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Abstract

In modern broadband wireless access systems such as mobile worldwide interoperability for microwave access
(WiMAX) and others, repetition coding is recommended for the lowest modulation level, in addition to the
mandatory concatenated Reed-Solomon and convolutional code data coding, to protect vital control information
from deep fades. This paper considers repetition coding as a time-diversity technique using maximum ratio
combining (MRC) and proposes techniques to define and to calculate the repetition coding gain Gr and its effect
on bit error rate (BER) under the two fading conditions: correlated lognormal shadowing and composite
Rayleigh-lognormal fading also known as Suzuki fading. A variable-rate, variable-power 10-state finite-state Markov
channel (FSMC) model is proposed for the implementation of the adaptive modulation and coding (AMC) scheme
in mobile WiMAX to maximize its spectral efficiency under constant power constraints in the two fading
mechanisms. Apart from the proposed FSMC model, the paper also presents two other significant contributions:
one is an innovative technique for accurate matching of moment generating functions, necessary for the
estimation of the probability density function of the combiner's output signal-to-noise ratio, and the other is
efficient and fast expressions using Gauss-Hermite quadrature approximation for the calculation of BER of QPSK
signal using MRC diversity reception.

Keywords: Lognormal fading; Suzuki fading; Gauss-Hermite polynomial; Moment generating function; WiMAX;
Adaptive modulation and coding; Repetition coding; Finite-state Markov channel model
1 Introduction
In modern wireless communication networks such as 3G
long-term evolution and WiMAX, modulation and coding
are adapted to the fading condition of the channel, typic-
ally to the received signal-to-noise ratio (SNR) fed back to
the base station by the subscriber station. This adaptive
modulation and coding (AMC) scheme is usually designed
to maximize the system average spectral efficiency over
the whole fading range while maintaining a fixed given tar-
get bit error rate (BER). Adaptive transmission is usually
performed by adjusting the transmit power level, the
modulation level, the coding rate, or a combination of
these parameters, in order to maintain a constant ratio of
bit energy-to-additive white Gaussian noise (Eb/N0). For a
given target BER, the system can achieve high average
spectral efficiency by transmitting at high rates for high
channel SNR and at lower rates for poorer channel SNR.
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For reasons of inherently high spectral efficiency and
ease of implementation, modulation as well as coding in
modern mobile wireless networks are restricted to a finite
set, e.g., to square QAM constellation size of M = {4, 16,
64, 256}, to coding rates of R = {1/2, 2/3, 3/4, 5/6}. In
the IEEE 802.16e standard for mobile WiMAX [1],
repetition coding (RC) with the number of repetition
times x = {2, 4, 6} is also applied to QPSK for diversity
gain in order to protect vital control information during
deep fading. Thus, the scheme forms a discrete set of
combined modulation and coding specified by the cor-
responding standard. By partitioning the range of the
received SNR into a finite number of intervals, a finite-
state Markov channel (FSMC) model can be construc-
ted for the implementation of the AMC scheme in a
Rayleigh fading wireless channel [2-6]. Corresponding
analysis in a lognormal shadow fading and in Rayleigh-
lognormal composite fading environments is far sparser
because of the complexity of the underlining lognormal
probability theories [7-9], especially when correlation
s is an Open Access article distributed under the terms of the Creative
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between diversity channels is taken into consideration.
Moreover, the physics of shadowing and its lognormal-
ity statistical property are not well understood [10]. In a
widely quoted paper [11], Suzuki presents a simple
physical model for radio propagation suitable for typical
mobile radio propagation between the base station and
a mobile receiver in urban areas, in which the probabil-
ity density function for the fading follows a composite
Rayleigh-lognormal distribution.
In FSMC theory, the partition of SNR into state inter-

vals or regions can be arbitrary; e.g., in [2] the equal
steady-state probability method is used to determine the
SNR thresholds of the states, while in [3] the equal aver-
age state duration is assumed. However, in practice the
system's physical parameters are usually standardized
and our proposed FSMC model for the fading wireless
channel is ‘tailored’ to conform to the relevant physical
standard. Thus, while FSMC is a model of the fading
channel, the proposed model in our paper is also a func-
tion of the particular modulation and coding schemes
used by the physical system. In order not to ‘abuse’ the
basic definition of a Markov process, the necessary as-
sumption in our model is that the channel fading is slow
enough so that the SNR remains within one SNR region
over several resource allocation unit times, and thus the
Markov process can only transit to the same region or
to the two adjacent regions. Since the IEEE 802.16e
standard [1] gives only a finite number of profile AMC
schemes, it is logical to use these profile AMC schemes
as the finite states of the FSMC model for mobile
WiMAX as shown in Table 1.
Current research in the literature on FSMC modeling of

fading wireless channels has also not addressed adequately
the effects of data coding on BER. The concatenated
Reed-Solomon and convolutional code (RS-CC) is man-
datory in most wireless systems, and others such as convo-
lutional turbo code, block turbo code, and low-density
Table 1 A 10-state FSMC model for mobile WiMAX.

Modulation Coding rate,
repetition

Spectral efficiency Cj
(bps/Hz)

State
sj

QPSK R1/2, 6× 0.17 1

R1/2, 4× 0.25 2

R1/2, 2× 0.50 3

R1/2 1.00 4

R3/4 1.50 5

16-QAM R1/2 2.00 6

R3/4 3.00 7

64-QAM R1/2 3.00

R2/3 4.00 8

R3/4 4.50 9

R5/6 5.00 10
parity-check code are optional alternatives. Since data
coding results in an effective power gain, corresponding
convolutional coding gain (Gc) and repetition coding gain
(Gr) must be applied to obtain an effective SNR for the im-
plementation of the AMC scheme in mobile wireless net-
works. The effect of coding gain of trellis code on power
adaptation in a four-state M-QAM signal has been
addressed in [4]. In repetition coding in an OFDMA sys-
tem, the same data symbol is transmitted on several con-
tiguous slots so that if the information on one of those
slots is corrupted, the information on the other slots will
be received correctly by a maximum ratio combining
(MRC) receiver. The obvious downside of repetition cod-
ing is that it decreases the spectral efficiency and this is
why the most robust modulation BPSK is not used with
repetition coding.
In this paper, we present a 10-state FSMC model for the

AMC scheme in mobile WiMAX, taking into account also
the repetition coding gain in two different fading scenar-
ios: correlated lognormal fading and composite Rayleigh-
lognormal fading, also known as Suzuki fading. Because
the main theme of our paper is the effect of repetition
coding on the proposed 10-state FSMC model for AMC
control, but not on channel fading models, we will restrict
ourselves, for simplicity and brevity, to the Rayleigh-
distributed channel (voltage) gain and the corresponding
exponentially distributed channel (power) gain rather
than dealing with their respective generic distributions,
i.e., Nakagami-m distribution and gamma-k distribution,
respectively. One of the significant findings in this paper is
that the channel fading correlation, while significantly de-
grading the BER performance, practically does not affect
the proposed variable power control algorithm and its
resulting 10-state FSMC model for mobile WiMAX. This
is because repetition coding is applied only to the first
three states, but the total power in these states is too small
to affect the overall variable power control scheme.
To the best of our knowledge, the performance of repe-

tition coding has not been studied before, partly because
the flexible allocation of the OFDMA slots in the time-
frequency domain and the nature of the diversity channels
involved in the transmission of the repetition slots are not
well understood. This will be discussed in Section 2.2. The
approach proposed in the paper can be generalized to de-
sign power control algorithm for other wireless communi-
cation systems using AMC under fading conditions.
In this paper we also show that many complicated ex-

pressions for BER involving integrations and double inte-
grations of lognormal and lognormal-related composite
functions can be efficiently and accurately approximated in
closed form using Gauss-Hermite quadrature polynomials.
There are three main contributions from this paper.

The first is an innovative technique for accurate
matching of two moment generating functions using
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the power conservation principle: one is the moment
generating function (MGF) of the sum of SNRs at the out-
put of the MRC combiner and the other is of an accurate
estimate of this sum. Current MGF matching techniques
to date, e.g. [9], are seriously power ‘lossy’ and rather unre-
liable. The second is the most computationally simple
closed-form expression to date for an accurate approxima-
tion of BER of QPSK signals using MRC diversity recep-
tion operating in correlated lognormal (expression (23))
and composite Rayleigh-lognormal (expression (30)) fad-
ing environments. The third is the definition of the repeti-
tion coding gain Gr and its incorporation into the design
of the transmit power control policy of a 10-state FSMC
model for the AMC scheme in mobile WiMAX using
repetition coding for QPSK signal. The work in this paper
is particularly relevant to the interests of both designers
and researchers of broadband wireless access networks.
The rest of the paper is organized as follows. In Section 2,

we briefly present the time-diversity model for the repeti-
tion coding in an OFDMA system and the bound on BER
of the rectangular M-QAM signal which serves as the
foundation of the transmit power control algorithm ori-
ginally proposed in [4,5]. Section 3 presents an analysis of
the effect on BER of QPSK signals from the use of repeti-
tion coding under the two fading conditions: correlated
lognormal fading and composite Rayleigh-lognormal fad-
ing. In this section, we also define and calculate the RC
gain for the two fading conditions. In this section, an in-
novative technique is presented for accurate matching of
two MGFs. In Section 4, we present the steps in the algo-
rithm leading to a 10-state FSMC model for implementing
the AMC scheme in mobile WiMAX operating in the
mentioned fading environments. Finally, a conclusion is
presented in Section 5.

2 Signal model, repetition diversity channel
model, and bound on bit error rate
2.1 Signal model
In this paper the signal-to-noise ratio, γ, plays a major
role in channel characterization and performance evalu-
ation and it can be defined from the signal model:

r tð Þ ¼ hs tð Þ þ n tð Þ; ð1Þ
where r(t), s(t), and n(t) are receive signal, transmit signal,
and channel noise, respectively; h is the amplitude channel
gain, assumed to be constant over the transmission time
of an orthogonal frequency division multiplex (OFDM)
symbol block, thus preserving the orthogonality between
subcarriers; n(t) is modeled as a zero-mean additive white
Gaussian noise (AWGN) process with one-sided power
spectral density N0. The received SNR is then

γ ¼ h2
�� ��Es

N0
; ð2Þ
where the signal energy is Es = E[s2(t)]. If the energy is that
of 1 bit, then we denote γb as the SNR per bit of transmit-
ted information.
In this paper we use the term power gain p = |h|2 and

signal-to-noise ratio γ interchangeably where it is appro-
priate. Since per bit SNR is γb = |h|2 × Eb/N0 and to avoid
dealing with the distance dependency, we normalize the
average channel power gain E[|h|2] = 1, thus making the
average received SNR per bit per channel �γ b ¼ Eb=N0.

2.2 Diversity channel model for repetition coding in
OFDMA systems
In the AMC zone of an OFDMA frame in IEEE802.16e
[1], subchannels are formed from grouping of adjacent
subcarriers. Adjacent subcarrier allocation results in
subchannels which are suitable for frequency non-selective
and slowly fading channels, e.g., lognormal shadowing. In
an OFDMA system, the basic unit of resource allocation
in the 2-D frequency-time grid is the slot being 1 sub-
channel in frequency by 1, two or three OFDM symbols in
time. More slots can be concatenated to accommodate lar-
ger forward error correction (FEC) encoded data blocks.
Since repetition coding repeats the same encoded data
block in different contiguous slots in the AMC zone, it
can be assumed that the MRC gain from combining re-
peating signals is predominantly via microdiversity recep-
tion in which all repetition subchannels experience the
same shadowing having N(μZ, σZ

2) distribution. The time
separation, hence the correlation coefficient between any
two diversity subchannels, depends on the size of the
FEC-encoded data blocks to be repeated as well as the
speed of the mobile receiver.

2.3 Bound on BER in rectangular M-QAM
At high SNR, the symbol-error-rate for rectangular
M-QAM in AWGN with M = 2k, when k is even, is ap-
proximated as [12], p. 280

SERAWGN;M−QAM ≈ 4 1−
1ffiffiffiffiffi
M

p
� �

Q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

M−1
γs

r !
; ð3Þ

in which is the average SNR per symbol per channel
(without combining) and for equiprobable orthogonal
signals the corresponding bit error rate is [12], p. 262

BERAWGN;M−QAM ¼ M
2 M−1ð Þ SERAWGM;M−QAM γð Þ:

ð4Þ
By using the asymptotic expansion of the function Q

(x) in (3), an upper bound for BER for a given value of
SNR is given in [4,6]

BERAWGN;M−QAM γð Þ ≤ KB Mð Þexp −
1:5γ
M−1

� �
ð5Þ
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in which the bound constant KB(M) is fixed at 0.2 in [4]
and is given as a function of M in [6] as

KB Mð Þ ¼ 0:266
M

M−1

� �
1−

1ffiffiffiffiffi
M

p
� �

: ð6Þ

It is obvious that for M > 4, the upper bound for BER
in (5) given by [4] is very tight, and this bound or its
power adaptation version in (54) provides the basis for
the transmit power control algorithm in [4] and [5].

3 Effect of repetition coding on BER and effective
repetition coding gain
3.1 Repetition coding for QPSK in WiMAX
In this paper, we define repetition coding gain simply as
the ratio of the SNR without repetition coding to the SNR
with repetition coding for a given target BER. Thus, an im-
provement in BER is equivalent to a saving in signaling
power required to combat deep fades in order to maintain
the given target BER. Since in the AMC scheme in mobile
WiMAX, and repetition coding of 6, 4, and 2 times is
recommended only for rate ½ QPSK modulation and cod-
ing (see Table 1), it is important that we first derive accur-
ate closed-form formulas for BER of QPSK signals from
an MRC combiner and the corresponding RC gain when
the wireless system operates in lognormal shadowing and
in composite Rayleigh-lognormal fading environments.
This is one of the significant contributions from our paper.

3.2 Correlated lognormal fading channels only
3.2.1 Power sum of correlated lognormal random variables
A signal subjected to shadowing, also known as slow fad-
ing, is usually modeled as a lognormally distributed ran-
dom variable. Its SNR is modeled as γ = 100.1Z = exp(Z/ξ)
with Z in decibels being normally distributed, i.e., Z ~ N
(μZ, σZ

2). The probability density function of γ is

f lognormal γð Þ ¼ 1
γ

ξ

σz
ffiffiffiffiffiffi
2π

p exp −
10log10γ−μz
� �2

2σ2z

 !
ð7Þ

in which ξ = 10/log10 is the conversion constant between
dB and net and is in linear unit. The average SNR is

�γLn ¼ exp
μz
ξ
þ 1
2

σz
ξ

� �2
" #

: ð8Þ

The effect of maximum ratio combining is to add up
the powers of the received signals to be combined. The
resulting SNR from N repetitions is

γN ¼
XN

i¼1
γ i

¼
XN

i¼1
100:1Zi with ZieN μZi; σZi

2
� �

: ð9Þ
A closed-form expression for the probability density
function (PDF) of the power sum of lognormal random
variables (RVs) in (9) is not available, but a number of
approximations in computationally efficient closed forms
are currently available. These include the Pearson Type
IV approximation in [7,8] and those found from the
MGF matching technique in [9]. In our paper, we adopt
the latter approach because it is elegant and simple and
it results in a PDF expression being suitable for the use
of Gauss-Hermite expansion to approximate the BER in
a closed form.
Consider the N correlated lognormal RV vector γ = {γi},

i = 1, 2,.., N, and their corresponding Gaussian RV vector
z = {zi}, having the joint distribution

f z zð Þ ¼ 1

2πð ÞN=2 Czj j1=2
exp −

z−μð ÞTC−1
z z−μð Þ
2

 !
;

ð10Þ
where μ is the mean vector of z and CZ is the covariance
matrix of z.
After equating fγ(γ)dγ = fz(z)dz, the MGF of the com-

bined SNR is obtained as

MγN sð Þ ¼
Z ∞

−∞

1

2πð ÞN=2 Czj j1=2
∏N

i¼1exp −s exp
zi
ξ

� �� 	
� exp −

z−μð ÞTC−1
z z−μð Þ
2

 !
dz

ð11Þ
where s is the transform variable in the Laplace domain.
To de-correlate (11) as in [9], we make the variable

transformation z=√2CZ
1/2x + μ and (11) becomes

MγN sð Þ ¼
Z∞
−∞

1
πN=2

YN
i¼1

exp −s exp

ffiffiffi
2

p

ξ

XN
j¼1

cijxj þ μi
ξ

 !" #
� exp −xTx

� �
dx

ð12Þ
where cij is the (i,j) element of CZ

1/2, which is obtained
from CZ using Cholesky decomposition.
The integral in (12) has the suitable form for Gauss-

Hermite expansion approximation [13] for the MGF of
the sum of N correlated lognormal SNRs, which is [9]

MγN s;μ;Czð Þ ≈
XNp

nN¼1

…
XNp

n1¼1

wn1…wnN

πN=2

�exp −s
XN
i¼1

exp

ffiffiffi
2

p

ξ

XN
j¼1

cljanj þ μi
ξ

 !" #
;

ð13Þ



Table 2 Estimated distribution parameters and repetition
coding gain

Number (s1,s2); μ̂X ;σ̂Xð Þ
in dB from
two-point

MGF matching

�̂γLn Gr �̂γLn Gr

ρ = 0 ρ = 0 ρ = 0.2 ρ = 0.2

(dB) (dB) (dB) (dB)

1 43.31 1.00 43.31 1.00

(0) (0)

2 (0.001, 2.0) 30.73 18.11 33.05 10.61

(2.2528, 6.7572) (12.58) (10.26)

4 (0.001, 2.7160) 20.54 189.23 23.44 97.05

(2.7377, 6.7534) (22.77) (19.87)

6 (0.021, 1.179) 15.82 561.05 17.52 379.31

(2.7377, 6.7534) (27.49) (25.79)

Estimated distribution parameters from MGF matching and required average
SNR �̂γLn and repetition coding gain for BER = 10−5 in correlated lognormal
fading channels with σz = 8 dB.
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in which wn and an are, respectively, the weights and the
abscissas of the Gauss-Hermite polynomial. The ap-
proximation becomes more and more accurate with in-
creasing approximation order Np.
We use the simple decreasing correlation model in

[14] for shadow fading. The covariance matrix of the
channel SNRs, assuming independent and identically
distributed (i.i.d.) channels, is

X
Ln

i; jð Þ ¼ Cov γ i; γ j


 �
¼ σ�2ij ¼ σ�2ρ i−jj j ð14Þ

in which σ*2 is the variance of per channel SNR and ρ is
the correlation coefficient of two adjacent channels.
In the Appendix we show how the Gaussian covari-

ance matrix CZ is calculated from the given lognormal
covariance matrix

P
Ln in (14).

3.2.2 Estimate of sum of lognormal RVs as a single
lognormal RV
In this section, we approximate the sum of N-correlated
lognormal SNRs by another single lognormal SNR,

γ̂ ln ¼ 100:1X̂ , where X̂∝N μ̂X ; σ̂
2
X

� �
. In [9], by matching

the MGF of the approximation with the MGF of the
lognormal sum γN in (13) at two different positive real
values s1 and s2, a system of two simultaneous equations
as in (15) is obtained which can then be used to solve
for μ̂X and σ̂ 2

XXNp

n¼1
wnexp −siexp anσ̂X

ffiffiffi
2

p
þ μ̂X


 �
=ξ

n oh i
¼ ffiffiffi

π
p

MγN si;μ;Cð Þ; i ¼ 1; 2: ð15Þ

The weakness in using the two-point MGF-matching
method is that it is highly sensitive to the chosen matching
points. Furthermore, the method does not guarantee con-
servation of signal power across the MRC combiner, i.e.,
equal system average power gain at both sides of the com-
biner. In this paper, we propose to use this ‘lossless’ MRC
principle to improve the accuracy of the selection of the
two matching points. This is a significant contribution of
our paper.
We can simplify the problem by assuming a micro-

diversity environment [15]; i.e., all repetition subchannels
experience the same shadowing having LN(μZ, σZ

2) distri-
bution, thus have the same local average power. This as-
sumption is quite reasonable for adjacent subchannels
within an OFDMA frame. The average SNR of each diver-
sity branch at the input to the MRC receiver is

�γ z ¼ exp
μz
ξ
þ 1
2

σz
ξ

� �2
" #

: ð16Þ
The principle of a lossless MRC thus gives the corre-
sponding SNR at the output of the receiver as

�̂γLn ¼ exp
μ̂X

ξ
þ 1
2

σ̂X

ξ

� �2
" #

¼ N�γZ: ð17Þ

Equation 17 provides a valid and reliable equation for
iteratively improving the accuracy of the locations of the
two MGF matching points. The percentage error of
power loss is defined as

%Error ¼ 100
N�γZ − �̂γLn

N�γZ
:

ð18Þ
A simple iterative search algorithm for the two matching

locations in (15) is carried out until the power loss de-
creases to a specified error threshold which is set at 0.5%
in this paper. The result of the MGF matching is reported
in Table 2. The matching in [9] does not observe the
power conservation, and all the matching pairs suggested
in the paper result in very large power losses.
Finally, the estimated PDF of the SNR from the diver-

sity combiner is

f̂ lognormal;MRC γð Þ ¼ 1
γ

ξ

σ̂X
ffiffiffiffiffiffi
2π

p exp −
10log10γ − μ̂X

� �2
2σ̂ 2

X

 !
:

ð19Þ
For the case of no-diversity (N = 1) from (4) (for M = 4)

and (7),

BERlognormal;QPSK ¼
Z ∞

0
BER

AWGN;QPSK
γð Þ 1

γ

ξ

σz
ffiffiffiffiffiffi
2π

p

�exp −
10log10γ − μZ
� �2

2σz2

 !
dγ:

ð20Þ
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By a change of variable,

10log10γ − μZ
σz

ffiffiffi
2

p ¼ u⇔γ ¼ exp
μZ
ξ

þ
ffiffiffi
2

p
σz
ξ

u

� �
;

(20) can be reduced to

BERlognormal;QPSK ¼ 1ffiffiffi
π

p
Z∞
0

BERAWGN;QPSK γz uð Þ� �
e−u

2
du;

where γz uð Þ ¼ exp μz
ξ þ uσz

ffiffi
2

p
ξ


 �
is the argument of

BERAWGN,QPSK(.) in (4). The above expression for BER
can then be accurately approximated by an Np-order
Gauss-Hermite polynomial expansion as given in (21)

BERlognormal;QPSK ¼ 1ffiffiffi
π

p
XNp

n¼1
wn BERAWGN;QPSK γz anð Þð Þ:

ð21Þ
When we use Np = 12, the BER results in (20) and (21)

are almost the same.
For the case of N > 1 from (4) and (19), we obtain

BERlognormal;QPSK;MRC ¼
Z∞
0

BERAWGN;QPSK γð Þ

� f̂ lognormal;MRC γð Þdγ;

ð22Þ

and we obtain (23) below in a similar way in which we
obtain (21) above, i.e.,

BERlognormal;QPSK;MRC ¼ 1ffiffiffi
π

p
XNp

n¼1

wnBERAWGN;QPSK

γ̂X anð Þð Þ;

ð23Þ

where γ̂X anð Þ ¼ exp μ̂X þ anσ̂X

ffiffiffi
2

p� �
=ξ

� �
:

In Figure 1 we plot BER as a function of the average
symbol SNR per subchannel with the signal being
subjected to correlated lognormal fading, as calculated
from (21) for N = 1 and from (23) for the case of N > 1 i.i.
d. repetition-coded channels with correlation ρ = 0.2. It is
reasonable that we cannot expect the calculated BER and
the Monte Carlo simulated BER to be the same, simply be-
cause the calculated BER is only approximated first by
using MGF matching technique then by using Gauss-
Hermite polynomial approximation.
We define repetition coding gain (Gr) as the ratio of

the average SNR, γ̂Ln , without repetition coding (N = 1)
to that with repetition coding (N > 1) required for the
same given target BER = 10−5.
In Table 2 we list the required average symbol SNR per

channel, �̂γLn, to meet the target BER = 10−5 calculated from
(21) and (23) for QPSK and fixed Gaussian standard devi-
ation σZ = 8 dB for the lognormal channel. The corre-
sponding repetition coding gain Gr for different values of
repetition is also listed in Table 2. The channel correlation
with ρ = 0.2 is seen from Table 2 to have reduced Gr by 2
to 3 dB. This degradation increases at 5 to 6 dB when we
increase the correlation to ρ = 0.6.

3.3 Independent composite Rayleigh-lognormal (Suzuki)
fading channels
As has been mentioned in the Section 1, the exact mod-
eling of the fading channels is not the main theme of
our paper. There are two justified reasons why in this
section we assume that repetition channels are
uncorrelated for simplicity. One is the lack of a compu-
tationally efficient closed-form expression for BER of
correlated composite Rayleigh-lognormal channels
using MRC diversity reception and two is, as will be
shown in Section 4.2.1 for lognormal channels, that the
correlation between repetition diversity channels has lit-
tle effect on the proposed 10-state FSMC model.

3.3.1 Physical model for composite Rayleigh-lognormal
fading channels
In [11] a simple physical model for urban mobile radio
propagation is presented in which the main wave from
the transmitter to the local cluster of buildings in the
neighborhood of the receiver traverses a path subject to
cascaded reflections and/or diffractions by natural and
man-made obstructions. After arrival at the local clus-
ter, the main wave is scattered into multipaths which
arrive at the receiver with approximately the same delay
and amplitude but with different random phases.
Therefore, the signal power gain of the transmitter-to-
cluster main path is modeled as having lognormal dis-
tribution, pLn, because of the multiplicative effects of
reflections and/or diffractions, while that of the local
multipaths are modeled as Rayleigh distributed, pR, due
to additive scattering effects. This model allows us to
obtain the marginal probability density distribution for
signal-to-noise ratio of a composite Rayleigh-lognormal
fading channel, suitable for mobile radio propagation
between the base station and a mobile receiver in urban
areas, as [15]

f R−Ln γð Þ ¼
Z∞
0

fRðγjxÞ fLn xð Þdx

¼
Z∞
0

1
x
exp −

γ

x


 � ξ

xσz
ffiffiffiffiffiffi
2π

p

�exp −
10log10x−μz
� �2

2σ2Z

" #
dx:

ð24Þ



Figure 1 BER versus average SNR per lognormally faded channel γLn of QPSK (M = 4) using Gray’s code. The system uses Nth-order
repetition coding and maximum ratio combining in correlated lognormal fading channels. Hermite polynomial order Np = 12; Gaussian standard
deviation σZ = 8 dB; correlation coefficient ρ = 0.2.
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The distribution in (24) is similar to that given in [11],
Equation 3 except that the latter is for Rayleigh distrib-
uted signal envelope instead of exponentially distributed
signal power in (24).
To develop an expression for the PDF of SNR of a signal

using diversity reception in composite Rayleigh-lognormal
fading channels and to simulate the scenario using the
Monte Carlo technique, it is essential to understand the
physical meaning of the fading mechanism. The coherence
time of fast Rayleigh fading is a few tens of milliseconds de-
pending on the mobile speed, while the coherence time of
slow shadow fading is a few tens of seconds depending on
the mobile speed to cover the coherence distance, typically
100 to 200 m in suburban cells and a few tens of meters in
urban cells [14]. Based on the fact of this many-order dif-
ference between the two coherence times, the marginal
probability density function of the composite Rayleigh-
lognormal channel is derived in [11,15] by equating the
local average SNR of the much faster Rayleigh fading signal
to the instantaneous SNR of the much slower arriving log-
normal signal. This implies first a complete transfer, i.e., a
transition, of signal power from the main arriving lognor-
mal signal to the local multipath channel, and second, no
significant loss of power in the local multipath channel, i.e.,
the average power gain of the local Rayleigh fading channel
can be assumed as unity. It is therefore interesting to note
that the composite distribution in (24) is, in fact, the PDF
of the power gain of the product channel |hR − Ln|

2 = |hR|
2

|hLn|
2 of two cascaded channels hRi and hLni in Figure 2.

Since pR(|hR|
2 is exponentially distributed with average

E⌊|hR|
2
⌋ = 1 regardless of the frequency, i.e. frequency

non-selective, and pR(|hLn|
2) is frequency non-selective log-

normal distributed as given in (7), the PDF of the product
channel, pR − Ln(|hR − Ln|

2) as given in (24), is effectively
frequency non-selective.
We model the repetition coding as shown in Figure 2

in which the signal path from each subchannel is mod-
eled according to (24). Thus in the general propagation
environment, the local Rayleigh-faded signals from
different repetition subchannels arrive at the diversity
combiner with different local average powers. Unfortu-
nately, while the sum of many lognormal functions is an-
other lognormal function, this is not true for Rayleigh
distribution. We can simplify the problem by assuming a
microdiversity environment [15], i.e., all repetition
subchannels experience the same shadowing having LN
(μZ, σZ

2) distribution, thus have the same local average
power.



Figure 2 Modeling of repetition signaling using OFDMA diversity subchannels in a composite Rayleigh-Lognormal fading environment.
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The PDF of the output SNR from the MRC combiner
when input is from N i.i.d. diversity subchannels subjected
to Rayleigh fading with average SNR �γR is given as [12]

BERRayleigh;QPSK;MRC ¼ 1
2

1−
μffiffiffiffiffiffiffiffiffiffi
2−μ2

p XN−1

k¼0

2k
k

� �
1 − μ2

4 − 2μ2

� �k
" #

ð25Þ

in which μ ¼
ffiffiffiffiffiffiffiffiffi
�γ R

1þ�γ R

q
:

Therefore, in a similar way to the derivation of the PDF in
(24) of a product of two random variables, the marginal
PDF of the resultant SNR of an N-repetition-coded signal
subject to composite Rayleigh-lognormal fading can be read-
ily obtained, using Jacobian transformation technique, as

fR−Ln;MRC γð Þ ¼
Z∞
0

f Rayleigh;MRCðγjxÞ f lognormal xð Þdx

fR−Ln;MRC γð Þ ¼ ξ

σz
ffiffiffiffiffiffi
2π

p γN−1

Γ Nð Þ
Z∞
0

1
xNþ1

exp −
γ

x


 �

�exp −
10log10x−μz
� �2

2σ2z

" #
ð26Þ

which takes a form similar to that in [15], Equation 1.
The bit error rate of QPSK signal using repetition di-

versity coding in a composite Rayleigh-lognormal fading
channel is

BERR−Ln;QPSK;MRC ¼
Z∞
0

BERAWGN;QPSK γð Þ fR−Ln;MRC γð Þdγ:

ð27Þ
By inserting (26) into (27) and by some rearrangement,
we can arrive at

BERR−Ln;QPSK;MRC ¼
Z∞
0

Z∞
0

BERAWGN;QPSK γð Þ γN−1

Γ Nð ÞxN e−
γ
xdγ

24 35
� f R−Ln xð Þdx:

ð28Þ

The term in the square brackets can be identified as BER
of QPSK using Gray coding and MRC receiver in Rayleigh
fading channel with average SNR �γ ¼ x (see (25)). More-
over, by a change of variable as done for (20) above, (28)
can be reduced to the form in (29) below

BERR−Ln;QPSK;MRC ¼ 1ffiffiffi
π

p
Z∞

0

BERRayleigh;QPSK;MRC

�γR zð Þ� �
e−Z

2
dz;

ð29Þ

where �γR zð Þ ¼ exp μz=ξ þ zσz
ffiffiffi
2

p
=ξ

� �
is the argument of

BERRayleigh,QPSK,MRC(.) in (25). Expression (29) can then be
accurately approximated by an Np-order Gauss-Hermite
polynomial expansion as in (30) below:

BERR−Ln;QPSK;MRC ¼ 1ffiffiffi
π

p
XNp

n¼1

wnBERRayleigh;QPSK;MRC

�γR anð Þ� �
;

ð30Þ

when Np = 12, and (30) and (27) both give almost
exactly the same BER after the latter is adjusted for
Gray coding. Thus (30), by avoiding the double integra-
tion in (28), provides a much faster way to calculate



Figure 3 BER versus average SNR �γR‐Ln per composite Rayleigh-lognormally faded channel of QPSK.

Table 3 Required average SNR �γR‐Ln and repetition coding
gain for BER = 10−5

Number �γR‐LnðdBÞ Gr linear ratio unit and (dB), ρ = 0

1 61.32 1.00 (0)

2 45.10 41.88 (16.22)

4 38.66 184.50 (22.66)

6 36.06 335.74 (25.26)
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BER of QPSK signal using MRC diversity reception in
Suzuki fading channels. In Figure 3 we plot the BER as a
function of the average symbol SNR, �γR−Ln, of each
subchannel signal being subjected to composite
Rayleigh-lognormal fading. The system uses Nth-order
repetition coding and maximum ratio combining,
Hermite polynomial order Np = 12, Gaussian standard
deviation σZ = 8 dB.
Again, we define repetition coding gain, Gr, as the ratio

of the required average SNR to meet a given BER target
of 10−5 when RC is not used to that when RC is used.
The required average SNR calculated from (30) and the
corresponding RC gain for the different number of repe-
titions are listed in Table 3.

4 The 10-state model for the AMC scheme with
repetition diversity coding
4.1 State partition for the AMC scheme in mobile WiMAX
As mentioned in Section 1, the AMC scheme forms a
discrete set of combined modulation and coding sj = {Mj,
Rj, xj} specified by the corresponding standard. By
partitioning the range of the received SNR into a finite
number of intervals to match the discrete set of modula-
tion and coding, a finite-state Markov channel (FSMC)
model can be constructed for the implementation of the
AMC scheme in fading wireless channels. In this section
we use mobile WiMAX as a case study, but the approach
can be generalized to design power control algorithm for
other wireless communication systems using AMC under
fading conditions.
In adaptive modulation and coding, at each symbol

time, the wireless system assigns a state sj = {Mj, Rj, xj}
and the associated transmit power to a received SNR γ.
Therefore, as SNR varies with the fading condition, BER
will change accordingly. The aim of power control is to
adapt the transmit power to the instantaneous received
SNR so that BER stays at the given target level in all
states. The 10-state combined modulation and coding
rates in mobile WiMAX are calculated as follows [6]:

Mj ¼
4 j ¼ 1; 2; 3; 4; 5
16 j ¼ 6; 7
64 j ¼ 8; 9; 10

8<: ð31Þ
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and

MRj ¼ Mj
� �Rj ð32Þ

with the effective coding rate Rj = RS-CC coding rate di-
vided by the number of repetitions, i.e.,

Rj ¼ 1=12; 1=8; 1=4; 1=2; 3=4; 1=2; 3=4; 2=3; 3=4; 5=6½ �
ð33Þ

and

MRj ¼ ½1:1225; 1:1892; 1:4142; 2; 2:8284;
4; 8; 16; 22:6274; 32�:

ð34Þ

Thus, for each value of the instantaneous SNR, γ, the
AMC algorithm will decide which M-QAM, what coding
rate, what repetition rate, and what associated transmit
power to use.

4.2 Optimal power adaptation in M-QAM
In this section a brief review and explanation of the trans-
mit power adaptation technique for M-QAM modulation
in fading channels [4,5] is presented for continuity and
clarity. We want to adapt the transmit power S(γ) to the
instantaneous value of SNR subject to the average power
constraint. The BER upper bound in (5) becomes

BERAWGN;M−QAM γð Þ ≤ KB Mð Þexp −
1:5γ
M−1

S γð Þ
�S

� �
:

ð35Þ
It can be seen from the bound in (35), for a given

value of SNR, γ, we can adapt both M(γ) and S(γ) to
maintain a given target BER and an average power con-
straint �S .
The classical approach for constraint optimization of

transmit power which maximizes the average spectral effi-
ciency, subject to average power constraint, is to use the
Lagrange multiplier technique with a multiplier which can
be calculated from the power constraint requirement. This
results in the well-known optimal ‘water-filling’ power
adaptation policy in broadband data transmission. Using a
similar approach for the problem of optimal power adap-
tion in M-QAM, it has been shown in [4], Equation 25
that the resulting optimal continuous modulation rate for
a given value of γ is

M γð Þ ¼ γ

γβ
ð36Þ

in which γβ is the optimized cutoff fade depth that de-
pends on the fading distribution f(γ). In the same way as
for the Lagrange multiplier γβ can be calculated from the
average power constraint requirement.
In this paper, although the state boundaries and asso-

ciated modulation and coding rates are fixed, within the
state region j the transmit power Sj(γ) is a continuous
function of the SNR. The upper bound for the continu-
ous constellation size in state j for a given target BER
can be extracted from (35) as

Mj γð Þ≤ 1þ βj
Sj γð Þ
�S

γ for j ¼ 1; 2; :::10 ð37Þ

in which, by taking both the convolutional coding gain Gc

and the repetition coding gain Gr into account, we have

βj ¼ −
1:5 GcjGrj

ln 1
KB Mjð ÞBERAWGN

� � for j ¼ 1; 2; 3 ð38aÞ

and

βj ¼ −
1:5 Gcj

ln 1
KB Mjð ÞBERAWGN

� � for j ¼ 4; 5;…; 10: ð38bÞ

Once the optimized cutoff phase depth γβ has been
calculated for a given fading distribution f(γ), we are
ready to quantize the optimal continuous modulation
rate in (36) into ten states as specified in Section 4.1
above,

M γð Þ ¼ MRj if MRj ≤M γð Þ ¼ γ

γβ
≤MRjþ1 : ð39Þ

Accordingly, the range of the SNR is also partitioned
into ten regions.
Based on the tight approximation for BER in (35) or

equivalent upper bound for modulation rate in (37), a
power adaptation policy which maintains a fixed target
BER and satisfies the average power constraint, E S γð Þ½ � ≤ �S ,
is proposed in [4] and [5] as

Sj γð Þ
�S

¼
Mj−1
� � 1

βjγ
; MRj ≤

γ

γβ
≤MRjþ1

0; no powerð Þ 0 ≤
γ

γβ
≤MR1

8>><>>: ð40Þ

where Mj and MRj, j = 1, 2,….10, are given in (33) and (34)
respectively, and when γ < γβMR1 no power is allocated.
The effect of both channel coding and repetition diversity
coding has been taken into account by incorporating their
respective coding gains into βj in (38a) and (38b) which re-
sults in a decrease in the adaptive power Sj(γ) in (40).
The maximized spectral efficiency of the adaptive sys-

tem for a given fading condition with distribution f(γ) is
the average of the maximized spectral efficiencies of the
N states

E log2M γð Þ½ � ¼
XN
j¼ 1

log2 MRj

� �
Pr MRj ≤

γ

γβ
≤MRjþ1

 !
ð41Þ
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where γβ can be calculated from the power constraint
requirement

XN
j¼1

ZMjþ1γβ

Mjγβ

Sj γð Þ
�S

f γð Þdγ ¼
XN
j¼1

Mj−1
βj

ZMjþ1γβ

Mjγβ

1
γ
f γð Þdγ ¼ 1

ð42Þ
4.2.1 Lognormal fading only
This is the scenario of a line-of-sight wireless propaga-
tion between the transmitter and a receiver in which the
radio wave experiences the multiplicative effect of a
large number of cascaded obstructions in its path. With
the resulting shadowing having the lognormal PDF in
(7), the power constraint in (42) becomes

XN
j¼1

Mj−1
βj

ZMjþ1γβ

Mjγβ

1
γ2

ζ

σz
ffiffiffiffiffiffi
2π

p exp −
10log10γ−μz
� �2

2σ2z

( )
dγ ¼ 1

ð43Þ
in which μZ and σZ are in decibels.
By letting

x ¼ ζ lnγ−μz
σz

ffiffiffi
2

p ⇒xj ¼
ζ ln Mjγβ


 �
−μz

σz
ffiffiffi
2

p ð44Þ

we can reduce (43), by using [16], 3.322.1, p. 336, to

1ffiffiffi
π

p exp −
μz
ξ

� �XN
j¼1

Mj−1
βj

Zxjþ1

xj

exp − x2 þ σz

ffiffiffi
2

p

ξ
x

� �� 
�dx ¼ 1

2
exp −

μz
ζ
þ σ2z
2ζ2

� XN
j¼1

Mj−1
βj

� Φ
σz

ζ
ffiffiffi
2

p þ xjþ1

� �
−Φ

σz

ζ
ffiffiffi
2

p þ xj

� �� 
¼ 1

ð45Þ
in which Φ (.) = erf (.) is the error function.
Table 4 SNR partition in the 10-state FSMC model for mobile

Modulation State sj CC gain Gcj (dB) RC gain Grj (dB) in lognorma
fading ρ = 0.2

QPSK 1 6.99 25.79

2 6.99 19.87

3 6.99 10.26

4 6.99 0

5 5.74 0

16-QAM 6 6.99 -

7 5.74 -

64-QAM - 6.99 -

8 6.02 -

9 5.74 -

10 5.23 -
Thus, we can numerically solve (45) for the opti-
mized SNR scaling parameter as a function of the
lognormal fading depth (μZ, σZ

2 ). In numerically solv-
ing (45), it should be noticed from (44) that γβ≥

1
64

exp μz=ξ
� �

and the iteration should start with this mini-
mum value for γβ.
For an average SNR of �γLn ¼ 15 dB and σz = 8 dB,

(42) gives γβ = 0.4403 which is practically the same as
when there is no correlation between repetition diversity
channels. A detailed examination of (45) reveals that the
contribution to the right-hand side from the difference
of the two Φ(.) functions is non-zero only for j = 5
and j = 7, i.e., at the transitions where modulation
depth changes (see (31)). But at these states, repetition
coding does not apply; hence, diversity channel correl-
ation is irrelevant. Using this optimization parameter
for the quantization in (39) provides the boundaries of
the SNR partition for our 10-state FSMC model as
given in Table 4 and illustrated in Figure 4 for the log-
normal fading only condition.

4.2.2 Composite Rayleigh-lognormal (Suzuki) fading
This is the most realistic scenario and is typical of a
link between a base station and a mobile subscriber in
a built-up urban area. With the composite Rayleigh-
lognormal PDF in (24), the power constraint in (42)
becomes

XN
j¼1

Mj − 1

βj

ZMjþ1γβ

Mjγβ

1
γ

Z∞
0

1
x
expð−γ

x= Þ

� ζ

xσz
ffiffiffiffiffiffi
2π

p exp −
10log10x − μz
� �2

2σ2z

( )
dxdγ ¼ 1;

ð46Þ
in which μZ and σZ are in decibels.
WiMAX in various fading channels

l Ten states partition
lognormal fading

RC gain Grj (dB) in
Suzuki fading ρ = 0

Ten states partition
Suzuki fading

−3.06 25.26 −3.80

−2.81 22.66 −3.55

−2.05 16.22 −2.80

−0.55 0 −1.29

0.95 0 0.21

2.46 1.72

5.47 4.73

- - -

8.48 - 7.74

9.98 - 9.24

11.49 - 10.75



Figure 4 A 10-state SNR partition for the AMC scheme with RDC in mobile WiMAX.
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The double integration in (46) can be rearranged as
below:

XN
j¼1

Mj − 1

βj

Z∞
0

ζ

x2σz
ffiffiffiffiffiffi
2π

p exp −
10log10x−μz
� �2

2σ2z

( )

�
( ZMjþ1γβ

Mjγβ

1
γ
expð−γ

x= Þdγ
)
dx ¼ 1: ð47Þ

Then the inner integration {∫(.)dγ} can be expressed
in terms of exponential integral functions [14, 3.354.3],
p. 341 and (47) can be reduced to

XN
j¼1

Mj−1
βj

Z∞
0

ζ

x2σz
ffiffiffiffiffiffi
2π

p exp −
10log10x − μz
� �2

2σ2
z

( )

� E1

Mjγβ
x

� �
−E1

Mjþ1γβ
x

� �� 
dx ¼ 1:

ð48Þ
Moreover, by a change of variable as in (44), (48) can
be further reduced to

1ffiffiffi
π

p
XN
j¼1

Mj−1
βj

Z∞
−∞

g zð Þ

� E1 Mjγβg zð Þ

 �

− E1 Mjþ1γβg zð Þ

 �n o

e−z
2
dz ¼ 1;

ð49Þ
where g zð Þ ¼ exp − μz þ zσz

ffiffiffi
2

p� �
=ξ

� �
:

Finally, (49) can be accurately approximated by an Np-
order Gauss-Hermite polynomial as

1ffiffiffi
π

p
XN
j¼1

Mj −1
βj

"XNp

n¼1

wng anð Þ
n
E1 Mjγβg anð Þ

 �

−E1 Mjþ1γβg anð Þ

 �o#

¼ 1:

ð50Þ

Similar to solving (46), we can numerically solve (50)
for the optimized SNR scaling parameter γβ for the com-
posite Rayleigh-lognormal fading case as a function of
the lognormal fading depth μz; σ

2
z

� �
. For an average SNR
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�γR−Ln ¼ 15 dB , (49) gives γβ = 0.3728 while (50) gives
an approximation of γβ = 0.3714. Its state boundary is
about 1.0 dB to the left of, i.e., better than, the lognor-
mal fading channel having the same 15 dB average SNR,
as shown in red in Figure 4.

4.3 Average spectral efficiency in different fading
channels
The spectral performance of the ten states in Figure 4
shows the instantaneous spectral efficiency as a function
of the instantaneous signal-to-noise ratio. Since the power
adaption algorithm in (40) allocates zero power to state 0
where SNR γ falls below M1γβ, it would be interesting to
see how much this zero-power state affects the overall
average spectral efficiency of the wireless system.
Figure 5 shows the average spectral efficiency per-

formance as a function of the average SNR when the
system uses the proposed power adaption scheme in
(40). Readers may immediately notice that while in
Figure 4 the instantaneous performance of the Suzuki
fading channel is about 1.0 dB better than the lognor-
mal fading channel, its average performance in Figure 5
is the other way round, about 2 dB worse than that of
the latter. The explanation may be found by comparing
the probabilities that the SNR of the two channels falls
into various states as shown in Figure 6. At low average
SNRs, e.g., 2 dB, and more than 50% of the time, the re-
ceived Suzuki signal falls into the zero-power state; this
Figure 5 Average spectral efficiency as function of average SNR under
figure is just above 45% for the received lognormal sig-
nal. At high average SNRs, there is still a significant prob-
ability that the Suzuki signal falls into the zero-power state
0, e.g., 25% at average SNR of 12 dB. The probability of
the received lognormal faded signal is much lower than
that of the Suzuki counterpart in state 0.

5 Conclusions
We have defined and successfully developed expressions
for the coding gain of repetition diversity coding and
the related 10-state FSMC model for variable power
control for AMC used in modern wireless mobile net-
works operating under the two fading mechanisms: log-
normal and composite Rayleigh-lognormal. It is found
that the correlation between diversity fading channels,
while significantly degrading the BER performance,
practically does not affect the proposed power control
algorithm and the resulting 10-state FSMC model. By
using the power conservation principle across the MRC
combiner, an innovative technique is proposed for ac-
curate matching of two MGFs which allows an accurate
estimate of the PDF of the SNR at the combiner output.
Next, by using the Gauss-Hermite quadrature approxi-
mation for integration, we have derived the most com-
putationally fast expressions to date, to the best of our
knowledge, for the calculation of BER of QPSK using
MRC diversity reception in correlated fading channels
and for the efficient computation of the 10-state FSMC
lognormal and composite Rayleigh-lognormal fading mechanisms.



Figure 6 Probability of state visited by channel SNR under lognormal and composite Rayleigh-lognormal fading mechanisms.
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model for AMC in mobile WiMAX. The inclusion of
repetition coding gain in the transmit power adaptation
algorithm for different fading mechanisms and different
fading depths has not been done before. From Figure 4,
we can observe that the use of RC for QPSK modulation
level alone extends the system operation range to al-
most 4 dB into very poor fading conditions. In addition,
it is interesting to note that based on the same overall
average SNR, the composite Suzuki fading model re-
quires approximately 1.0 dB less power than the lognor-
mal fading model to achieve the same instantaneous
spectral efficiency. However, from Figure 5, because of
the high probability of the received Suzuki-faded signal
falling into the zero-power state, its average spectral ef-
ficiency becomes lower than that of the lognormal faded
signal.

Appendix
Calculating Gaussian matrix CZ from given lognormal
covariance matrix

P
Ln

We use the simple decreasing correlation model in [14]
for shadow fading. The covariance matrix of the channel
SNRs, assuming i.i.d. channels, isX

Ln
i; jð Þ ¼ Cov γ i; γ j


 �
¼ σ�2ij ¼ σ�2ρ i−jj j; ð51Þ

in which σ*2 is the variance of per-channel SNR.
It can be shown that the relationship between the
Gaussian channel mean μZ, variance σZ

2, covariance CZ(i,j),
and the lognormal channel mean μ*, variance σ*2, and co-
variance

P
Ln(i,j) can be summarized as below:

μ� ¼ E γð Þ ¼ �γ ¼ eμzþσ2z=2 ð52Þ

σ�2 ¼ Var γð Þ ¼ e2μzþσ2z=2 eσ
2
z−1


 �
¼ E γð Þ½ �2 eσ

2
z−1


 �
: ð53Þ

Hence,

μz ¼ E Zið Þ ¼ ln
μ�2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

μ�2 þ σ�2
p !

ð54Þ

σ2z ¼ Var Zið Þ ¼ ln 1þ σ�2

μ�2

� �
ð55Þ

Cz i; jð Þ ¼ Cov Zi;Zj
� � ¼ ln 1þ σ�2ρ i−jj j

μ�2

� �
: ð56Þ

In this paper, we normalize the channel's mean power
gain μ* = 1 to avoid dependency on propagation distance
and adopt a fixed Gaussian standard deviation σz = 8 dB.
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Abbreviations
AMC: Adaptive modulation and coding; AWGN: Adaptive white Gaussian
noise; BER: Bit error rate; BS: Base station; BTC: Block turbo code; Eb/N0: Bit
energy-to-noise ratio; FEC: Forward error correction; FSMC: Finite-state
Markov channel; Gc and Gr: (Error) Coding gain and repetition coding gain;
MGF: Moment generating function; MRC: Maximal ratio combining;
OFDM: Orthogonal frequency division multiplex; OFDMA: Orthogonal
frequency division multiple access; PDF: Probability density function;
QAM: Quadrature amplitude modulation; QPSK: Quadrature phase-shift
keying; RC: Repetition coding; RS-CC: Reed-Solomon and convolutional code;
RV: Random variable; SNR: Signal-to-noise ratio; WiMAX: Worldwide
interoperability for microwave access.
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