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Abstract

In order to enhance the reliability of digital transmissions, error correcting codes are used in every digital
communication system. To meet the new constraints of data rate or reliability, new coding schemes are currently
being developed. Therefore, digital communication systems are in perpetual evolution and it is becoming very
difficult to remain compatible with all standards used. A cognitive radio system seems to provide an interesting
solution to this problem: the conception of an intelligent receiver able to adapt itself to a specific transmission
context. This article presents a new algorithm dedicated to the blind recognition of convolutional encoders in the
general k/n rate case. After a brief recall of convolutional code and dual code properties, a new iterative method
dedicated to the blind estimation of convolutional encoders in a noisy context is developed. Finally, case studies
are presented to illustrate the performances of our blind identification method.
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1 Introduction
In a digital communication system, the use of an error
correcting code is mandatory. This error correcting code
allows one to obtain good immunity against channel
impairments. Nevertheless, the transmission rate is
decreased due to the redundancy introduced by a cor-
recting code. To enhance the correction capabilities and
to reduce the impact of the amount of redundancy intro-
duced, new correcting codes are always under develop-
ment. This means that communication systems are in
perpetual evolution. Indeed, it is becoming more and
more difficult for users to follow all the changes to stay
up-to-date and also to have an electronic communication
device always compatible with every standard in use all
around the world. In such contexts, cognitive radio sys-
tems provide an obvious solution to these problems. In
fact, a cognitive radio receiver is an intelligent receiver
able to adapt itself to a specific transmission context and
to blindly estimate the transmitter parameters for self-
reconfiguration purposes only with knowledge of the
received data stream. As convolutional codes are among
the most currently used error-correcting codes, it seemed

to us worth gaining more insight into the blind recovery
of such codes.
In this article, a complete method dedicated to the blind

identification of parameters and generator matrices of
convolutional encoders in a noisy environment is treated.
In a noiseless environment, the first approach to identify a
rate 1/n convolutional encoder was proposed in [1]. In
[2,3] this method was extended to the case of a rate k/n
convolutional encoder. In [4], we developed a method for
blind recovery of a rate k/n convolutional encoder in tur-
bocode configuration. Among the available methods, few
of them are dedicated to the blind identification of convo-
lutional encoders in a noisy environment. An approach
allowing one to estimate a dual code basis was proposed
in [5], and then in [6] a comparison of this technique with
the method proposed in [7] was given. In [8], an iterative
method for the blind recognition of a rate (n-1)/n convo-
lutional encoder was proposed in a noisy environment.
This method allows the identification of parameters and
generator matrix of a convolutional encoder. It relies on
algebraic properties of convolutional codes [9,10] and dual
code [11], and is extended here to the case of rate k/n con-
volutional encoders.
This article is organized as follows. Section 2 presents

some properties of convolutional encoders and dual codes.
Then, an iterative method for the blind identification of
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convolutional encoders is described in Section 3. Finally,
the performances of the method are discussed in Section
4. Some conclusions and prospects are drawn in Section 5.

2 Convolutional encoders and dual code
Prior to explain our blind identification method, let us
recall the properties of convolutional encoders used in
our method.

2.1 Principle and mathematical model
Let C be an (n, k, K) convolutional code, where n is the
number of outputs, k is the number of inputs, K is the
constraint length, and C⊥ be a dual code of C. Let us
also denote by G(D) a polynomial generator matrix of
rank k defined by:

G(D) =

⎡
⎢⎣
g1,1(D) · · · g1,n(D)

... · · · ...
gk,1(D) · · · gk,n(D)

⎤
⎥⎦ (1)

where gi,j(D), ∀i = 1,..., k, ∀j = 1,..., n, are generator
polynomials and D represents the delay operator. Let μi
be the memory of the ith input:

μi = max
j=1,...,n

deg gi,j(D) ∀i = 1, ..., k (2)

where deg is the degree of gi,j(D). The overall memory
of the convolutional code, denoted μ, is

μ = max
i=1,...,k

μi = K − 1 (3)

If the input sequence is denoted by m(D) and the out-
put sequence by c(D), the encoding process can be
described by

c(D) = m(D).G(D) (4)

In practice, the encoder used is usually an optimal
encoder. An encoder is optimal, [10], if it has the maxi-
mum possible free distance among all codes with the
same parameters (n, k, and K). This is because the error
correction capability of such optimal codes is much
higher. Furthermore, their good algebraic properties
[9,10] can be judiciously exploited for blind
identification.
To model the errors generated by the transmission

system, let us consider the binary symmetric channel
(BSC) with the error probability, Pe, and denote by e(D)
the error pattern and by y(D) the received sequence so
that:

y(D) = c(D) + e(D) (5)

Let us also denote by e(i) the ith bit of e(D) so that: Pr
(e(i) = 1) = Pe and Pr(e(i) = 0) = 1 - Pe. The errors are
assumed to be independent.

In this article, the noise is modeled by a BSC. This BSC
can be used to model an AWGN channel in the context
of a hard decision decoding algorithm. Indeed, the BSC
can be seen as an equivalent model to the set made of
the combination of the modulator, the true channel
model (AWGN by example) and the demodulator
(Matched filter or Correlator + Decision Rule). Further-
more, in mobile communications, channels are subject to
multipath fading, which leads, in the received bit stream,
to burst errors. But, a convolutional encoder alone is not
efficient in this case. Therefore, an interleaver is generally
used to limit the effect of these burst errors. In this con-
text, after the deinterleaving process, on the receiver side,
the errors (so the equivalent channel including the dein-
terleaver) can also be modeled by a BSC.

2.2 The dual code of convolutional encoders
The dual code generator matrix of a convolutional enco-
der, termed a parity check matrix, can also be used to
describe a convolutional code. This ((n - k) × n) polyno-
mial matrix verifies the following property:
Theorem 1 Let G(D) be a generator matrix of C. If an

((n - k) × n) polynomial matrix, H(D), is a parity check
matrix of C, then:

G(D).HT(D) = 0 (6)

where .T is the transpose operator.
Corollary 1 Let H(D) be a parity check matrix of C.

The output sequence c(D) is a codeword sequence of C if
and only if:

c(D).HT(D) = 0 (7)

The parity check matrix is an ((n - k) × n) matrix such
that:

H(D) =

⎡
⎢⎣

h1,1(D) · · · h1,k(D) h0(D)
... · · · ...

. . .
hn−k,1(D) · · · hn−k,k(D) h0(D)

⎤
⎥⎦ (8)

where h0(D) and hi,j(D) are the generator polynomials
of H(D), ∀i = 1,..., n - k and ∀j = 1,..., k.
Let us denote by μ⊥ the memory of the dual code.

According to the properties of a dual code and convolu-
tional encoders [9,11], this memory is defined by

μ⊥ =
k∑
i=1

μi (9)

The polynomial, f (D) =
∑∞

i=0
f (i).Di, is a delayfree

polynomial if f(0) = 1. According to [12], if the polyno-
mial h0(D) is a delayfree polynomial, then the convolu-
tional encoder is realizable. It follows that the generator
polynomial, h0(D), is such that
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h0(D) = 1 + h0(1).D + · · · + h0(μ⊥).Dμ⊥ (10)

Let us denote by H, the binary form of H(D) defined by

H =

⎛
⎜⎜⎜⎝
Hμ⊥ · · · H1 H0

Hμ⊥ · · · H1 H0

Hμ⊥ · · · H1 H0
. . .

. . .
. . .

. . .

⎞
⎟⎟⎟⎠ (11)

where Hi, ∀i = 0,..., μ⊥, are matrices of size ((n - k) ×
n) such that

Hi =

⎡
⎢⎣

h1,1(i) · · · h1,k(i) h0(i)
... · · · ...

. . .
hn−k,1(i) · · · hn−k,k(i) h0(i)

⎤
⎥⎦ (12)

The parity check matrix (11) is composed of shifted
versions of the same (n - k) vectors. These vectors of
size n.(μ⊥ + 1) and denoted by hj (∀j = 1,..., n - k) are
defined by

hj =
(
H(j)

μ⊥ H(j)
μ⊥−1 · · · H(j)

1 H(j)
0

)
(13)

where H(j)
i
, which correspond to the jth row of Hi, is a

row vector of size n such that

H(j)
i =

(
hj,1(i) · · · hj,k(i) 0j−1 h0(i) 0n−k−j

)
(14)

In (14), 0l is a zero vector of size l.
In the case of a rate k/n convolutional encoder, each

vector hj (13) is composed of (n - k - 1).(μ⊥ + 1) zeros.
In this configuration, the system given in (7) is split into
(n - k) systems:

[
c1(D) · · · ck(D) ck+s(D)

] ·

⎡
⎢⎢⎢⎣
hs,1(D)

...
hs,k(D)
h0(D)

⎤
⎥⎥⎥⎦

=
k∑
i=1

ci(D).hs,i(D) + ck+s(D).h0(D) = 0,

(15)

∀s = 1,...,(n - k). Thus, the (n - k) vectors (13), called
parity checks, are such that

hs =
(
H(s)

μ⊥ H(s)
μ⊥−1 · · · H(s)

0

)
(16)

where H(s)
i

is a row vector of size (k + 1) defined by:

H(s)
i =

(
hs,1(i) · · · hs,k(i) h0(i)

)
(17)

Let us denote by S the size of these parity checks of
the code (16) such that

S = (k + 1).
(
μ⊥ + 1

)
(18)

It follows from (16) and (10) that the (n - k) parity
checks, hs, are vectors of degree (S - 1).

3 Blind recovery of convolutional code
This section deals with the principle of the proposed
blind identification method in the case where the inter-
cepted sequence is corrupted. Only few methods are
available for blind identification in a noisy environment:
for example, an Euclidean algorithm-based approach
was developed and applied to the case of a rate 1/2 con-
volutional encoder [13]. At nearly the same time, a
probabilistic algorithm based on the Expectation Maxi-
mization (EM) algorithm was proposed in [14] to iden-
tify a rate 1/n convolutional encoder. Further to our
earlier development of a method of blind recovery for a
convolutional encoder of rate (n - 1)/n [8], it appeared
to us worth extending it, here, to the case of a rate k/n
convolutional encoder. Prior to describing the iterative
method in use, which is based on algebraic properties of
an optimal convolutional encoder [9,10] and dual code
[11], let us briefly recall the principle of our blind iden-
tification method when the intercepted sequence is
corrupted.

3.1 Blind identification of a convolutional code: principle
This method allows one to identify the parameters (n, k,
and K) of an encoder, the parity check matrix, and the
generator matrix of an optimal encoder. Its principle is to
reshape columnwise the intercepted data bit stream, y,
under matrix form. This matrix, denoted Rl, is computed
for different values of l, where l is the number of col-
umns. The number of rows in each matrix is equal to L.
If the received sequence length is L’, then the number of

rows of Rl is L =
⌊
L′
l

⌋
, where ⌊.⌋ stands for the integer

part. This construction is illustrated in Figure 1.
If the received sequence is not corrupted (y = c ⇒ e = 0),

for a Î N, we have shown in [8] that the rank in Galois
Field, GF(2), of each matrix Rl has two possible values:

0 1 2 3 4 5 6 7 8

1 20
3 4 5
6 7 8

y

l

l

L

Figure 1 Example of matrix Rl. An example of the received data
bit stream reshape under matrix form.
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• If l ≠ a.n or l <na

rank(Rl) = l (19)

• If l = a.n and l ≥ na

rank(Rl) = l. kn + μ⊥ < l (20)

where na is a key-parameter which corresponds to the
first matrix Rl with a rank deficiency. Indeed, in [8], for
a rate (n - 1)/n convolutional encoder, this parameter
proved to be such that

na = n.
(
μ⊥ + 1

)
(21)

In this configuration, na is equal to the size of the par-
ity check (S). But, what is its value in general for a rate
k/n convolutional encoder?
For a rate k/n convolutional encoder, we show in

Appendix A that the size of the first matrix which exhi-
bits a rank deficiency, na, is equal to

na = n.
⌊

μ⊥

n − k
+ 1
⌋

(22)

From (22), it is obvious that the parameter, na, is not
equal to the size of the (n - k) parity check (16) of the
code. In Appendix B, a discussion about the value of a
rank deficiency of matrix Rna is proposed.

3.2 Blind identification of convolutional code: method
A prerequisite to the extension of the method applied in
[8] to the case of a rate k/n convolutional encoder is the
identification of the parameter, n. Then, a basis of dual
code has to be built to further deduce the value of na that
corresponds to the size of the parity check with the smal-
lest degree. Using both this parameter and (22), one can
assume different values for k and μ⊥ Then, the (n - k) par-
ity check (16) and a generator matrix of the code can be
estimated.
To identify the number of outputs, n, let us evaluate

the likely-dependent columns of Rl. Then, the values of
l at which Rl matrices seem to be of degenerated rank
are detected by converting each Rl matrix into a lower
triangular matrix (Gl) through use of the Gauss Jordan
Elimination Through Pivoting adapted to GF(2):

Gl = Al.Rl.Bl (23)

where Al is a row-permutation matrix of size (L × L)
and Bl is a matrix of size (l × l) that describes the col-
umn combination. Let Nl(i) be the number of 1 in the
lower part of the ith column in the matrix, Gl. In
[15,16], this number was used to estimate an optimal
threshold (gopt), which allows us to decide whether the
ith column of the matrix Rl is dependent on the other

columns. This optimal threshold is such that the sum of
the missing probabilities is as small as possible. The
numbers of detected dependent columns, denoted as Z
(l), are such that

Z(l) = Card
{
i ∈ {1, ..., l} |Nl(i) ≤ (L − l).γopt

2

}
(24)

where Card{x} is the cardinal of x. So, the gap between
two non-zero cardinals, Z(l), is equal to the estimated
codeword size (n̂). Let I be a set of l-values where the car-
dinal is non-zero. From the matrix, Bi,∀i ∈ I , one can
build a dual code basis. Let I be a ((L - i) × i) matrix com-
posed of the last (L - i) rows of Ri. If bj, ∀j = 1,..., i, repre-
sents the jth column of Bi, bj is considered as a linear form
close to the dual code on condition that:

d
(
R1
i .bj

) ≤ (L − i).γopt (25)

where d(x) is the Hamming weight of x. Let us denote a
set of all linear forms by D. Within the set of detected lin-
ear forms, the one with the smallest degree is taken and
denoted, here, by ĥ, and its size by n̂a. From (22), one can
make different hypotheses about k and μ⊥ values. This
algorithm is summed up in Algorithm 1.
For a rate (n - 1)/n convolutional encoder with ĥ as par-

ity check, solving the system described in Property 1 (see
Section 2) enables one to identify the generator matrix.
One should, however, note that with a rate k/n convolu-
tional code, a prerequisite to the identification of the gen-
erator matrix, G(D), is the identification of the (n - k)
parity check, hj of size S (see (16) and (18)).
Algorithm 1: Estimation of k and μ⊥

Input: Value of n̂ and n̂a
Output: Value of k̂ and μ̂⊥
for k’ = 1 to n̂ − 1do

for Z = 1 to n̂ − k′do

μ̂⊥ =
[
μ̂⊥ n̂a.

(
1 − k′

n̂

)
− Z

]
;

k̂ =
[
k̂ k′

]
;

end
end

It is done by building (n̂ − k̂) row vectors denoted by
xs so that

xs =
(
y1(t) · · · yk(t) yk+s(t) · · ·) , (26)

∀s = 1,..., ∀s = 1, ...,
(
n̂ − k̂

)
. For each vector, xs, a

matrix, Rs
l, is built as previously done for Rl. Then, for

each matrix Rs
l, a linear form of size S has to be esti-

mated. This algorithm is summed up in Algorithm 2
where ĥs refers to the identified n̂ − k̂ parity check.
Identification of the generator matrix from both these

(n̂ − k̂) parity checks and the whole set of the code
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parameters can be realized by solving the system
described in Property 1.
In [15,17], a similar approach, based on a rank calcula-

tion, is used to identify the size of an interleaver. In this
article, an iterative process is proposed to increase the
probability to estimate a good size of interleaver. The prin-
ciple of this iterative process is to perform permutations
on the Rl matrix rows to obtain a new virtual realization of
the received sequence. These permutations increase the
probability to obtain non-erroneous pivots during the
Gauss Elimination process (23). Our earlier identification
of a convolutional encoder relied on a similar approach
[8]. Indeed, at the output of our algorithm, either: (i) the
true encoder, or an optimal encoder, is identified or (ii) no
optimal code is identified. But in case (ii), the probability
of detecting an optimal convolutional encoder is increased
by a new iteration of the algorithm.
The average complexity of one iteration of the process

dedicated to the blind identification of convolutional
encoder is O (

l4max

)
. Indeed, our blind identification

method is divided into three steps: (i) identification of n,
(ii) identification of a dual code basis, and (iii) identifica-
tion of parity checks and a generator matrix. Each step
consist of maximum (lmax - 1) process of Gaussian elim-
inations on Rl matrices of size (L × l)
Algorithm 2: Estimation of (n̂ − k̂) parity check.
Input: y, n̂, k̂ and μ̂⊥

Output: (n̂ − k̂) parity check
for s = 1 to (n̂ − k̂) do

xs =
(
y1(t) · · · yk̂(t) yk̂+s(t) · · ·) ,;

for l =
(
k̂ + 1

)
.
(
μ̂⊥ + 1

)
to lmax do

Build matrix Rs
l of size (L × l) with xs;

Rs
l → Tl = Al.Rs

l .Bl

for i = 1 to l do
if Nl(i) ≤ L−l

2 .γoptthen

if deg bli =
(
k̂ + 1

)
.
(
μ̂⊥ + 1

)
then

ĥs = bli;
end

end
end

end
end

where L = 2.lmax. Thus, the average complexity is such
that

O
(
L.

lmax∑
l=2

l2
)
= O (

2.lmax.l3max

)
= O (

l4max

)
(27)

Thereby, the average complexity of the iterative pro-
cess is

O (
nbiter.l4max

)
(28)

where nbiter is the number of iterations realized.
To identify all parameters of an encoder, it is neces-

sary to obtain two consecutive rank deficiency matrix.
So, the minimum value of lmax is

lmax = na + n = n.
⌊

μ⊥

n − k
+ 1
⌋
+ n (29)

Furthermore, in the literature, the parameters of con-
volutional encoders used take typically quite very small
values. Indeed, the maximum parameters are such that

nmax = 5, kmax = 4, Kmax = 10 (30)

A minimum value of lmax is given in Table 1 for three
optimal encoders used in the following section dedicated
to the analysis and performances study of our blind
identification method.

4 Analysis and performances
In order to gain more insight into the performances of our
blind identification technique, let us consider three convo-
lutional encoders, C(3,1, 4), C(3, 2, 3), and C(2, 1, 7).
Let Rl be a matrix built from 20, 000 received bits with

l = 2, ..., 100 and L = 200. It is very important to take into
account the number of data to prove that our algorithm
is well adapted for implementation in a realistic context.
The amount of 20,000 bits is quite low with regards com-
pared to standards. For example, in the case of mobile
communications delivered by the UMTS at a data rate
up to 2 Mbps, only 10 ms are needed to receive 20, 000
bits. Furthermore, the rates reached by standards in the
future will be higher.
For each simulation, 1000 Monte Carlo were run, and

focus was on

• the impact of the number of iterations upon the
probability of detection;
• the global performances in terms of probability of
detection.

In this article, the detection means complete identifica-
tion of the encoders (parameters and generator matrix).

4.1 The detection gain produced by the iterative process
The number of iterations to be made is a compromise
between the detection performances and the processing

Table 1 Different values of lmax (the minimum value of
lmax is given for three optimal encoders)

Encoder lmax

C(3, 2, 3) 18

C(3, 1, 4) 9

C(2, 1, 7) 16
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delay introduced in the reception chain (see [8]). To
evaluate this number of iterations, let Pdet(i) be the
probability of detecting the true encoder at the ith
iteration.
The probability of detecting the true encoder, Pdet, is

called probability of detection.

• C(3, 2, 3) convolutional encoder:

Figure 2 shows the probability of detecting the true
encoder (Pdet) compared with Pe for 1, 10, and 50 itera-
tions. It shows that, for the C(3, 2, 3) convolutional
encoder, 10 iterations of the algorithm result in the best
performances: indeed, there is no advantage in perform-
ing 50 iterations rather than 10. On the other hand, the
gain between 1 and 10 iterations is huge.

• C(3,1,4) convolutional encoder:

Figure 3 illustrates the evolution of Pdet compared
with Pe for 1, 10, and 50 iterations in the case of C(3,1,
4) convolutional encoder. It shows that the gain between
the 1st and the 50th iterations is nearly nil.
For a rate k/n convolutional code where k ≠ n - 1, the

algorithm presented in Figure 2 requires several itera-
tions to estimate the (n - k) parity checks (16). Conse-
quently, for such codes (k ≠ n - 1) there is no need to
realize this iteration process. Indeed, the gain provided
by our iterative process is not significant. But, for a rate
(n - 1)/n convolutional encoder, it is clear that the algo-
rithm performances are enhanced by iterations. More-
over, it is important to note that the detection of a
convolutional code depends on both the parameters of

the code, the channel error probability, and the correc-
tion capacity of the code. Thus, the number of iterations
needed to get the best performance is code dependent.
For such a code, it would be worth assessing the impact
of the required number of data. In order to achieve this,
for the C(2,1, 7) convolutional encoders, a comparison
of the detection gain produced by the iterative process
for several values of L is proposed.

• C(2,1,7) convolutional encoder:

Figure 4 depicts Pdet compared with Pe, for 1, 5, and
50 iterations and for L = 200. For 1, 10, 40, and 50
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Figure 2 C(3,2,3): Probability of detection compared with Pe.
For the C(3,2,3) encoder, the probability of detecting the true
encoder is depicted compared with the channel error probability
for 1, 10, and 50 iterations.
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Figure 3 C(3,1,4): Probability of detection compared with Pe.
For the C(3,1,4) encoder, the probability of detecting the true
encoder is depicted compared with the channel error probability
for 1, 10, and 50 iterations.
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Figure 4 C(2,1,7): Probability of detection compared with Pe for
L = 200. For the C(2,1,7) encoder and L = 200, the probability of
detecting the true encoder is depicted compared with the channel
error probability for 1, 5, and 50 iterations.
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iterations, Figure 5 illustrates the evolution of Pdet com-
pared with Pe for L = 500. It shows that, for L = 200, 5
iterations permit us to identify the true encoder,
whereas, for L = 500, the identification of the true enco-
der requires 40 iterations. For L = 200, after 5 iterations,
Pdet is close to 1 for Pe ≤ 0.02, but after 40 iterations
and L = 500, Pdet is close to 1 for Pe ≤ 0.03. It is clear
that the number of received bits is an important para-
meter of our method. Indeed, by increasing the size of
matrices Rl, the probability to obtain non-erroneous
pivots increases during the iterative process. Thus, it is
possible to realize more iterations of our algorithm to
improve detection performances. But, for implementa-
tion in a realistic context, the required number of data
has to be taken into account. In the last section, we will
show that the algorithm performances are very good
when L = 200.

4.2 Probability of detection
To analyze the method performances, three probabilities
were defined as follows:

1. probability of detection (Pdet) is the probability of
identifying the true encoder;
2. probability of false-alarm (Pfa) is the probability of
identifying an optimal encoder but not the true one;
3. probability of miss (Pm) is the probability of iden-
tifying no optimal encoder.

In order to assess the relevance of our results through
a comparison of the different probabilities to the code
correction capability, let us denote by BERr the theoreti-
cal residual bit error rate obtained after decoding of the

corrupted data stream with a hard decision [12]. Here,
to be acceptable, BERr must be close to 10-5.
Figures 6, 7, and 8 show the different probabilities

compared with Pe after 10 iterations and the limit of the
10-5 acceptable BERr for C(3, 2, 3), C(3, 1, 4), and C(2,
1, 7) convolutional encoders, respectively. One should
note that the probability of identifying the true encoder
is close to 1 for any Pe with a post-decoding BERr less
than 10-5. Indeed, the algorithm performances are excel-
lent: Pdet is close to 1 when Pe corresponds to either
BERr < 2 × 10-4 for C(3,2,3) convolutional encoder or
BERr < 0.67 × 10-4 for the C(3,1,4) encoder.

5 Conclusion
This article dealt with the development of a new algo-
rithm dedicated to the reconstruction of convolutional
code from received noisy data streams. The iterative
method is based on algebraic properties of both optimal
convolutional encoders and their dual code. This algo-
rithm allows the identification of parameters and genera-
tor matrix of a rate k/n convolutional encoder. The
performances were analyzed and proved to be very good.
Indeed, the probability to detect the true encoder proved
to be close to 1 for a channel error probability that gener-
ates a post-decoding BERr that is less than 10-5. More-
over, this algorithm requires a very small amount of
received bit stream.
In most digital communication systems, a simple tech-

nique, called puncturing, is used to increase the code
rate. The blind identification of the punctured code is
divided into two part: (i) identification of the equivalent
encoder and (ii) identification of the mother code and
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Figure 5 C(2,1,7): Probability of detection compared with Pe for
L = 500. For the C(2,1,7) encoder and L = 500, the probability of
detecting the true encoder is depicted compared with the channel
error probability for 1, 10, 40, and 50 iterations.
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alarm, and probability of miss compared with Pe. For the C(3, 2,
3), the probability of detection, the probability of false-alarm, and
the probability of miss are depicted compared with he channel
error probability.
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puncturing pattern. Our method, dedicated to the blind
identification of k/n convolutional encoders, also allows
the blind identification of the equivalent encoder of the
punctured code. Thus, our future study will be to iden-
tify the mother code and the puncturing pattern only
from the knowledge of this equivalent encoder.

A The key-parameter na
According to (20), the rank of the matrix, Ra.n, is:

rank (Rα.n) = α.n. kn + μ⊥ < α.n (31)

Let us seek na, when na = a.n, which corresponds to
the first matrix, Rna, with a rank deficiency. This corre-
sponds to seeking the minimum value of a.

α.n
(
1 − k

n

)
> μ⊥ (32)

α.n >
n

n − k
.μ⊥ (33)

α >
μ⊥

n − k
(34)

So, the minimum value of a, denoted amin, is such
that

αmin =
⌊

μ⊥

n − k

⌋
+ 1 (35)

According to (35), the key-parameter na is such that

na = n.αmin = n.
⌊

μ⊥

n − k
+ 1
⌋

(36)

B The rank deficiency of Rna
According to (36), the rank of Rna is such that

rank
(
Rna

)
= k.

⌊
μ⊥

n − k
+ 1
⌋
+ μ⊥ (37)

Therefore, the rank deficiency of Rna, denoted
Z(na) = na − rank

(
Rna

)
, is

Z(na) = (n − k).
⌊

μ⊥

n − k
+ 1
⌋

− μ⊥

= (n − k).
⌊

μ⊥

n − k

⌋
− μ⊥ + (n − k)

(38)

The modulo operator is equivalent to

(a mod (b)) = a −
⌊a
b

⌋
.b (39)

and thus:

Z(na) = − (
μ⊥ mod (n − k)

)
+ (n − k) (40)

The modulo operator is such that

0 ≤ (a mod (b)) < b (41)

Consequently, the value of (μ⊥- mod (n - k)) is

0 ≤ (
μ⊥ mod (n − k)

)
< (n − k) (42)

−(n − k) < − (
μ⊥ mod (n − k)

) ≤ 0 (43)
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Figure 7 C(3,1,4): Probability of detection, probability of false-
alarm, and probability of miss compared with Pe. For the C(3, 1,
4), the probability of detection, the probability of false-alarm, and
the probability of miss are depicted compared with he channel
error probability.
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Figure 8 C(2,1,7): Probability of detection, probability of false-
alarm and, probability of miss compared with Pe. For the C(2, 1,
7), the probability of detection, the probability of false-alarm, and
the probability of miss are depicted compared with he channel
error probability.
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0 < (n − k) − (
μ⊥ mod (n − k)

) ≤ (n − k) (44)

So, Z(na) is such that

0 < Z(na) ≤ (n − k) (45)

where Z(na) Î N. Therefore, the rank deficiency of the
matrix, Rna, is such that

1 ≤ Z(na) ≤ (n − k) (46)
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