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Abstract

In this article, we study the asymptotic behavior of flooding in large scale wireless networks. Specifically, we derive an
upper bound on the coverage of flooding when the number of nodes n in the network goes to infinity. We consider
two different regimes of transmission radii: first, the case of constant transmission radius r where the percentage of
covered nodes scales as O(nr2e−KSnr2) for a constant KS > 0. In this case, as an important result, we observe that the
percentage of covered nodes is upper bounded by a decreasing function, vanishing as the network size grows.
Second, the case of vanishing rn (i.e., r decreases as n increases) is considered where it is shown in the literature that
the minimum value of rn which maintains connectivity is

√
log n/πn. In this case, a coverage percentage of at most

O(n−K ′
S log n) is expected for a constant value of K ′

S > 0, leading to an infinite number of covered nodes. In such case,
the rate at which the network coverage is decreased can be controlled and be considerably reduced by a proper
choice of network parameters (K ′

S). Consequently, this result shows that flooding is a suitable strategy even for large
networks.
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Introduction
Flooding is the simplest and most widely used form of
broadcasting in wireless networks where each node simply
retransmits received data once to its neighboring nodes
[1,2]. Data dissemination and route discovery process in
many applications are based on flooding [3-6].Wide adop-
tion of flooding for broadcasting traffic is mainly due to
its simplicity. In addition, it does not require any cen-
tralized information about the network. In probabilistic
flooding—a variant of flooding introduced in [7]—each
node retransmits received data with a pre-set probability
called forwarding factor in order to reduce unnecessary
retransmissions. After the seminal study of Gupta and
Kumar in [8], the scaling laws and fundamental limits
of large wireless networks have received much attention.
However, to the best of authors’ knowledge, no study has
been conducted in the literature with the goal of study-
ing the scaling laws of flooding. The importance of such
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analysis lies on the aforementioned popularity of flood-
ing for data dissemination and route discovery in many
routing protocols [3-6]. Based on this fact, the main moti-
vation of this study is to effectively answer the question
that whether flooding is suitable and applicable to large
scale networks or not.
Previous related studies in [9-11] proposed a tight upper

bound on the coverage of flooding in a multi-hop net-
work using carrier sense multiple access (CSMA) as the
MAC layer strategy for any finite network size. CSMA is a
well-known multiple access algorithm for broadcasting in
wireless networks [1]. It should be noted that implement-
ing other MAC layer algorithms that require centralized
information of the network nodes is not feasible in ad-hoc
wireless networks. In addition, utilizing collision avoid-
ance techniques in MAC layer for broadcasting traffic is
not practical, since it generally requires a large amount
of control message overhead to ensure that all neighbors
successfully receive the broadcasted packet.
In this article, we take a step further by investigating

the scaling law and asymptotic behavior of flooding in
ad-hoc wireless networks based on the framework intro-
duced in [9-11]. The major contribution of this article
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in comparison with the results presented in [9] is pro-
viding an analytic approach to asymptotic behavior of
flooding. Although [9] provides important results on the
coverage of flooding, its results are only obtained numer-
ically through a recursive scheme. On the other hand,
the analytic framework proceeded in this article leads to
closed form representations of coverage upper bound in
large networks. Therefore, the derived closed form results
clearly demonstrate the behavior of coverage and provide
deeper insight on the performance of flooding when the
number of network nodes grows.
In order to analyze the coverage of flooding, first, we

assume that only one of the nodes intends to broadcast its
packets. Subsequently, a discussion on the case of multiple
sources is presented. Our analysis includes two different
cases: the case where the transmission radius is constant,
and the case where the transmission radius r approaches
zero as the number of nodes goes to infinity. Although
flooding is in general known to be a simple yet ineffi-
cient broadcasting method [1], we obtain the following
interesting results throughout the article:

• Under the assumption of constant transmission
radius, network coverage is upper bounded by a
decreasing function rapidly vanishing as the network
size grows. Therefore, flooding is not a proper
broadcasting scheme in such conditions.

• When the transmission radius approaches zero as
network size grows, we show that a coverage bound
(i.e., the percentage of covered nodes) close to 100%
can be obtained in realistic large networks. This
result, along with the tightness of the bound,
demonstrates that flooding is a suitable and
applicable broadcasting scheme in terms of network
coverage even for large networks.

It should also be noted that, in addition to the aforemen-
tioned interesting results, the analytic framework pre-
sented in this article can provide proper basis for asymp-
totic analysis of other broadcasting schemes. A number
of more complex broadcast methods are already proposed
in the literature, such as counter-based, distance-based,
location-based broadcasting [1], and multi point relaying
(MPR) [12], with the goal of improving overall network
efficiency. Although the analysis of such schemes appears
to be more complicated than simple flooding, we believe
that this study, as the first research in this field, can be
extended to analyze them as well. It is important to note
that no complete and comprehensive analytic model for
performance analysis of such broadcasting schemes in
the presence of a practical MAC layer protocol currently
exists, even in the case of finite networks.
The rest of the article is organized as follows: in Section

‘Notations and system model’, we introduce the network

model, MAC layer model, and an exact definition of flood-
ing and network coverage. Then, we restate briefly the
results obtained in [9] in Section ‘Coverage upper bound’.
The asymptotic behavior of the upper bound on the cov-
erage is derived in Section ‘Asymptotic analysis’ along
with a discussion on the obtained results. Finally, Section
‘Conclusions’ concludes the article.

Notations and systemmodel
Network model
Network nodes are distributed on a unit-radius sphere
R according to a Poisson point process � with intensity
measure � = λμ representing the mean density of points,
where λ > 0 is the intensity of the uniform Poisson point
process and μ is the Lebesgue measure with total mass
4π . Figure 1 shows the spherical model adopted for our
network area. It should be noted that symmetric prop-
erties of the sphere eliminate the edge-effect arising in
planar models and, therefore, leads to a model in which
all regions of the network will be governed by the same
process. All derivations can then be applied to a two-
dimensional network if the edge-effect in such network
is ignored. Such model has been used by several articles
in the literature, e.g., [8,13]. In large scale networks, we
assume that λ → ∞. Consequently, the mean number of
nodes n goes to infinity. Let V and X i, respectively, denote
the set of nodes in the network and their locations. We
will then have � = {X i;∀X i ∈ R,∀i ∈ V }. We refer to a
given � as a network realization. Nodes i and j placed at

Figure 1 Network nodes are assumed to be distributed over a
unit-radius sphere. The shaded area shows the neighboring region
of point x [9].
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points x and y are neighbors if their distance is less than
the transmission range of the nodes, which is denoted by r.
Since we have assumed that network nodes are distributed
on a unit-radius sphere, r is the normalized value of the
transmission radius. Let HN(x) denote the neighboring
region around x, where μ(HN(x)) = πr2 is the Lebesgue
measure of this region on the unit sphere. The shaded
area in Figure 1 shows the neighboring region of point x.
The wireless transmissions are modeled according to the
protocol model introduced in [8]. The interference region
HI(x) is defined as the region in which each point lies in
a distance less than r� = (1 + �)r from x, where � is
the constant factor of the protocol model. The transmis-
sion from node i to node j is successful if the following
conditions are satisfied:

• The distance between nodes i and j is no more than
r, i.e., j lies in the neighboring region of node i.

• For every other node k simultaneously transmitting
over the channel, the distance between k and j is
more than (1 + �)r, i.e., k is located outside the
interference region of node j.

It should be mentioned that for the sake of tractabil-
ity, in this study all results are derived considering uni-
form transmissions, even though the proposed framework
can be extended to analyze network scenarios with non-
uniform transmissions. The non-uniform transmission
assumption would affect neighboring and interference
regions. It is further assumed that, under saturated con-
dition, all nodes have packets for transmission and one of
them intends to broadcast its packet. The source node is
selected randomly.

MAC layer model
As mentioned earlier, CSMA is used as the MAC layer
strategy, since collision avoidance techniques require a
large amount of control message between transmitter
and all neighboring nodes. Hence, in applications such
as broadcasting which, by nature, involve a large num-
ber of transmissions, implementing collision avoidance
techniques degrades the performance of MAC layer strat-
egy. In the CSMA protocol, each silent node with packets
ready for transmission senses the channel and transmits
with probability p if the channel is idle, and postpones
the channel sensing and transmission to the next time
slot with probability (1 − p). In the case of busy chan-
nel, the process will be postponed to the next time slot.
Therefore, the probability of transmission from a node
denoted by p′ is equal to the probability that the chan-
nel is idle multiplied by p. The transmitted packet from
a node placed at point x will be successfully received at
a node placed at point y with probability PS(dx,y). Colli-
sions between simultaneously transmitted packets reduce

network coverage, since CSMA does not benefit from any
collision avoidance or re-transmission scheme. The men-
tioned parameters are carefully defined and computed in
[9] with the help of the study presented in [14], which are
as follows:

p′ = p · Pr{channel is idle at a given slot}
= αp

1 + α − e−p′NI
, (1)

PS(dx,y) = (1 − p′)ep′λC(dx,y)2τ e−p′λπr2�(2τ+1), (2)
in which α = r/c is the one-way propagation delay (with
c denoting the speed of light), and NI = λμ (HI(x)) is
the mean number of nodes in the interference region of x.
In addition, C(dx,y) is the intersection area of interference
regions around points x and y, as determined in [14] for a
planar network and in [9] for our sphere model. Figure 2
shows C(dx,y) for a planar network. Moreover, we have
τ = T/α, where T is the packet transmission time. For the
sake of simplicity, T is assumed to be equal to 1, and all
other time parameters are normalized with respect to T.
Furthermore, PS is defined as the average of PS(dx,y), and
is equal to

PS = 1
μ(HN(x))

∫
HN(x)

PS(dx,y)μ(dy). (3)

These parameters can be easily computed using the
results presented in [9,14] and depend on the basic param-
eters of the network such as the CSMA transmission
probability p, packet size τ , network size n, transmis-
sion radius r, and interference region factor � as well
as network topology (planar versus sphere). The effect
of transmission model is clear in calculating the MAC
layer parameters. In Equations (1) and (2) the interfer-
ence region is considered as the area from which the
interference can make the channel busy or disturb the
packet transmission. However, in calculation of PS, only
transmissions from neighboring regions are considered
potentially as successful transmissions.

Figure 2 C(dx,y) shows the intersection area of interference
regions around points x and y in a planar network.



Shah-Mansouri et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:312 Page 4 of 10
http://jwcn.eurasipjournals.com/content/2012/1/312

It should be noted that the analysis framework used in
this article only requires the two aforementioned parame-
ters ofMAC layer, i.e., transmission probability p′ and suc-
cessful transmission probability PS. Therefore, our model
can be simply extended to any other MAC layer protocol
or any different definition of CSMA protocol by recal-
culating these parameters for desired MAC model and
substituting them in our analytic model.

Probabilistic flooding and network coverage
Before introducing the analytic framework, an exact def-
inition of flooding and probabilistic flooding should be
provided. In probabilistic flooding, flooding packets are
generated by a source node. Each intermediate node
receiving a new packet from a neighbor rebroadcasts it
with a preset probability, which is generally called for-
warding factor and denoted herein by Pff. On the other
hand, simple flooding is a special case of probabilistic
flooding with Pff = 1.
Our goal is to analyze the flooding scheme in terms

of network coverage in large wireless networks. Network
coverage is defined as the average percentage of nodes
which successfully receive the flooded packet when with
probability 1 the flooding phase is completed (i.e., none of
the nodes has flooding packets waiting for rebroadcast).
Although network coverage of 100% is desired from a
broadcasting scheme, packet collision in the shared wire-
less channel reduces the coverage. We denote the network
coverage for network realization � by c�. In addition, c
denotes the average value of network coverage over all
network realizations while C is its upper bound.

Coverage upper bound
In this section, we briefly review the results obtained in
[9]. We use this framework as a basis of our analysis later
in this articlea. In order to calculate the network coverage,
we first introduce the analytic framework presented in [9].
We mark each node of the network realization � by a ran-
dom variable denoted by ζXi denoting whether node i ∈ V
has received the broadcasted packet or not. The marking
random variable is as follows:

ζXi =
{
1 with probability ψ(X i),
0 with probability 1 − ψ(X i)

(4)

where ψ(X i) is the probability that node i placed at X i
receives the broadcasted packet when the flooding process
is completed. The network coverage for network real-
ization � can be determined by computing the ratio of
covered nodes to total number of nodes as follows:

c� =
∑

Xi∈� E{ζXi}
n

=
∑

Xi∈� ψ(X i)

n
(5)

In (5), we have used the fact that E{ζXi} = ψ(Xi) which
shows the expectation of reception. This equation repre-
sents the ratio of average number of nodes that received
the broadcasted packet to the total number of nodes for a
given�. Letψ(X i) denote the average ofψ(Xi) taken over
the number and location of neighbors of node i. By averag-
ing over mentioned random values and different network
realizations �, we have

c =
∫
R ψ(x)�(dx)

n
=

∫
R ψ(x)μ(dx)

4π
. (6)

Equation (6) presents a simple summation over the
surface of sphere, where ψ(x) denotes the average
probability of reception at point x ∈ R and n = 4πλ is
the total number of nodes. In order to calculate ψ(x), we
introduce another function uh(x) which is defined over
hop-counter h. We assume that each packet is marked by
a hop-count parameter h. This value is set to zero upon
generation at the source and is incremented by intermedi-
ate nodes after rebroadcasting the packet. Consequently,
its value shows the number of rebroadcasting times
experienced by the packet from its origination. When
h → ∞, the flooding process is completed with
probability 1. The function uh(x), namely the coverage
function, determines the probability that a node placed at
x receives the flooding packet with a hop-count equal to
or less than h. Therefore, uh(x) will be equal to ψ(x) when
h goes infinity, i.e., when the flooding process is completed
surely and we have

c = lim
h→∞

ch = lim
h→∞

∫
R uh(x)μ(dx)

4π
, (7)

where ch is the network coverage obtained until the hth
hop-count of the packet. In other words, we only count
the number of nodes that receive the flooding packet by a
hop-count equal to or less than h to calculate ch . LetUh(x)
denote the upper bound on uh(x), i.e., we have uh(x) ≤
Uh(x) ∀h > 0 and ∀x ∈ R. Therefore, the upper bound on
the network coverage denoted by C is obtained as

C = lim
h→∞

Ch = lim
h→∞

∫
R Uh(x)μ(dx)

4π
, (8)

where Ch is the upper bound of ch.Uh(x) can be calculated
using (9) when the Hölder inequalityb parameter b—
which is independent of other parameters and is explained
in detail in [9]—tends to infinity, i.e.,

Uh(x) = 1 − (1 − I(x))e−λμ(HN(x))PffPS
(∫

HN(x) U
b
h−1(z)μ(dz)

) 1
b
,

(9)

where Pff is the aforementioned forwarding factor of prob-
abilistic flooding which is equal to 1 for simple flooding;
and PS is the average of PS(dx,y), which is the probability
of successful packet transmission from a node located at x
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to its neighbor located at y. In Expression (9), I(x) is equal
to PS(dXS,x), where the source node is placed at XS while
I(x) = 0 for x ∈ R \ HN(XS). Note that (9) represents a
recursive function whose initial condition is U−1(x) = 0.
The Equation (9) is obtained using a rigorous analy-

sis presented in detail in [9]. The simulation results show
that the obtained upper bound is quite tight and reliable.
In addition, the bound gets tighter when n increases. It
should be noted that in this article, we only require this
equation which is the final result of [9]. More carefully, we
first calculate theMAC layer parameters in large networks
and substitute the results in (9). Then, we focus on deriv-
ing the asymptotic behavior of (9) under two different
regimes of transmission radius.

Asymptotic analysis
Main results
The main result of this article is the scaling law of the
flooding coverage in large networks. We use asymptotic
Knuth’s notations [15] to show the coverage upper bound.
In Knuth’s notation, upper bound is denoted by O(·). We
denote the upper bound of coverage by O(f ) for any func-
tion f if a network coverage greater than f is not possible
for flooding. In other words, the coverage obtained by the
flooding is bounded above by and scales as O(f ) if for any
constant 1 < a < ∞ and for any function f, a coverage
of af is not achievable. We study the problem under two
scenarios: in the first case, we assume that the transmis-
sion radius r is constant and independent of n, as denoted
by r = �(1). In Knuth’ notations, �(·) is used for tight
bound. Therefore, r = �(1) shows that r is a constant fac-
tor. In the second case, the transmission radius denoted by
rn is assumed to rapidly diminish as n increases. The fol-
lowing theorems characterize the scaling law for these two
cases. The proofs are presented in the following sections.

Theorem 1. (Main result 1) The network coverage of the
flooding is upper bounded by O(nr2e−KSnr2) for a constant
value of KS when r is constant, i.e., r = �(1).

Theorem 2. (Main result 2) The network coverage of
the flooding is bounded above by O(1 − e−Knr2e−KSnr2

) for
constants K and KS when rn

n→∞−→ 0. In order to keep con-
nectivity, rn should be

√
log n/πnPff or greater [8]. In the

case of rn = √
log n/πn for simple flooding, the network

coverage scales as O(log n/nK ′
S ). Consequently, the num-

ber of covered nodes scales asO(n log n/nK ′
S ) for a constant

K ′
S > 0.

It can be concluded that the coverage bound and the
number of covered nodes quickly approach zero when
r = �(1). However, for the case of rn = √

log n/πn,
convergence to 0 is much slower and can be controlled

by a proper choice of the network parameters. In such
condition, coverage bound greater than zero can be
obtained for a large n by choosing the parameter set such
that K ′

S will be very small. In addition, an infinite num-
ber of nodes can be covered when K ′

S < 1. As we will
see in ‘Proof of Theorem 2’ , K ′

S is much smaller than 1. It
should be noted that rn is the normalized value of trans-
mission radius since it is assumed that network nodes are
distributed on a unit-radius sphere.
The following sections contain the proofs of these the-

orems. The main strategy of the proofs is similar for both
theorems. First, the MAC layer parameters p′ and PS are
determined asymptotically and substituted in (9). Then,
Expression (9) is re-calculated by assuming that n → ∞.
Finally, the network coverage is analyzed asymptotically
using the obtained results. The main difference between
the proofs of the theorems is in calculating the integral
term in the exponent part of (9).

Proof of Theorem 1
We should first determine the MAC layer parameters
asymptotically. The transmission probability of nodes in
CSMA protocol given by (1) will be

lim
n→∞ p′ = lim

n→∞
αp

1 + α − e−p′NI
= αp

1 + α
∼= αp = rp

c
.

(10)

The parameter p′ appears on both sides of the first
equality in (10) which requires an iterative method to be
calculated. However, the second equality is obtained based
on the facts that p′ ≥ αp/(1 + α) > 0 and NI → ∞
when n goes infinity. Therefore, p′ can be readily cal-
culated in asymptotic regime. It should be noted that
α 
 1. In (2), C(dx,y) is the intersection area of inter-
ference regions around points x and y and, therefore, is
proportional to the interference region. Consequently, by
letting kx,y = C(dx,y)/(πr2�)we can rewrite Expression (2)
as

PS(dx,y) ∼= e
− rp

c
n
4π πr2�2τ

(
1− C(dx,y)

πr2
�

)
� e−kS(1−kx,y)nr2 .

(11)

By substituting (11) in (3), we have

PS = e−kSnr2
∫
HN(x)

ekSnr2kx,y
μ (HN(x))

μ(dy)

= e−kSnr2
∫
H1

N
(x)

ekSnr
2k1x,yμ(dy)

≤ e−kSnr2
(∫

H1
N

(x)
ek

1
x,yμ(dy)

)kSnr2

� e−KSnr2 ,

(12)
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where H1
N(x) and k1x,y are normalized values of HN(x)

and kx,y when r = 1, and the inequality comes from the
Cauchy-Schwarz inequality. In addition, kS = 0.5p(1+�)2

which is very less than 1 in typical applications, and

KS = kS

(
1 − ln

(∫
H1

N
(x)

ek
1
x,yμ(dy)

))

 1 (13)

are constants. KS can be readily calculated given that
k1x,y = C1(dx,y)/(π(1 + �)2), where C1(dx,y) is the inter-
section of interference regions of nodes placed at distance
dx,y when it is assumed that r = 1. KS is a constant fac-
tor that only depends on network topology (planar versus
sphere).
It is proved that Ch converges to C when h goes to

infinity, leading to convergence of Uh(x) [9, Appendix C].
Therefore, there exists H such that ∀h > H , we have
U
n
(x) � Uh(x) ∼= Uh−1(x). Now, we replaceUn

(x) in both
sides of (9), yielding

U
n
(x) = 1 − (1 − I(x))e

−λμ(HN(x))PffPS
(∫

HN(x)

(
U

n
(z)

)b
μ(dz)

)1/b

.
(14)

We simplify the exponent term in the right side of (14)
by first approximating U

n
(z) over HN(x) by Un

(x). Since
r2 
 1 in typical applications and U

n
(z) is a smooth

function, this is a valid approximation. Therefore,
(∫

HN(x)

(
U
n
(z)

)b
μ(dz)

)1/b
≈ U

n
(x) (μ(HN(x)))1/b .

(15)

Since μ(HN(x)) > 0, the above expression is equal to
U
n
(x) as b → ∞. Therefore,

U
n
(x) = 1 − (1 − I(x))e−Knr2PSU

n
(x)

≤ 1 − (1 − I(x))e−Knr2e−KSnr2 ,
(16)

where K = Pff/4. The inequality comes from the fact that
U
n
(x) ≤ 1. Such simplification ensures upper bound con-

dition and U
n
(x) is replaced by the right side of inequality

in (16) as the new upper bound on the coverage function.
Now, based on the obtained results for the coverage

function U
n
(x), we can calculate the network coverage C.

By using (8), the network coverage can be simply equal to
the average of Un

(x) over the sphere. C is also in the form
of (16) since the integration in (8) does not change the
scaling of Equation (16) and its relationship with n.
As I(x) = PS(dXS,x) for x ∈ HN(XS) and zero for

x ∈ R \ HN(XS), it is clear that Un
(x) is greater for x ∈

HN(XS) than for other nodes. This fact can be also con-
cluded intuitively, since the nodes closer to source node
have more chance of being covered. If we assume that
the number of nodes in HN(XS) is at most A(n) and the

percentage of covered nodes in this area is Cx∈HN(XS), we
have that

C ≤ A(n)Cx∈HN(XS) + (n − A(n))Cx∈R\HN(XS)

n
.

(17)

We know that C has a form similar to (16). Conse-
quently, Cx∈HN(XS) is also in the form of (16) when I(x) =
PS(dXS,x) = O(e−KSnr2) and Cx∈R\HN(XS) is in the form
of (16) for I(x) = 0. The following lemma determines
A(n).

Lemma 1. The number of nodes inHN(XS), denoted by
N, is at most A(n) = A(e − 1)r2n/4 for any A > 1 with
high probability.

Proof. Since nodes are Poisson distributed with mean
λμ (HN(x)) = nr2/4, by applying the Chernoff bound
we have Pr{N > A(n)} ≤ E{eN}/eA(n). Since E{eN} =
en(e−1)r2/4, as long as A > 1, Pr{N > A(n)} tends to zero
as n goes to infinity.

Therefore, the number of source’s neighbor nodes is at
most A(e − 1)r2n/4 with high probability. By substituting
A(n) from Lemma 1 into (17), network coverage bound
scales as (18) and main result 1 is obtained as follows,
using the fact that ey ∼= 1 + y for small values of y:

C = O
(
1 −

(
1 − A(e − 1)r2

4
e−KSnr2

)
e−Knr2e−KSnr2

)

∼= O
(
Knr2e−KSnr2 +A(e − 1)r2

4
e−KSnr2

(
1 − Knr2e−KSnr2

))
∼= O

(
nr2e−KSnr2

)
. �

(18)

It should be noted that for large n, the last term in above
expression approaches zero for any constant KS.

Proof of Theorem 2
The analysis for this case is similar to the case pre-
sented in the previous section. The major difference is

in the way that the term
(∫

HN(x)

(
U
n
(z)

)b
μ(dz)

)1/b
in

(14) is simplified. In the case of the previous solution,
(μ (HN(x)))1/b equals 1 since μ (HN(x)) > 0. However,
when rn → 0 this term (00) is undefined, thus we can not
reuse the same procedure used in the proof of Theorem 1.
Therefore, we should re-calculate this term when n goes
to infinity by assuming that rn approaches zero.
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Lemma 2. For a measurable function f, ||f ||∞ =
lim
b→∞

(∫ |f |bdμ
)1/b will be equal to the essential supremum

of |f | denoted by ess sup |f |.

Proof. The proof of this lemma is presented in [16].
Essential supremum of f is the greatest value of f which

occurs on a set that is not measure zero. Note that we
always have ess sup f ≤ sup f since supremum can occur
on a set of measure zero. In order to clarify the difference
between supremum and essential supremum, the follow-
ing example is useful. Consider a function f (x). Assume
that f (x) = 1 for x = 0 while it is zero elsewhere over
x ∈ (−∞,∞). The supremum of f (x) is 1, whereas its
essential supremum is zero since f (x) = 1 occurs on a
zero-measure set.
Since U

n
(z) is piecewise continuous on HN(x) as

proved in [9, Appendix C], we have that ess supUn
(z) =

supUn
(z) and consequently,

(∫
HN(x)

(
U
n
(z)

)b
μ(dz)

)1/b
= sup {Un

(z) : z ∈ HN(x)}.
(19)

Note that U
n
(z) is also a decreasing function with

respect to distance to the source. In other words, the
coverage function on the points far from the source is
lower than on the points closer. Therefore, sup {Un

(z) :
z ∈ HN(x)} = U

n
(xsup) occurs at the point closest

to the source node. Such point lies on the intersection
of the boundary region of HN(x) and the great circle
passing through XS and x as shown in Figure 3. By con-
sidering the continuity of Un

(z), we have U
n
(xsup) →

U
n
(x) when rn → 0. Therefore, by substituting U

n
(x) =(∫

HN(x)

(
U
n
(z)

)b
μ(dz)

)1/b
in (14) we can use (16) for

this case as well. It should be noted that in this case,(∫
HN(x)

(
U
n
(z)

)b
μ(dz)

)1/b
is equal to U

n
(x) and no

approximation is made. The rest of the analysis is similar
to the previous section and (17) and (18) are valid here. As
rn → 0, we obtain

C = O
(
1 − e−Knr2e−KSnr2

)
. (20)

It is clear that the above expression is increased by
decreasing rn. Although rn can approach zero, the main
necessary condition for connectivity of the network is
that rn ≥ √

log n/πnPff [8]. In the above expression, KS
is much less than 1. However, it can be decreased by
reducing p. In typical applications, for example with the
parameters given in Table 1 and used in [9], we have

Figure 3 sup{Un
(z)} occurs at the intersection of the boundary

region ofHN(x) and the great circle passing through x and the
source node.

KS ≈ 0.035, which satisfies such condition. In this case,
although C ultimately converges to zero, it will be close to
O(1) (a constant level of network coverage non-vanishing
for some large values of n) for some large networks even
with n = 1070 nodes. Therefore, the decrease in network
coverage begins in a very large network and the decre-
ment rate is much less than the case of fixed r. Therefore,
the decrement rate of network coverage can be controlled
and considerably reduced. In these conditions, network
coverage bound close to O(1) can be obtained in realistic
large networks. In this way, flooding becomes a suitable
and applicable broadcasting scheme for large wireless net-
works. The disadvantage of such condition is the increase
in data dissemination delay. In addition, it is well known
that flooding is not efficient in terms of energy consump-
tion. Therefore, in applications where delay and energy
are not critical issues, flooding is a proper choice of data
dissemination even in large scale networks. It should be
mentioned that the bound is tight and reliable as shown

Table 1 Model parameters

Parameter Value Description

p 0.02 Transmission probability

� 1 Protocol model factor

τ 85.33 Packet length in units of time slot

α 1.17 · 10−2 Normalized propagation delay
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in [9]. However, when n goes to infinity in mathematical
sense in (20), network coverage will be upper bounded by

C = O
(
log n/nK

′
S
)
, (21)

in the case that rn = √
log n/(πnPff) and where K ′

S =
KS/(πPff). Consequently, the number of covered nodes
scales as O(n log n/nK ′

S ) and if we choose network param-
eters such that K ′

S ≤ 1, an infinite number of nodes can be
covered.

Further implications
Although the aforementioned results are valid for large
values of n, we can use them for investigating the behavior
of coverage for finite n as well. Figure 4 illustrates the
curve for the first equality of Equation (18) in terms of n,
for the choice of parameters given in Table 1 with r = 0.3
(the same parameters set of Table 2 in [9]). It is evident
that there is a fixed value of N such that for n < N ,
the curve is an increasing function of n. However, for
n > N the coverage will rapidly decrease to zero. It should
be noted that in this article, we focus on the tail of this
curve and use its results implicitly for evaluating the cov-
erage for different network sizes. In Figure six of [9], it has
been claimed that the network coverage increases until
it reaches 1 for large networks. We note that the tail of
this curve has not been investigated in [9]. Heuristically,
one can say that for some network sizes, the large num-
ber of neighbors increases the coverage. However, as n is
increased further, the decrease in successful transmission
probability of CSMA reduces the coverage.
By repeating the same procedure for the case of rn → 0

and letting rn = √
log n/πn for simple flooding, Figure 5

is obtained. We notice that N is very large in this case
(about 1070) and the network coverage is increasing and
will be close to O(1) for n < N . In addition, the decre-
ment rate of coverage in network sizes greater than N is
much less than the other case. As mentioned earlier, rn is
the normalized value of transmission radius. In a realistic
network, if we assume that power-limited wireless nodes
are distributed on a large area growing when the number
of nodes increases as used in [17], we can use the results
of Theorem 2 for evaluating the performance of flood-
ing. However, when the network area is finite, rn cannot
reach zero since the transmission power of realistic wire-
less nodes is lower bounded. In such cases, the results of
Theorem 1 can predict the behavior of flooding.
As discussed in [9], the upper bound on network cov-

erage is the same for one or multiple sources, since in the
saturated condition, retransmission of packets related to a
source at all the nodes is independent of the other broad-
casting sources. Therefore, if we define the coverage as
the percentage of the nodes that receive the broadcasted
packet from each source, main results 1 and 2 are still valid
for multiple sources. However, if we define the coverage
as the percentage of nodes that receive broadcasted pack-
ets of all nS source nodes, the network coverage will be
(C)nS , which can be readily calculated based on the results
obtained in this article.

Conclusions
In this article, the scaling laws of the coverage of flooding
in CSMA-based large wireless networks have been stud-
ied. An analysis has been performed for both cases of con-
stant transmission radius r and vanishing radius rn when
the number of nodes n goes to infinity. For the case of

Figure 4 This curve illustrates the first term of (18) for different network sizes. Network coverage vanishes rapidly for large values of n in the
case of constant r.
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Figure 5 This curve illustrates the Equation (20) for different network sizes. The decrement in network coverage begins from 1070 and the
decrement rate is much less after that in the case of vanishing rn .

constant r, the results show that network coverage rapidly
approaches zero when n increases. However, the rate of
decrement of network coverage in case of vanishing rn is
much smaller compared to the case of constant radius. In
addition, the rate can be controlled by proper choice of
network parameters. Consequently, it makes flooding an
appropriate and practical scheme for data dissemination,
even in large networks. The number of covered nodes also
approaches zero under fixed radius assumption while an
infinite number of nodes can be covered in the case of
rn → 0.

Endnotes
aIn [9], we propose two upper bounds on the network cov-
erage. Since the asymptotic analysis for the derivation of
the two upper bounds is similar, we focus on deriving the
asymptotic result for the first one in this article.
bThe Hölder inequality is a fundamental inequality
between integrals. Let 1 ≤ a, b ≤ ∞ with a−1 + b−1 = 1.
Consequently, for all measurable functions f and g on
a measure space, ||fg||1 ≤ ||f ||a||g||b. In [9], we have
assumed that a → 1 and consequently, we have that
b → ∞.
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