3.1. The new cost function

As can been seen from (7), the data available for the esti-
mation of channel parameters are contaminated by colored
noise η with covariance matrix Rη (the estimation of Rη is
further discussed in the appendix). Hence, a first step for the
derivation of the new cost function would be the prewhiten-
ing of additive noise as

R−1/2η x = R−1/2η S(τ)a + R−1/2η η, (8)

where R−1/2η is a square root factor of R−1η . Now, the required
channel parameters may be estimated by minimizing the fol-
lowing least squares (LS) cost function with respect to τ and
a:

J(τ, a) = ∥∥R−1/2η x − R−1/2η S(τ)a
∥∥2. (9)

The cost function in (9) is linear with respect to the path
gains and nonlinear with respect to the delays. Since the two
sets of parameters are independent, the optimization prob-
lem can be split up with respect to each set [19], that is,

τopt = argmax
τ

{∥∥R−1/2η S(τ)
(
R−1/2η S(τ)

)†
R−1/2η x

∥∥2
}
, (10)

aopt =
(
R−1/2η S(τ)

)†
R−1/2η x, (11)

where symbol † denotes the pseudoinverse of a matrix.
It is apparent that the most difficult part of the above op-

timization procedure is the maximization in (10). After the
optimum delay parameters have been estimated, path gain
parameters can be easily computed through (11). The non-
linear problem (10) can be treated either by performing a

2 The user index is also omitted from all relevant quantities throughout the
rest of the paper.

multidimensional search over the parameter space of τ, or
by applying an iterative Newton-type method. In the former
case, the computational cost is prohibitive, whereas in the
latter, the method can be trapped in a local maximum away
from the global solution.

In the following, we show that the estimation of each de-
lay parameter τp, p = 1, . . . ,P can be performed separately
leading to a much more efficient estimation algorithm. We
begin by rewriting the cost function in (10) as

F(τ) = yH(τ)D(τ)y(τ), (12)

where

y(τ) = SH(τ)R−1η x, D(τ) = (SH(τ)R−1η S(τ)
)−1

.

(13)

It is readily seen from (6) that each column of S(τ)
depends on a single delay parameter, that is, S(τ) =
[s(τ1) · · · s(τP)]. Then it is obvious that the same property
holds for the elements of vector y(τ) as well. Based on this
observation, we deduce that the cost function F(τ) would
be decoupled with respect to the delay parameters, if ma-
trix D(τ) were diagonal and each element [D(τ)]i,i were as-
sociated only to the corresponding delay parameter τi. Even
though matrix D(τ) is not exactly diagonal, we show that it
is strongly diagonally dominant, yielding to an approximate
decoupling of the cost function (10) with respect to the delay
parameters.

To this end, we invoke a proposition proved in [20, 21].

Proposition 1. Let a matrix A ∈ Cn×n and let rA be the mean
ratio of its off-diagonal and diagonal elements.3 If this matrix is
pre/post multiplied by a unitary matrixQ ∈ Cn×m andm� n,
then the resulting matrix B = QHAQ (and its inverse) have
smaller mean ratios upper bounded by rB ≤ (m/n)rA.

Consequently, if matrix A has diagonal elements of much
higher amplitude than the off-diagonal ones, and m � n,
then matrix B and its inverse are strongly diagonally domi-
nant. To apply the aforementioned proposition in our prob-
lem, for example, for matrix D(τ) in (12), three conditions
should be satisfied.

(1) P�MQN , which always holds true.
(2) Matrix R−1η should have a “heavy” diagonal.
(3) Matrix S(τ) should possess a unitary structure.

The second condition is proved in the appendix, where
we show that the amplitude of the diagonal elements of R−1η
is much higher than the amplitude of the off-diagonal ones.
Concerning the last condition, from (6), after some algebra,
we get

SH(τ)S(τ) = GT(τ)
(
C⊗ IQ

)(
BBH ⊗ IQN

)(
CH ⊗ IQ

)
G(τ).
(14)

3 The mean ratio rA of a matrix A ∈ Cn×n is defined as rA =
E[
∑

j �=i |ai, j |/|ai,i|], where the expectation is applied over the rows i =
1, . . . ,n of the matrix.
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The term BBH is the sample covariance matrix of the infor-
mation symbols, and can be approximated asymptotically by
the identity matrix I2, so (14) is reduced to

SH(τ)S(τ) � GT(τ)
(
CCH ⊗ IQ

)
G(τ). (15)

Moreover, the term CCH approximates the 2N × 2N covari-
ance matrix of a PN code sequence. Given that PN sequences
have favourable autocorrelation properties [1], this term can
also be approximated by an identity matrix I2N . Thus, (15) is
simplified as follows:

SH(τ)S(τ) � GT(τ)G(τ). (16)

Recall that the columns of G(τ) contain delayed versions of
a raised cosine pulse shaping filter. The inner product of two
columns of G(τ), that is, g(τi) and g(τj), approximates the
value of the autocorrelation function of the raised cosine
pulse for a lag equal to Δτ = |τi − τj| [21]. (Similar analysis
can be carried out for other pulse shaping functions as well.)
As shown in [21], the raised cosine autocorrelation function
very closely resembles the raised cosine function itself. As a
result, if Δτ = 0, the inner product takes its maximum value,
whereas it decays rapidly asΔτ increases. Even forΔτ as small
as a chip period, the inner product is one order of magnitude
smaller than its maximum. Accordingly, S(τ) has a structure
very similar to a unitary matrix and the proposition can be
applied to our problem. Thus, the cost function in (10) can
be considered approximately decoupled with respect to the
delay parameters. Apparently for delay spacing much smaller

than a chip period, the near-to-unitary structure of G(τ) is
violated. Despite this fact, by properly extending the above
proposition, it can be shown [21] that delay decoupling may
still be attained. This is also verified by simulation results in
Section 4.

3.2. Decomposed form of the cost function

Next we consider a modification of the cost function (10) in
order to derive an efficient estimation algorithm. To this end,
matrix S(τ) in (7) is partitioned as

S(τ) =
[
S(P−1) sP

]
, (17)

where S(P−1) corresponds to the first (P− 1) columns of S(τ)
and sP ≡ s(τP) is its last column. We define also matrixΦ(τ)
as

Φ(τ) ≡ R−1/2η S(τ) =
[
Φ(P−1) φP

]
(18)

which is partitioned similarly to S(τ). Hence, matrixD(τ) in
(14) may be partitioned as

D(τ) =
⎡
⎣
ΦH

(P−1)Φ(P−1) ΦH
(P−1)φP

φH
P Φ(P−1) φH

P φP

⎤
⎦
−1

. (19)

Using the matrix inversion lemma for partitioned matrices,
matrix D(τ) is given by

D(τ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(
ΦH

(P−1)Φ(P−1)
)−1

+
Φ†

(P−1)φPφ
H
P

(
Φ†

(P−1)
)H

φH
P

(
I−Φ(P−1)Φ

†
(P−1)

)
φP

− Φ†
(P−1)φP

φH
P

(
I−Φ(P−1)Φ

†
(P−1)

)
φP

− φH
P

(
Φ†

(P−1)
)H

φH
P

(
I−Φ(P−1)Φ

†
(P−1)

)
φP

1

φH
P

(
I−Φ(P−1)Φ

†
(P−1)

)
φP

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (20)

Then, by expressing vector y(τ) in (12) as

y(τ) =
[
ΦH

(P−1) φH
P

]
R−1/2η x, (21)

and after some algebra, the cost function can be written as

F(τ) = F
(
τP−1

)
+ F
(
τP | τP−1

)
, (22)

where τP−1 = [τ1, . . . , τP−1] and

F
(
τP−1

)

≡ xHR−1η S(P−1)
(
SH(P−1)R

−1
η S(P−1)

)−1
SH(P−1)R

−1
η x,

(23)

F
(
τP | τP−1

)

≡
∥∥sHP R−1η

(
I− S(P−1)

(
SH(P−1)R

−1
η S(P−1)

)−1
SH(P−1)R

−1
η

)
x
∥∥2

sHP R−1η
(
I− S(P−1)

(
SH(P−1)R−1η S(P−1)

)−1
SH(P−1)R−1η

)
sP

.

(24)

Notice that the cost function consists of two nonnega-
tive terms. The first term, F(τP−1) depends only on the first
(P−1) delays, and it is actually the cost function (12) of order
(P − 1). The Pth path delay appears only in the second term.
Provided that the cost function (12) is almost decoupled with
respect to the delays, each path can be estimated separately.
Let us now assume that (P−1) path delays have already been
acquired and their estimates τ̂P−1 are accurate enough. Then
according to (22)–(24), the estimation of the last delay τP is
reduced to the maximization of the second term, while keep-
ing the rest of the delays fixed, that is, F(τP | τ̂P−1). Some
interesting comments on the cost function should be made
here.

(1) The form of the cost function in (22)–(24) holds
true for any permutation on the path indices, or
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(1) Construct MAI inverse covariance matrix R−1η .

(2) Choose a linear search step size δ for the grid [0,NTc/4).
(3) Set i = 1.
(4) For all previously estimated path delays τ̂ J , construct S(τ̂ J ).
(5) Maximize F(τi | τ̂ J ). Find τ̂i by evaluating the function at the grid points.
(6) (a) If i �=P, then set i = i + 1 and go to step 4.

(b) Else if i = P, then a cycle has been completed. If one more estimation cycle is needed, go to step 3.
(7) Obtain the path gain vector a by substituting τ̂ in (11).

Algorithm 1: Summary of the decoupled parametric estimation (DPE) algorithm.

equivalently for any permutation on the columns of
S(τ). This implies that if any (P − 1) delays have
been estimated, the remaining delay can be estimated
through (24).

(2) The term F(τP−1) in (23) can be further decomposed
through the same procedure we applied to F(τ). It can
be shown that F(τ) can be finally decomposed in P
terms as

F(τ)

=
P∑

i=1

∥∥sHi R−1η
(
I− S(i−1)

(
SH(i−1)R

−1
η S(i−1)

)−1
SH(i−1)R

−1
η

)
x
∥∥2

sHi R−1η
(
I− S(i−1)

(
SH(i−1)R−1η S(i−1)

)−1
SH(i−1)R−1η

)
si

.

(25)

Provided that F(τ) is approximately decoupled with
respect to the delays, it is easily shown that the contri-
bution of the ith delay to the cost function lies mainly
in the ith term of (25). Thus, in case only (i − 1) out
of P path delays have been estimated, the estimation
of the ith delay can be performed by using the corre-
sponding ith term of (25).

3.3. The new algorithm

Having analysed the cost function, we present a new estima-
tion algorithm for the multipath parameters of the desired
user. First, we assume that the number of dominant paths P
is already known: either specified by the system, or detected
by an information theoretic criterion. The channel parame-
ters and signature sequences of MAI users are also assumed
known to the BS receiver, and hence the covariance matrix
Rη can be constructed.

The proposed decoupled parametric estimation (called
hereafter DPE) algorithm is organized in steps and cycles. At
each step, one delay parameter is estimated using the infor-
mation of already acquired delays. A cycle consists of P steps
and at the end of a cycle all delays have been estimated. Dur-
ing the first cycle and while searching for τi, only (i − 1) de-
lay estimates are available, and thus the optimization involves
only the ith term of (25). In the next cycles, the estimates of
the other (P − 1) delays obtained in the current and the pre-
vious cycles are exploited for the estimation of a single delay,
and then (24) is used for maximization.

During each step, the estimation of one delay is per-
formed by a line search: the ith term of (25) or (24) are

evaluated over the points of a grid and the point attaining
the maximum value is considered as the corresponding de-
lay. Since the desired user has been synchronized with the BS
and the delay spread of the physical channel is restricted to
a number of chip periods, it is sufficient to scan the delay
range [0,NTc/4) with a linear step size δ. Simulation results
show that two or three cycles are adequate for the method to
converge. After all cycles have been completed, path gains are
computed through (11). The DPE algorithm is summarized
in Algorithm 1, where matrix S(τ̂ J) is constructed in a way
similar to S(τ) based on the already estimated path delays.

The value of the search step size δ affects the estima-
tion accuracy of the maximization procedure. In any case,
the estimates obtained through the line search over the grid
are not optimum, although they lie close to it. Obviously, as
δ decreases, the estimation accuracy is improved, while the
computational complexity is increased. A further refinement
of the estimates can be achieved by running some Gauss-
Newton iterations or an interpolation method.

Having shown the approximate decoupling of the cost
function in (25), the delay estimates acquired through the
line search during the first cycle of the algorithm are expected
to be close to the optimum point. In fact, if the cost func-
tion was perfectly decoupled and an infinite precision search
grid was utilized, these first estimates would coincide with
the true values. After the first cycle, a single delay is esti-
mated based on the other delay estimates obtained in the cur-
rent and the previous cycles. If these estimates are closer to
their optimum values compared to the respective estimates of
the previous cycle, the new delay estimate is likely to also lie
closer to its optimum point. Thus, estimation accuracy im-
proves from cycle to cycle and DPE is expected to converge.
Of course, when path delays are closely spaced, estimates may
not converge to the actual values. Simulations conducted for
such scenarios and presented in Section 4 show that although
some estimates may not reach their optimum values, the
algorithm does not diverge and the total channel estimate,

ĥ = G(τ̂)â, remains close to h.
Among all methods proposed so far for the estimation

of channel parameters in a CDMA system, the one that is
more relevant to DPE is the method presented in [16]. The
algorithm presented there (whitening sliding correlator with
cancellation, called hereafter WSCC) stems from an ML cost
function, while the subtraction of each estimated path from
the received data comes as a natural application of the SAGE
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Table 1: ITU test environment channel models [22].

Channel model Relative delays (Tc = 260 ns) Average power (dB)

(a) Vehicular channel A [0, 1.19, 2.72, 4.18] [0,−1,−9,−10]
(b) Outdoor to indoor and pedestrian channel A [0, 0.42, 0.73, 1.57] [0,−9.7,−19.2,−22.8]
(c) Indoor office channel B [0, 0.38, 0.77, 1.15] [0,−3.6,−7.2,−10.8]
(d) Outdoor to indoor and pedestrian channel B [0, 0.77, 3.07, 4.61, 8.84] [0,−0.9,−4.9,−8.0,−7.8]

algorithm. On the other hand, our method depends on a
LS cost function, which is proven to be almost decoupled
with respect to the delay parameters. Hence, the maximiza-
tion can be performed on every delay parameter separately.
The deflation procedure (i.e., extracting the contribution of
already resolved paths) is encapsulated naturally in the cost
function, yielding better estimation results. One of the main
differences between the two methods concerns the estima-
tion of path gains. WSCC estimates each path gain exploit-
ing only the corresponding delay parameter, while DPE esti-
mates jointly the path gains after all path delays have been es-
timated. Of course, such an approach could be easily adopted
as a final step in WSCC as well. Even then, the two methods
would not have the same performance, since the joint estima-
tion of path gains in DPE is being exploited while estimating
each delay parameter. As will be shown by simulation, DPE
exhibits a lower estimation error at the expense of a slight
increase in computational complexity compared to WSCC.

More specifically, the computational complexity of both
algorithms per iteration of the line search is (MQN)2 +
O(MQN). Moreover, both algorithms require as an ini-
tial step the inversion of the block diagonal matrix Rη,
which is O(MQ2N3). The extra computational cost of
DPE is related to the computation of matrix R−1η −
R−1η S(P−1)(SH(P−1)R

−1
η S(P−1))−1SH(P−1)R

−1
η at the beginning of

each step, that is, at the beginning of the line search for a de-
lay parameter. Without taking into consideration the block
diagonal form of Rη, as well as the order recursive form of
S(P−1) between consecutive steps of the algorithm, this ex-
tra computation requires at most P(MQN)2 +O(MQN) op-
erations, which can be considered insignificant. Notice here
that direct inversion of the block diagonal matrix Rη can
be avoided by using the approximation (A.7) provided in
the appendix. Although this approximation has a significant
computational advantage, it may limit the robustness of the
scheme to MAI, and it is an issue of current investigation.

4. SIMULATION RESULTS

In this section, we investigate the performance of the new
algorithm through computer simulations. Most of the sys-
tem parameters used in the simulations were in agreement
with the UMTS specifications for FDD (frequency division
duplexing) [18]. Specifically, the scrambling codes were of
length N = 256, the modulation used was BPSK, the chip
pulse was a raised cosine function with roll-off equal to 0.22,
and the oversampling factor Q was equal to 2. The pilot sig-
nal consisted of 5 to 8 symbols, in accordance with the UMTS
specifications for channel estimation and other purposes.

ITU vehicular channel A [22], described in Table 1, was
used in our simulations. The channel impulse response con-
sisted of four paths (P = 4). The path gains for all users
were random variables following a zero mean Gaussian dis-
tribution with variances [0,−1,−9,−10] dB, while the path
delays of the desired user were fixed to the values [0, 1.19,
2.72, 4.18]Tc. Considering the asynchronous nature of the
system, the delays of the interfering users were modelled as
random variables. The first delay of kth user, τk,1, followed
a uniform distribution in the interval [0,NTc), while the re-
maining three delays were uniformly distributed in the inter-
val [τk,1, τk,1 + 10Tc].

The estimation accuracy of the proposed algorithm was
evaluated in terms of the normalized mean squared channel
estimation error (NMSE), that is, the NMSE between actual
and estimated total CIR:

NMSE = E

⎡
⎣
∥∥htot − ĥtot

∥∥2
∥∥htot

∥∥2

⎤
⎦ , (26)

where htot is a 2QN × 1 vector containing Tc/2-spaced
samples of the actual total CIR defined as

htot = G(τ)a (27)

and ĥtot is defined similarly as the estimated total CIR. The
results presented in this section were obtained through 1000
Monte Carlo simulation runs.

Comparisons are made with the WSCC algorithm, since
this is the most relevant method to DPE among all exist-
ing ones. The asymptotic CRB is also presented. Notice here
that the parameter estimates τ̂, â, were obtained by running
the basic versions of the two algorithms, that is, without any
further refinement by Gauss-Newton iterations or interpola-
tion. The step size used during the maximization procedure
for both algorithms was set to δ = 0.125Tc, and two estima-
tion cycles were performed.

In Figures 1-2, the NMSE versus Eb/N0 is presented for a
pilot signal of M = 5 and 8 symbols, respectively. Eb is de-
fined as the received bit energy for the desired user. There
were K = 64 active users and the signal-to-interference ra-
tio (SIR), defined as the received power ratio between the
desired user and one interfering user (as specified for the
UMTS in [18]), was set to SIR = 0 dB. It can be seen that
the two algorithms at the low SNR region (below 15 dB)
exhibit similar behaviour. But in the medium to high SNR
region, DPE outperforms WSCC. Specifically, above 20 dB,
each cycle of DPE has a 2 dB gain in NMSE compared to
the corresponding cycle of WSCC. Moreover,the first cycle
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Figure 1: NMSE versus SNR for M = 5 training symbols, K = 64
active users, and SIR = 0 dB.

10−3

10−2

10−1

100

N
M
SE

10 12 14 16 18 20 22 24 26 28 30

Eb/N0(dB)

WSCC, cycle 1
WSCC, cycle 2
DPE, cycle 1

DPE, cycle 2
CRB

Figure 2: NMSE versus SNR for M = 8 training symbols, K = 64
active users, and SIR = 0 dB.

of DPE attains the same NMSE as the second cycle of
WSCC. The gain in estimation error is higher for increasing
SNR.

To evaluate the channel estimation accuracy of the pro-
posed algorithm under different system load conditions, we
conducted simulations with K = 16, 64, and 128 active users.
Figure 3 shows the NMSE achieved after the second cycle of
each algorithm. As expected, heavier system loads result in
performance degradation, while DPE still shows higher esti-
mation accuracy.
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DPE

K = 128

K = 64

K = 16

Figure 3: NMSE versus SNR for different system loads withM = 5
training symbols and SIR = 0 dB.
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Figure 4: NMSE versus SIR for M = 5 training symbols, K = 16
users, and SNR = 20 dB.

In Figure 4, the robustness of the two algorithms to the
near-far problem is investigated. The system here accommo-
dated K = 16 active users, and each of them had an SIR
ranging from−20 to 10 dB. The SNR was kept fixed at 20 dB,
and M = 5 training symbols were used. Notice that both
algorithms are robust to MAI, since their accuracy remained
almost constant for all tested SIR values. DPE algorithm ex-
hibits again superior performance.

The simulation results presented before were obtained
based on perfect channel estimates for the interfering users
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Figure 5: NMSE for imperfect knowledge of Rη due to Doppler
effect and presence of unknown users, with K = 64, SIR = 0 dB,
andM = 5.

and thus perfect knowledge of the MAI covariance matrix.
In a more realistic scenario, the BS may not have all this in-
formation, either because of Doppler fading, or because one
or more interfering users become active before the desired
user parameters are estimated. To assess the effects of a time-
varying channel, we assumed a maximum mobile velocity
of 50 km/h, which at the operating band of 2GHz leads to
a Doppler frequency of around 100Hz. The worst-case sce-
nario would be when all channel estimates stored at the BS
were the ones obtained at the previous slot (0.66millisecond
old [18]). Concerning the problem of unknown users, we
tested the case where one or two out of K = 64 active users
entered the system and the BS did not exploit their con-
tributions in MAI covariance matrix. The NMSE curves of
Figure 5 show that for both Doppler fading and unknown
users, the method can still be applied with an inevitable per-
formance loss.

The proposed algorithm assumes that the number of
dominant channel paths P has been already estimated at the
BS, for example, by using an information theoretic criterion
(AIC,MDL). However, in practice, P can be overestimated or
underestimated. To this end, we evaluated the performance
of DPE for P̂ = 2 and P̂ = 6 paths, while the actual channel
consisted of P = 4 paths. The simulation results illustrated
in Figure 6 indicate that the new method is only slightly af-
fected in case of overestimation with respect to the number
of paths, while for high SNRs its performance may be even
improved. This is intuitively justified by the fact that search-
ing for more than the actual number of path delays increases
the possibility to detect the ensemble of the true delays, es-
pecially those of low power. On the other hand, as expected,
underestimation of P can result in severe performance degra-
dation, since a part of the channel energy is not captured.
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Overestimation (P = 6)
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Figure 6: DPE behaviour in underestimation and overestimation
situations with K = 64, SIR = 0 dB, andM = 5.
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Figure 7: Maximum normalized amplitude across the diagonals of
the main block of R−1η .

As shown in Section 3.1, decoupling of the delay pa-
rameters is based primarily on two conditions: matrix R−1η
should possess a “heavy” diagonal, and matrix S(τ) a near-
to-unitary structure. To verify the validity of these assump-
tions, we plot in Figure 7 the maximum normalized am-
plitude across the diagonals of the main block of R−1η for
three completely different scenarios with respect to SNR, SIR,
and number of users. The amplitudes for the first and third
scenarios almost coincide, while the second scenario exhibits
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Figure 8: Normalized amplitude across the diagonals of SH(τ)S(τ) under test environments [22] with different delay spreads τd : (a) vehicular
channel A with τd = 1.42Tc, (b) outdoor to indoor and pedestrian channel A with τd = 0.17Tc, (c) indoor office channel B with τd = 0.38Tc,
and (d) outdoor to indoor and pedestrian channel B with τd = 2.88Tc.

off-diagonal elements of lower amplitude. In all three cases,
the off-diagonal elements of the matrix are one order of mag-
nitude smaller than the diagonal ones. As far as the second
condition is concerned, in Figure 8, we plot the normalized
amplitude of SH(τ)S(τ) by projecting a 3D mesh plot on
the proper sideview.Matrix SH(τ)S(τ) was generated accord-
ing to the four test environment channel models with dif-
ferent delay spreads, which are described in Table 1. Chan-
nel (a) used in the previous simulations, as well as channel
(d), have a comparatively large delay spread, and thus ma-
trix S(τ) is near-to-unitary. However channels (b) and (c)
consist of closely spaced delays and near-to-unitarity condi-
tion is violated. To investigate DPE’s robustness for closely
spaced delays, we also simulated ITU indoor office chan-
nel B described in Table 1. Since path delays were closely
spaced, the algorithm fails to estimate correctly all paths. A
single path located at an intermediate delay and one more
path of negligible power are usually the estimates for two
closely spaced paths. As shown in Figure 9, the performance

of the proposed algorithm is not actually affected and ĥtot
remains a good estimate of htot. The only possible draw-
back could be a diversity order loss in case of a RAKE re-
ceiver which naturally exploits multipath channel parame-
ters.

5. CONCLUSIONS

In this paper, a new method for estimating the multipath
channel parameters of a single user in the uplink of a DS-
CDMA system has been proposed. The estimation proce-
dure is performed at the BS, and multiple access interference
from other active users is treated as colored noise. The new
method is based on a proper description of the problem via a
nonlinear LS cost function which is separable with respect to
time delays and gains of the multipath channel. An approx-
imate decoupling of the nonlinear cost function in terms of
the delay parameters leads to an iterative procedure of 1D
optimizations. At each step of the algorithm, a single delay
is estimated while the rest are kept fixed. Additional cycles
of the algorithm allow for further improvement of the esti-
mates. The suggested method does not require any specific
pilot signal and performs well for a short training interval
(5–8 symbol periods). Simulation results have shown its ro-
bustness to multiple access interference, as well as its higher
estimation accuracy compared to an existing method, at the
expense of an insignificant increase in computational com-
plexity. Moreover, in case of unknown users, severe Doppler
fading, or underestimation, the method still maintains ac-
ceptable performance with an inevitable loss.
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Figure 9: NMSE versus SNR for M = 5 training symbols, K = 64
active users, and SIR = 0 dB for indoor office channel B.

APPENDIX

APPROXIMATE DIAGONALITY OF THE INVERSEMAI
COVARIANCEMATRIX

In this appendix, we prove that the inverse of the MAI co-
variance matrix Rη = E[ηηH] has a high degree of diagonal
dominance. Starting with Rη, we observe that due to the i.i.d.
property of the symbol sequences, the cross-user terms inside
the expectation operator are equal to zero. Assuming, with-
out loss of generality, that the desired user is user 1, the MAI
covariance matrix can be expressed as follows:

Rη =
K∑

k=2
E
[(
Sk
(
τk
)
ak
)(
Sk
(
τk
)
ak
)H]

+ σ2IMQN. (A.1)

From (5) and (6), the overall CIR of user k, k = 2, . . . ,K , can
be written as

qk =
(
CT
k ⊗ IQ

)
G
(
τk
)
ak =

⎡
⎣q

(1)
k

q(2)k

⎤
⎦ . (A.2)

In the last equation, qk is partitioned into twoQN ×1 blocks
corresponding to one symbol period each. Hence, according
to (6), the contribution of user k can be simplified as

Sk
(
τk
)
ak =

(
BH
k ⊗ IQN

)
qk

=

⎡
⎢⎢⎢⎣

b∗k (1)q
(1)
k + b∗k (2)q

(2)
k

...

b∗k (M − 1)q(1)k + b∗k (M)q(2)k

⎤
⎥⎥⎥⎦ ,

(A.3)

where bk(1), . . . , bk(M) are the information symbols of
user k and ∗ denotes complex conjugation. The MQN ×

MQN covariance matrix of user k, defined as Rη,k =
E[(Sk(τk)ak)(Sk(τk)ak)H], can be partitioned intoM2 blocks

of dimension QN × QN , namely {R(i, j)
η,k ; i, j = 1 · · ·M}.

Since each QN × 1 block of Sk(τk)ak depends only on two

consecutive symbols, the blocks R
(i, j)
η,k lying in other than

the main and the sub/super diagonals will vanish, yielding
a block tridiagonal form for Rη. Specifically, from (A.3), the
nonzero blocks of Rη can be expressed as follows:

R(i,i)
η =

K∑

k=2
σ2b
(
q(1)k q(1)k

H
+ q(2)k q(2)k

H)
+ σ2IQN , (A.4)

R(i,i+1)
η =

K∑

k=2
σ2bq

(2)
k q(1)k

H
, (A.5)

R(i,i−1)
η =

K∑

k=2
σ2bq

(1)
k q(2)k

H
, (A.6)

where σ2b is the power of the input sequence. Due to the or-
thogonality of the spreading codes and the form of qk in

(A.3), vectors q
( j)
k , j = 1, 2, k = 2, . . . ,K can be considered

approximately orthogonal. Moreover, we may assume that
the elements of these vectors are of the same order, which is
quite reasonable according to (A.2). Thus, it is easily verified

that the elements of the off-diagonal blocksR(i,i+1)
η andR(i,i−1)

η

are negligible compared to the main diagonal elements of Rη.
Hence, the MAI covariance matrix Rη can be approximated
as a block diagonal matrix and the block that appears in its
main diagonal is given by (A.4). Note that such an approx-
imation has already been adopted intuitively in the relevant
literature (see, e.g., [12, 16]).

Moving a step further we show that the inverse MAI co-
variance matrix can be approximated by a diagonal matrix.
Indeed, by applying thematrix inversion lemma to (A.4), and
taking into account the approximate orthogonality of the in-
volved vectors, we end up with the following expression for
the inverse of the diagonal blocks of Rη:
[
R(i,i)
η

]−1

� 1
σ2

⎡
⎣IQN−

K∑

k=2

⎛
⎝ q(1)k q(1)k

H

(
σ2/σ2b

)
+q(1)k

H
q(1)k

+
q(2)k q(2)k

H

(
σ2/σ2b

)
+q(2)k

H
q(2)k

⎞
⎠
⎤
⎦ .

(A.7)

Since the elements of each vector q
( j)
k , j = 1, 2, k = 2, . . . ,K

are of the same order, the summation term in (A.7) tends to
a QN × QN zero matrix as the spreading sequence length N
and/or the oversampling factor Q increase. As a result, ma-

trix [R(i,i)
η ]−1 and accordingly matrix R−1η tend to a diagonal

matrix with equal diagonal elements. In practice, matrix R−1η
possesses a “heavy” main diagonal with almost equal energy
elements, while its off-diagonal elements are of relatively lim-
ited energy, as also verified in our simulations.
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