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Abstract

An achievable rate region for a primary multiple access network coexisting with a secondary link of one transmitter
and a corresponding receiver is analyzed. The rate region depicts the sum primary rate versus the secondary rate and
is established assuming that the secondary link performs rate splitting. The achievable rate region is the union of two
types of rate regions. The first type is a rate region established assuming that the secondary receiver cannot decode
any primary signal, whereas the second is established assuming that the secondary receiver can decode the signal of
one primary link. The achievable rate region is determined first assuming discrete memoryless channel (DMC), then
the results are applied to a Gaussian channel. In the Gaussian channel, the performance of rate splitting is
characterized for the two types of rate regions. Moreover, a necessary and sufficient condition to determine which
primary signal the secondary receiver can decode without degrading the range of primary achievable sum rates is
provided. When this condition is satisfied by a certain primary user, the secondary receiver can decode its signal and
achieve larger rates without reducing the sum of the primary achievable rates as compared to the case in which it
does not decode any primary signal. It is also shown that the probability of having at least one primary user satisfying
this condition grows with the primary signal-to-noise ratio.

Keywords: Rate splitting; Cognitive radios; Discrete memoryless channels

1 Introduction
A potential benefit of allowing secondary users to share
primary bands is the enhancement of the spectrum
utilization. As introduced in [1,2], cognitive radios, or
secondary users, are frequency-agile devices that can
utilize unused spectrum bands through dynamic spec-
trum access. In dynamic spectrum access, secondary users
should sense the spectrum and identify unused bands or
spectrum holes. If a band is sensed and found to be in
low use by primary users, i.e., underutilized, a secondary
user may opportunistically access this band by adjusting
its transmit parameters to fully utilize this band without
causing excessive interference on the primary users. How-
ever, a secondary user has to leave this band and switch to
another if the demand by primary users increases.
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The notion of dynamic spectrum access has opened
research in different problems regarding the new func-
tionalities that a secondary user should perform, e.g.,
spectrum sensing, spectrum sharing, spectrum mobility,
and spectrum management [2,3]. Moreover, information
theoretic bounds on potential achievable rates by cog-
nitive radio networks are being investigated. In most of
those works, cooperation between primary and secondary
transmitters is considered. In [4], an achievable rate region
of primary versus secondary users’ rates is introduced
when a cognitive transmitter has full knowledge of the
primary message in a two-transmitter two-receiver inter-
ference channel and the primary user cooperates with
the secondary link through rate splitting introduced in
[5]. In [6,7], the notion of conferencing is introduced
for the interference channel where the cognitive link is
assumed to know part or all of the message of the primary
transmitter.
In this paper, we consider a primary multiple access

channel (MAC) that consists of two transmitters and a
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common receiver shared by a secondary link comprising a
single transmitter and a corresponding receiver. The sec-
ondary transmitter is assumed to employ rate splitting
by dividing its signal into two parts: one part is decod-
able by the secondary receiver and treated as noise by the
primary receiver, whereas the other part is decodable at
both receivers. Such rate splitting scheme has also been
suggested in [8] for a partially connected interferencemul-
tiple access channel, with all users belonging to the same
class of quality of service (QoS). The scheme has been
shown to achieve the semi-deterministic capacity of the
addressed setup to within a quantifiable gap. In [9], inter-
ference mitigation for a similar setup of interfering MAC
has been considered. Authors have shown that signal scale
alignment can be achieved through layered lattice codes,
which potentially reduces interference by a factor of half
for linear deterministic channels.
While we conduct our analysis for the discrete mem-

oryless channel (DMC), we will give particular focus on
the Gaussian setup, which is in essence similar to that dis-
cussed in [10,11], with a primary multiple access network
and a secondary transmitter-receiver pair. We investi-
gate and characterize necessary and sufficient conditions
under which interference cancellation (IC) at either pri-
mary or secondary users can strictly improve the per-
formance of the achievable rates. Namely, we determine
the case when the primary is able to cancel the interfer-
ence of the secondary while not deteriorating the QoS
for the secondary network. We also determine the case
when the secondary can completely decode and cancel
the interference of at least one primary transmitter while
not hurting the primary achievable rates. In particular,
we

• State the achievable rate regionRo in the DMC
assuming that all of the primary signals are treated as
noise at the secondary receiver

• State the achievable rate regionRr
i , where the signal

of primary transmitter i is to be fully decodable at the
secondary receiver besides being decodable at the
primary receiver

• Show that there exists a case in whichRr
i containsRo

• Analyze the effect of rate splitting in a Gaussian setup
where a necessary and sufficient condition is
determined so that the union of the above regions is
obtained without rate splitting

• Derive a necessary and sufficient condition so that the
secondary receiver can decode the signal of a primary
user without affecting the range of achievable primary
sum rates, but only enhances the range of achievable
secondary rates. We call this condition primary
decodability condition for Gaussian (PDCG) channel

• Show, numerically, that the probability of having at
least one primary user satisfying PDCG

monotonically increases with the signal-to-noise ratio
of the primary users

We conduct our analysis assuming a Gaussian commu-
nication channel as in [10], but for general channel gains,
and adoption of rate splitting techniques. Some of the
results in this paper have been presented in [11]. The
introduced network model of a MAC primary network
shared by secondary operations has been addressed in
some resource allocation frameworks without rate split-
ting by secondary users [12-16]. Rate splitting by a sec-
ondary link, however, has been introduced in [17] where
the secondary user is assumed to know the codebook of
a primary transmitter and opportunistically splits its rate
into two parts and decodes it in the following way. It
decodes the first part treating both the primary signal and
the second part as noise, decodes and cancels the primary
signal, and then decodes the second part. This scheme is
generalized in this paper as we consider the cases when
the signal of one primary transmitter is decodable at the
secondary receiver and when all the primary signals are
treated as noise.
The rest of this paper is organized as follows. In

Section 2, the DMC models are defined. In Section 3,
the achievable rate regions are established for the defined
DMC models. Then, obtained results are applied in a
Gaussian channel setup in Section 4, and the paper is
concluded in Section 5.

2 Channel model
In our formulation, we denote random variables by X,
Y, · · · with realizations x, y, · · · from sets X , Y , · · · ,
respectively. The communication channel is considered to
be discrete and memoryless.

2.1 Basic channel model
We consider a basic channel CB defined by a tuple(
X1,X2,Xs,ω,Yp,Ys

)
, where X1, X2 are two finite input

alphabet sets of the primary transmitters and Xs is a finite
input alphabet set of the secondary transmitter. Sets Yp
and Ys are two finite output alphabet sets at the primary
and secondary receivers, respectively, and ω is a collec-
tion of conditional channel probabilitiesω

(
ypys|x1x2xs

)
of(

yp, ys
) ∈ Yp × Ys given (x1, x2, xs) ∈ X1 × X2 × Xs, with

marginal conditional distributions:

ωa (ya|x1x2xs) =
∑

y∗a∈Y∗
a ,a∗ �=a

ω
(
ypys|x1x2xs

)
, a ∈ {s, p}.

Since the channel is memoryless, the conditional prob-
ability ωn

(
ypys|x1x2xs

)
is given by

ωn
(
ypys|x1x2xs

)
=

n∏
t=1

ω
(
y(t)
p y(t)

s |x(t)
1 x(t)

2 x(t)
s

)
,
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where

xa =
(
x(1)
a , · · · , x(n)

a
)

∈ X n
a , a = 1, 2, s,

ya =
(
y(1)
a , · · · , y(n)

a
)

∈ Yn
a , a = p, s.

The same also holds for the marginal conditional dis-
tributions ωn

p

(
yp|x1x2xs

)
and ωn

s
(
ys|x1x2xs

)
. Let M1 =

{1, · · · ,M1}, M2 = {1, · · · ,M2} be message sets for
primary transmitters 1 and 2, respectively, and Ms =
{1, · · · ,Ms} be a message set for the secondary transmit-
ter. A code (n,M1,M2,Ms, ε) is a collection ofM1,M2, and
Ms codewords such that

1. Sender a, a = 1, 2, s, has an encoding function
φa : i → xai, i ∈ Ma and xai ∈ X n

2. The primary receiver hasM1M2 disjoint decoding
sets Dpij ⊆ Yn

p , ij ∈ M1 × M2 and a decoding
function ψp : yp → ij if yp ∈ Dpij, where
ij ∈ M1 × M2

3. The secondary receiver hasMs disjoint decoding sets
Dsk ⊆ Yn

s , k ∈ Ms and a decoding function
ψs : ys → k if ys ∈ Dsk , where k ∈ Ms (see Figure 1)

Pep = 1
M1M2Ms

∑
i,j,k

ωn
p

(
yp /∈ Dpij|x1ix2jxsk

)
, (1)

Pes = 1
M1M2Ms

∑
i,j,k

ωn
s
(
ys /∈ Dsk|x1ix2jxsk

)
(2)

4. Probability of error for the primary network and the
secondary link is less than ε, that is, Pep ≤ ε and
Pes ≤ ε, respectively, where

A rate tuple (R1,R2,Rs) of nonnegative real values is
achievable if for any η > 0, 0 < ε < 1 there exists a code
such that

1
n
logMa ≥ Ra − η, a = 1, 2, s, (3)

with sufficiently large n.

2.2 Rate splitting channel
Rate splitting channel, CRS, is a modified version of
the basic channel CB, where CRS is defined by a tuple

jiˆ̂jipyi

)|( 21 ssp xxxyyj

sy k̂k

Figure 1 Basic channel modelCB.

(X1,X2,Xs,ω,Yp,Ys) with its elements are as defined in
CB. Moreover, the input message sets for the primary
transmitters are also M1 and M2 exactly as in CB. How-
ever, the secondary user is assumed to have two finite
message sets Ls = {1, · · · , Ls}, Ns = {1, · · · ,Ns}. Hence,
a code (n,M1,M2, Ls,Ns, ε) over the channel CRS is a
collection ofM1,M2, LsNs codewords such that

1. Primary transmitter a, a = 1, 2, has an encoding
function φa : i → xai, i ∈ Ma, xai ∈ X n

a
2. The secondary transmitter has an encoding function

φs : kl → xskl, kl ∈ Ls × Ns, xskl ∈ X n
s

3. The primary receiver hasM1M2Ns disjoint decoding
sets Dpijl ⊆ Yn

p , ijl ∈ M1 × M2 × Ns and a
decoding function ψp : yp → ijl if yp ∈ Dpijl, where
ijl ∈ M1 × M2 × Ns

4. The secondary receiver has LsNs disjoint decoding
sets Dskl ⊆ Yn

s , kl ∈ Ls × Ns and a decoding
function ψs : yp → kl if yp ∈ Dskl, where
kl ∈ Ls × Ns (see Figure 2)

5. Probability of error for primary network and
secondary link is less than ε, that is, Peop ≤ ε and
Peos ≤ ε, respectively, where

Peop = 1
M1M2LsNs

∑
i,j,k,l

ωn
p

(
yp /∈Dpijl|x1ix2jxskl

)
, (4)

Peos = 1
M1M2LsNs

∑
i,j,k,l

ωn
s
(
ys /∈Dskl|x1ix2jxskl

)
(5)

A rate tuple (R1,R2, S,T) of nonnegative real values is
achievable over the channel CRS if there exists a code
(n,M1,M2, Ls,Ns, ε) such that for any arbitrary 0 < ε < 1
and η > 0

1
n
logMa ≥ Ra − η, a ∈ {1, 2}, (6)

1
n
log Ls ≥ S − η, (7)

1
n
logNs ≥ T − η, (8)

with sufficiently large n.

l̂ˆˆ ljipyi

)|( 21 ssp xxxyyj

sy lk ˆˆkl

Figure 2 Rate splitting channel model CRS .
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Lemma 1. If a rate tuple (R1,R2, S,T) is achievable for
CRS, then a rate tuple (R1,R2,Rs) where Rs = S + T is
achievable for CB.

Proof. It is sufficient to show that if (n,M1,M2, Ls,Ns, ε)
is a code for CRS, then (n,M1,M2, LsNs, ε) is a code for CB.
To do so, letDpij = ∪Ns

l=1Dpijl. Then,

ωn
p

(
yp /∈ Dpij|x1ix2jxskl

)
≤ ωn

p

(
yp /∈ Dpijl|x1ix2jxskl

)
.

(9)

So, if (n,M1,M2, Ls,Ns, ε) is a code forCRS, then Peop ≤ ε

and Peos ≤ ε; hence, from (9), Pep ≤ ε and Pes ≤ ε when
k andMs of (1) are replaced with kl and LsNs, respectively,
meaning that (n,M1,M2, LsNs, ε) is a code for CB.

2.3 Rate splitting channel with decodable primary signal
at the secondary receiver

We introduce another channel, Cp
RS, in which the sec-

ondary user splits its set of messages into two sets, exactly
as the case of CRS. However, we assume that the signal
of one primary transmitter is decodable at the secondary
receiver. Without loss of generality, assume this is the
first primary transmitter. Thus, Cp

RS is defined by a tuple
(X1,X2,Xs,ω,Yp,Ys) with its elements defined as in CB
and CRS. A code for Cp

RS is the same as in CRS, except that
conditions 4 and 5 are replaced by

4. Secondary receiver hasM1LsNs disjoint decoding
sets Dsikl ⊆ Yn

s and a decoding function
ψs : ys → ikl if ys ∈ Dsikl, where ikl ∈ M1 ×Ls ×Ns

5. Probability of error for the primary network and the
secondary link is less than ε, that is, Perp ≤ ε and
Pers ≤ ε, respectively, where

Perp = 1
M1M2LsNs

∑
i,j,k,l

ωn
p

(
yp /∈ Dpijl|x1ix2jxskl

)
(10)

Pers = 1
M1M2LsNs

∑
i,j,k,l

ωn
s
(
ys /∈ Dsikl|x1ix2jxskl

)
. (11)

A rate tuple (R1,R2, S,T) of nonnegative real values is
achievable over the channel Cp

RS if for any arbitrary η > 0
and 0 < ε < 1, the inequalities (6) to (8) are satisfied for
sufficiently large n.

Lemma 2. If a rate tuple (R1,R2, S,T) is achievable for
Cp
RS, then a rate tuple (R1,R2,Rs) where Rs = S + T is

achievable for CB.

Proof. The proof follows exactly as the proof of Lemma 1
noting that ifDskl = ∪M1

i=1Dsikl, then

ωn
s
(
ys /∈ Dskl|x1ix2jxskl

)≤ ωn
s
(
ys /∈ Dsikl|x1ix2jxskl

)
. (12)

At the end of this section, it is worth noting that CB fur-
nishes a general structure for the communication setup
of the system and does not explicitly pose any restric-
tions on the communication strategy used or limits the
ability of certain receivers to decode the signals of non-
corresponding transmitters. Yet, based on the primary-
secondary nature of communication, we explicitly study
special instances ofCB, in particularCRS andC

p
RS, in which

the secondary user is capable of employing rate splitting,
and potentially decode the signal of one primary user.
Hence, it follows clearly that achievable rates for CRS and
Cp
RS are also achievable for CB as established in Lemmas 1

and 2.

3 Achievable rate region
In this section we investigate an achievable rate region
for CB. We first analyze two achievable rate regions, one
for CRS and another for Cp

RS, and then state the overall
achievable rate region. The random variables U, W, and
Q are defined over the finite sets U , W , and Q, respec-
tively, where Q is a time-sharing parameter. Let the set P∗
contain all Z = QUWX1X2XsYpYs such that

• X1, X2, U, and W are conditionally independent
given Q

• Xs = f (UW |Q)

Since Xs = f (UW |Q), then U andW can be considered
as input sets to the channels CRS and Cp

RS.

3.1 Achievable rate region forCRS
Theorem 1. For any Z ∈ P∗, δo(Z) is the set of

achievable rate tuples (R1,R2, S,T) for CRS if the following
inequalities are satisfied:

R1 ≤ I
(
Yp;X1|WX2Q

)
, (13)

R2 ≤ I
(
Yp;X2|WX1Q

)
, (14)

T ≤ I
(
Yp;W |X1X2Q

)
, (15)

R1 + R2 ≤ I
(
Yp;X1X2|WQ

)
, (16)

T + R1 ≤ I
(
Yp;WX1|X2Q

)
, (17)

T + R2 ≤ I
(
Yp;WX2|X1Q

)
, (18)

T + R1 + R2 ≤ I
(
Yp;WX1X2|Q

)
; (19)

S ≤ I (Ys;U|WQ), (20)

T ≤ I (Ys;W |UQ), (21)

S + T ≤ I (Ys;UW |Q). (22)

Proof. Please refer to Appendix 1.

Corollary 1. For δo = ∪Z∈P∗δo(Z), any rate tuple of δo
is achievable.
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We focus on the achievable rates by the primary
network Rp = R1 +R2 and the secondary link Rs = S+T .
Let Ro(Z) be the set of all rate tuples (Rs,Rp) having
(R1,R2, S,T) satisfy (13) to (22) for all Z ∈ P∗, then the
following theorem describesRo(Z).

Theorem 2. For any Z ∈ P∗, the achievable rate region
Ro(Z) of the defined channel CRS consists of all rate pairs
(Rs,Rp) that satisfy

Rp ≤ ρo
p , Rs ≤ ρo

s , Rs + Rp ≤ ρo
sp (23)

where

ρo
p = I

(
Yp;X1X2|WQ

)
, (24)

ρo
s = I (Ys;U|WQ) + σ ∗, (25)

ρo
sp = ρo

p+I (Ys;U|WQ)+min
{
I (Ys;W |Q) , I

(
Yp,W |Q)}

,
(26)

and

σ ∗ = min
{
I
(
Yp;W |X1X2Q

)
, I (Ys;W |Q)

}
. (27)

Proof. The proof can follow systematically using the
Fourier-Motzkin elimination scheme, yet we use a differ-
ent approach that determines the rate tuples (Rs,Rp) of the
corner points of Ro(Z), which will essentially be utilized
in the proofs of other statements in the rest of this work.
To that end, we refer to Figure 3.

pR
B

CC

sRO D
Figure 3 Achievable rate regionRo(Z) of the channel CRS for
any Z ∈ P∗.

• Point A:

RA
s = 0, i.e., SA = TA = 0. Thus, the maximum rate

at which the primary network can operate is determined
from (16) as

RA
p = I

(
Yp;X1X2|WQ

) = ρo
p (28)

• Point B:

At this point, we find the maximum possible rate at
which the secondary user can transmit when the primary
rate is RB

p = ρo
p . In this case, the relations of (13) to (22)

are reduced to

T ≤ I
(
Yp;W |Q)

, (29)
ρo
p + T ≤ I

(
Yp;WX1X2|Q

)
; (30)

T ≤ I (Ys;W |UQ), (31)
S ≤ I (Ys;U|WQ), (32)

S + T ≤ I (Ys;UW |Q). (33)

Since T is irrelevant in (32), then S can be set to

SB = I(Ys;U|WQ). (34)

Hence, using chain rule in (30) and (33), the maximum
value for T would be

TB = min
{
I
(
Yp;W |Q)

, I (Ys;W |Q)
}

(35)

and RB
s = SB + TB.

• Point D:

RD
1 = RD

2 = RD
p = 0, then (13) to (22) are reduced to

T ≤ I
(
Yp;W |X1X2Q

)
; (36)

S ≤ I (Ys;U|WQ), (37)
T ≤ I (Ys;W |UQ), (38)

S + T ≤ I (Ys;UW |Q). (39)

Since T is irrelevant in (37), S can be set to

SD = I (Ys;U|WQ) . (40)

Then,

TD = σ ∗ = min
{
I (Ys;W |Q) , I

(
Yp;W |X1X2Q

)}
(41)

and RD
s = SD + TD = ρo

s .

• Point C:

At RC
s = ρo

s , the maximum possible primary rate Rp =
R1 + R2 has to satisfy

Rp ≤ I
(
Yp;X1X2|WQ

)
, (42)

Rp ≤ I
(
Yp;WX1X2|Q

) − σ ∗. (43)

Using chain rule, (43) can be rewritten as

Rp ≤ I
(
Yp;X1X2|WQ

) + I
(
Yp;W |Q) − σ ∗. (44)
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Thus, if I(Yp;W |Q) − σ ∗ > 0, then (44) will be domi-
nated by (42). Otherwise, (44) dominates (42). So, RC

p will
be given by

RC
p = I

(
Yp;X1X2|WQ

) − [
σ ∗ − I(Yp;W |Q)

]+ (45)

where [x]+ = max{0, x}. The following is to show that
both points

(
RB
s ,RB

p

)
and

(
RC
s ,RC

p

)
lie on the line Rs +

Rp = ρo
sp:

For Point B, using direct substitution with

RB
s = I (Ys;U|WQ) + min

{
I
(
Yp;W |Q)

, I (Ys;W |Q)
}

and

RB
p = ρo

p ,

it is clear that RB
s + RB

p = ρo
sp.

For Point C, we consider the following two possibilities:

• σ ∗ ≥ I(Yp;W |Q):

Here min
{
I(Ys;W |Q), I(Yp,W |Q)

} = I
(
Yp;W |Q)

.
Consequently,

ρo
sp = I (Ys;U|WQ) + I

(
Yp;WX1X2|Q

)
and

RC
s + RC

p = I (Ys;U|WQ) + I
(
Yp;WX1X2|Q

)
.

• σ ∗ < I
(
Yp;W |Q)

:

Since I
(
Yp;W |X1X2Q

) ≥ I
(
Yp;W |Q)

, therefore I(Ys;
W |Q) < I(Yp;W |Q). Consequently,

ρo
sp = I (Ys;UW |Q) + I

(
Yp;X1X2|WQ

)
and

RC
s + RC

p = I (Ys;UW |Q) + I
(
Yp;X1X2|WQ

)
.

Therefore, both rate tuples
(
RB
s ,RB

p

)
and

(
RC
s ,RC

p

)
lie on

the line Rs + Rp = ρo
sp.

Note that, in the appendix of Han and Kobayashi [5],
they argued that part of the achievable rate region by their
introduced scheme was bounded by lines of slopes −0.5
and −2. Although from (13) to (22) reducing T by a value
of rmay result in increase of Rp by 2r, the proof that point(
RC
s ,RC

p

)
lies on the line Rs+Rp = ρo

sp means that a bound
of slope −2 does not exist forRo(Z).

Corollary 2. Any rate tuple (Rs,Rp) of the region

Ro = closure of
⋃
Z∈P∗

Ro(Z) (46)

is achievable.

3.2 Achievable rate region forCp
RS

Since in Cp
RS the signal of one primary user has to be

decodable at the secondary receiver, the model of Cp
RS

can be considered as the modified interference channel
model, Cm, introduced in [5]. The signals of the two pri-
mary users can be treated as if they are produced from a
single source, splitting its signal into two parts and encod-
ing each part separately such that one part is decodable
at both receivers while the other is decodable only at the
primary receiver. For this channel, we define the set δri (Z)

as the set of all achievable rate tuples (R1,R2, S,T) when
the signal of primary transmitter i, i ∈ {1, 2}, is decodable
by the secondary receiver. Without loss of generality, we
assume that i = 1. Hence, the achievable rate region for
Cp
RS takes the following form.

Theorem 3. For any Z ∈ P∗, δr1(Z) is the set of achiev-
able rate tuples (R1,R2, S,T) over the channel Cp

RS if the
following inequalities are satisfied:

R1 ≤ I
(
Yp;X1|WX2Q

)
, (47)

R2 ≤ I
(
Yp;X2|WX1Q

)
, (48)

T ≤ I(Yp;W |X1X2Q), (49)
R1 + R2 ≤ I

(
Yp;X1X2|WQ

)
, (50)

R1 + T ≤ I
(
Yp;WX1|X2Q

)
, (51)

R2 + T ≤ I
(
Yp;WX2|X1Q

)
, (52)

R1 + R2 + T ≤ I
(
Yp;WX1X2Q

)
; (53)

S ≤ I (Ys;U|WX1Q) , (54)
T ≤ I (Ys;W |UX1Q) , (55)
R1 ≤ I (Ys;X1|UWQ) , (56)

S + T ≤ I (Ys;UW |X1Q) , (57)
R1 + S ≤ I (Ys;UX1|WQ) , (58)
R1 + T ≤ I (Ys;WX1|UQ) , (59)

R1 + S + T ≤ I (Ys;UWX1|Q) . (60)

Proof. The proof follows exactly the proof of Theorem
3.1 in [5].

Corollary 3. For δr1 = ∪Z∈P∗δr1(Z), any rate tuple of δr1
is achievable.

ForCp
RS, the regionRr

i (Z) is the set of rate tuples (Rs,Rp)
where Rs = S + T , Rp = R1 + R2, and (R1,R2, S,T) is an
element of δri (Z) for any Z ∈ P∗, i ∈ {1, 2}.

Theorem 4. For any Z ∈ P∗, the achievable rate region
Rr

1(Z) for the channel Cp
RS consists of all rate pairs (Rs,Rp)

that satisfy

Rs≤ ρr
s , Rp≤ ρr

p, Rs + Rp ≤ ρr
sp,

2Rs + Rp ≤ ρr
2p, Rs + 2Rp ≤ ρr

s2
(61)
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where

ρr
s = I (Ys;U|WX1Q) + σ ∗

s , (62)
ρr
p = I

(
Yp;X2|WX1Q

) + σ ∗
p , (63)

ρr
sp = I (Ys;U|WX1Q) + I

(
Yp;X2|WX1Q

)
+ min

{
I
(
Yp;WX1|Q

)
, I (Ys;WX1|Q) ,

I
(
Yp;W |X1Q

) + I (Ys;X1|WQ) , I
(
Yp;X1|WQ

)
+ I (Ys;W |X1Q)} , (64)

ρr
2p = 2I (Ys;U|WX1Q) + 2σ ∗

s + I
(
Yp;X2|WX1Q

)
− [

σ ∗
s − I(Yp;W |X1Q)

]+ + min
{
I(Ys;X1|WQ),

I (Ys;WX1|Q) − σ ∗
s , I

(
Yp;X1|Q

)+[
I
(
Yp;W |X1Q

) − σ ∗
s
]+ , I

(
Yp;X1|WQ

)}
, (65)

ρr
s2 = 2I

(
Yp;X2|WX1Q

) + 2σ ∗
p + I (Ys;U|WX1Q)−[

σ ∗
p − I (Ys;X1|WQ)

]+ + min
{
I
(
Yp;W |X1Q

)
,

I
(
Yp;WX1|Q

) − σ ∗
p , I (Ys;W |Q)+[

I (Ys;X1|WQ) − σ ∗
p

]+
, I (Ys;W |X1Q)

}
, (66)

and

σ ∗
s = min

{
I (Ys;W |X1Q) , I

(
Yp;W |X1X2Q

)}
, (67)

σ ∗
p = min

{
I
(
Yp;X1|WQ

)
, I (Ys;X1|UWQ)

}
(68)

as shown in Figure 4.

Proof. From the similarity between Cp
RS and the modi-

fied interference channel of Han and Kobayashi [5], the

pR
A B

CC

D

E

sRO F
Figure 4 Achievable rate regionRr

1(Z) of the channel Cp
RS for

Z ∈ P∗.

derivation of the achievable rate region can be found in the
appendix of [5]. The analysis goes as that done for Ro(Z)

in CRS. Hence, the corner points of the Rr
1(Z) are shown

in Figure 4 and are given as follows.

• Point A:

RA
s = 0, (69)

RA
p = ρr

p = I(Yp;X2|X1WQ) + σ ∗
p . (70)

• Point B:

RB
s = I (Ys;U|WX1Q) −

[
σ ∗
p − I (Ys;X1|WQ)

]+

+ min
{
I
(
Yp;W |X1Q

)
, I

(
Yp;WX1|Q

) − σ ∗
p ,

I (Ys;W |Q) +
[
I (Ys;X1|WQ) − σ ∗

p

]+
,

I (Ys;W |X1Q)

}
, (71)

RB
p = ρr

p = I(Yp;X2|X1WQ) + σ ∗
p . (72)

• Point C:

RC
s = 2ρr

sp − ρr
s2, (73)

RC
p = ρr

s2 − ρr
sp. (74)

• Point D:

RD
s = ρr

2p − ρr
sp, (75)

RD
p = 2ρr

sp − ρr
sp. (76)

• Point E:

RE
s = I(Ys;U|WX1Q) + σ ∗

s , (77)
RE
p = I(Yp;X2|WX1Q)−[ σ ∗

s − I(Yp;W |X1Q)]+

+ min
{
I(Ys;X1|WQ), I(Ys;WX1|Q) − σ ∗

s ,

I(Yp;X1|Q) + [
I(Yp;W |X1Q) − σ ∗

s
]+ ,

I(Yp;X1|WQ)
}
. (78)

• Point F:

RrF
s = ρr

s = I (Ys;U|WX1Q) + σ ∗
s , (79)

RF
p = 0. (80)

Corollary 4. Any rate tuple (Rs,Rp) of the regions

Rr
i = closure

⋃
Z∈P∗

Rr
i (Z), i ∈ {1, 2}, (81)

is achievable.

Constraining the signal of one primary user to be decod-
able at the secondary receiver might result in a degrada-
tion in the achievable primary rate especially when the
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secondary rate is small. In general, Ro and Rr
i do not

necessarily contain one another; however, there exists a
case in which Ro(Z) ⊆ Rr

i (Z). The following theorem
characterizes that case.

Theorem 5. For a given Z ∈ P∗,Ro(Z) ⊆ Rr
i (Z) if and

only if

I(Yp;Xi|WQ) ≤ I(Ys;Xi|UWQ). (82)

Proof. Please refer to Appendix 2.

Corollary 5. If for all Z ∈ P∗ condition (82) is satisfied,
thenRo ⊆ Rr

i , whereRr
i = ∪Z∈P∗Rr

i (Z).

Theorem 5 shows that when a primary user encodes its
messages at a rate decodable at both receivers, the pri-
mary networkmay achieve the same rate range when none
of the signals of its users is decodable at the secondary
receiver. Moreover, at every primary rate, the secondary
rate is enhanced (see Figure 5).
Consequently, if for any Z ∈ P∗ condition (82)

is satisfied, then allowing the secondary receiver to
decode the signal of primary user i at this Z enhances
the range of the secondary achievable rates without
reducing the range of the achievable primary sum
rates.
We call Corollary 5 the primary decodability condition

(PDC).

3.3 Achievable rate region for the channelCB
From CRS and Cp

RS, we define

Ri(Z) = Ro(Z) ∪ Rr
i (Z), Z ∈ P∗, i ∈ {1, 2}, (83)

and

Ri = closure
⋃
Z∈P∗

Ri(Z), i ∈ {1, 2}. (84)

Hence, an achievable rate region for the channel CB

R = R1 ∪ R2, (85)

or equivalently,

R = Ro ∪ Rr
1 ∪ Rr

2. (86)

At this point, it is worth reflecting the resulting achiev-
able rate region R on the Han-Kobayashi region derived
for the 2×2 interference channel, denotedRHK , especially
with the adopted channel model CB which is well related
to the interference channelC in [5]. In the light of the con-
sidered communication setup and adopted rate splitting
communication scheme, we can note that the two primary
transmitters of our setup CB can be viewed as a common
transmitter in C splitting its signal into X1, X2.
However, since the transmitters are sending indepen-

dent messages and having no control over the codebook
of each other, their transmit strategies adopted in R can
be considered as only three realizations of the possible
rate splitting strategies for the common transmitter in
C. Thus, we can note that R ⊆ RHK . In particular, for

Ar

Ao
BrBo

Rp

A

Cr

Dri
r(z)

o(z)

Co

(z)

Er

Co

FrDo Rs

),( **
ps RR

Figure 5 RegionsRr
i (Z) andRo(Z)when I

(
Yp;Xi|WQ

) ≤ I (Ys;Xi|UWQ).
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the two primary transmitters of CB behaving as a com-
mon transmitter in C, rate region R spans only the rate
splitting strategies of such common transmitter when the
secondary receiver (1) cannot decode any primary signal,
(2) can only decode the whole signal of user 1, and (3) can
only decode the whole signal of user 2.
Note that, inequalities (15) and (49) used in δo(Z) and

δr1(Z), respectively, to limit the error in decoding the pub-
lic part of the secondary signal at the primary receiver
while the primary signals are decoded successfully. In fact,
the primary receiver may not be interested in limiting the
probability of such error event. Similarly, inequality (56)
in δr1(Z) may not be relevant as the secondary receiver
is not interested in limiting the probability of error in
decoding the primary signal when the two parts of its
signal are decoded successfully. However, removing (15)
from the definition of δo(Z) and (49) and (56) from the
definition of δr1(Z) does not enhance the achievable rate
regionR.
To demonstrate this fact, we define δ′o(Z) exactly as

δo(Z) but without the constraint of (15), and δ′r
1 (Z) exactly

as δr1(Z) but without the constraints (49) and (56). Let
R′o(Z) and R′r

1 (Z) be two sets of rate tuples (Rs,Rp)
such that Rs = S + T and Rp = R1 + R2, and the
rate tuple (R1,R2, S,T) is an element of δ′o(Z) and δ′r

1 (Z),
respectively. Also, we define

R′
1(Z) = R′o(Z) ∪ R′r

1 (Z).

Theorem 6. IfR′
1 = ⋃

Z∈P∗ R′
1(Z), thenR′

1 = R1.

Proof. Please refer to Appendix 3.

Corollary 6. For

R′ = closure ofR′
1 ∪ R′

2,

then

R′ = R.

4 Gaussian channel
In this section, we quantify the obtained achievable rate
regions in a Gaussian channel model. A memoryless
Gaussian channel of the introduced system is defined by
a tuple (X1,X2,Xs,ω,Yp,Ys) with X1 = X2 = Xs =
Yp = Ys = � (the field of real numbers), and a channel
probability ω specified by

yp =
√
gp1x1 +

√
gp2x2 +

√
gps xs + np, (87)

ys =
√
gs1x1 +

√
gs2x2 + √

gssxs + ns (88)

for x1 ∈ X1, x2 ∈ X2, xs ∈ Xs, yp ∈ Yp, and ys ∈ Ys,
where np and ns are independent Gaussian additive noise
samples with zeromean and varianceN0, and g

p
1 , g

p
2 , g

p
s , gs1,

gs2, and gss are the channel power gains. Power constraints

are imposed on codewords x1(i), x2(j), xs(k) (i ∈ M1, j ∈
M2, k ∈ Ms):

1
n

n∑
t=1

(
x1(i)(t)

)2 = P1, (89)

1
n

n∑
t=1

(
x2(j)(t)

)2 = P2, (90)

1
n

n∑
t=1

(
xs(k)(t)

)2 = Ps. (91)

Also, we define a subclass G(P1,P2,Ps) of P∗ as follows:
Z = φUWX1X2XsYpYs ∈ G(P1,P2,Ps) if and only if Z ∈
P∗, σ 2(X1) = P1, σ 2(X2) = P2, and σ 2(Xs) = Ps, with X1,
X2,U, andW being zero mean Gaussian and Xs = U+W .
Hence, we have the following rate regions achievable:

Ro
g = closure of

⋃
Z∈G(P1,P2,Ps)

Ro(Z), (92)

Rr
ig = closure of

⋃
Z∈G(P1,P2,Ps)

Rr
i (Z), i ∈ {1, 2}, (93)

Rig = closure of
⋃

Z∈G(P1,P2,Ps)
Ri(Z), i ∈ {1, 2}, (94)

Rg = Ro
g
⋃(

∪i∈{1,2}Rr
ig

)
= R1g

⋃
R2g . (95)

Assume the secondary user splits its power into λPs and
λ̄Ps such that 0 ≤ λ ≤ 1 and λ + λ̄ = 1. The part of
secondary signal decodable at the primary and secondary
receivers is encoded with power λ̄Ps where the other part
is encoded with power λPs. Let τ(x) = 0.5 log2(1+x), and
the relevant quantities in Theorems 2 and 4 will be given
by

I
(
Yp;X1X2|W

) = τ

(
gp1P1 + gp2P2
gps λPs + N0

)
,

I
(
Yp;X1X2

) = τ

(
gp1P1 + gp2P2
gps Ps + N0

)
,

I
(
Yp;X2|WX1

) = τ

(
gp2P2

gps λPs + N0

)
,

I
(
Yp;X1|W

) = τ

(
gp1P1

gps λPs + gp2P2 + N0

)
,

I
(
Yp;W |X1X2

) = τ

(
gps λ̄Ps

gps λPs + N0

)
,

I
(
Yp;W |X1

) = τ

(
gps λ̄Ps

gps λPs + gp2P2 + N0

)
,
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I
(
Yp;WX1

) = τ

(
gp1P1 + gps λ̄Ps

gps λPs + gp2P2 + N0

)
,

I
(
Yp;W

) = τ

(
gps λ̄Ps

gps λPs + gp1P1 + gp2P2 + N0

)

I
(
Yp;X1

) = τ

(
gp1P1

gps Ps + gp2P2 + N0

)
;

I (Ys;U|WX1) = τ

(
gssλPs

gs2P2 + N0

)
,

I (Ys;U|W ) = τ

(
gssλPs

gs1P1 + gs2P2 + N0

)
,

I (Ys;W |X1) = τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
,

I (Ys;WX1) = τ

(
gss λ̄Ps + gs1P1

gssλPs + gs2P2 + N0

)
,

I (Ys;W ) = τ

(
gss λ̄Ps

gssλPs + gs1P1 + gs2P2 + N0

)
,

I (Ys;X1|W ) = τ

( gs1P1
gssλPs + gs2P2 + N0

)
,

I (Ys;X1|UW ) = τ

( gs1P1
gs2P2 + N0

)
.

4.1 Performance of rate splitting
We study the effect of rate splitting by the secondary link
on the achievable rate regions Ro

g and Rr
ig , i ∈ {1, 2} and

hence Rig . For each region, there exists a case for which
no rate splitting determines the overall region, i.e., each
achievable rate region is obtained at λ = 0 or λ = 1. We
say that rate splitting does not affect an achievable rate
region A if A(Z) coincides on A at λ = 0 or λ = 1,
Z ∈ G(P1,P2,Ps), where A = ⋃

Z∈G(P1,P2,Ps) A(Z), mean-
ing that either decoding the whole secondary signal at the
primary receiver or not decoding it at all determinesA.

4.1.1 ForRo
g

The region Ro
g is obtained when the secondary receiver

is assumed to treat the primary interference as noise. The
following theorem determines the effect of rate splitting
onRo

g .

Theorem 7. For Z ∈ G(P1,P2,Ps), an achievable rate
regionRo(Z) can only coincide onRo

g at λ = 0, if and only
if

I(Ys;W ) ≤ I(Yp;W |X1X2) (96)

or equivalently,

gssN0 ≤ gps
(
gs1P1 + gs2P2 + N0

)
. (97)

Proof. Please refer to Appendix 4.

Theorem 7 shows that rate splitting does not affect the
achievable rate region Ro

g when inequality (97) is satis-
fied. Hence, a primary receiver decoding all the secondary
signal is preferable at this case. Figure 6 depicts this case
for different values of λ. It is clear that Ro(Z) at smaller
λ contains Ro(Z) at larger λ. This figure was obtained at
gp1 = 2.5664, gp2 = 3.7653, gs1 = 0.1812, gs2 = 0.1784,
gps = 2.3620, and gss = 8.6065 and at the following power
setup. The noise variance N0 = 1 unit power and P1

N0
=

P2
N0

= SNRp = 10 dB and Ps
N0

= SNRs = 10 dB. Note that
in this case, the maximum secondary throughput does not
depend on λ, so the best performance from the primary
rate point of view is to decode all the secondary signal by
setting λ = 0.
Moreover, when inequality (97) is not satisfied, rate

splitting affectsRo
g as for any two different values of λ the

correspondingRo(Z)s do not contain one another. Hence,
Ro

g is obtained by varying λ from 0 to 1. Figure 7 repre-
sents the case when (97) is not satisfied for the following
parameters. gp1 = 1.5066, gp2 = 0.8290, gs1 = 0.1902,
gs2 = 0.0122, gps = 1.1953, and gss = 10.3229 with the same
power setup of Figure 6.
Also, it is shown in [11] that when (97) is not satisfied,

the sum throughput of the whole network, i.e., Rs + Rp,
increases with λ. That is, as λ increases, the primary sum
rate decreases but the secondary rate gains an increase
larger than the decrease in rate encountered by the pri-
mary network. Figure 8 depicts Rs + Rp for the same
simulation parameters of Figure 7. It is clear that the
increase in the total sum rate, Rs + Rp, is accompanied by
a decrease in the sum primary rate Rp. Hence, the sum
primary rate has to be protected above a minimum limit.

4.1.2 ForRr
ig , i ∈ {1, 2}

The region Rr
ig is obtained when the secondary receiver

can decode the signal of primary user i. The rate split-
ting effect on this region is determined in the following
theorem.

Theorem 8. For Z ∈ G(P1,P2,Ps) and i ∈ {1, 2}, an
achievable rate region Rr

i (Z) can only coincide on Rr
ig at

λ = 0 if and only if

I (Ys;W |Xi) ≤ I
(
Yp;W |X1X2

)
(98)

or equivalently,

gssN0 ≤ gps
(
gsj Pj + N0

)
, j ∈ {1, 2}, j �= i. (99)

Proof. Please refer to Appendix 5.

Hence, if inequality (99) is satisfied, Rr
ig is obtained

without rate splitting, specifically, when λ = 0.
Figures 9 and 10 show the performance of rate splitting

under same power setup used with Figures 6 and 7 where
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Figure 6 Overall achievable rate regionRo
g is obtained when the whole secondary signal is decodable by the primary receiver.Ro

g is
shown in blue.

it is assumed that the secondary receiver can decode the
signal of primary user 1. In Figure 9, the achievable rate
regionRr

1g coincides onRr
1(Z)when inequality (99) is sat-

isfied. The parameters for this scenario are gp1 = 5.5303,
gp2 = 4.2865, gs1 = 0.6542, gs2 = 0.8121, gps = 3.9334, and
gss = 8.1575.

In Figure 10, the opposite scenario is considered where
inequality (99) is not satisfied. It is obvious that the overall
rate region Rr

1g is obtained by varying λ from 0 to 1 as a
consequence of the fact that rate regions corresponding to
different values of λ do not include one another if inequal-
ity (99) is not satisfied. The channel gains for Figure 10
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Figure 7 Rate splitting affects the achievable rate region.Ro
g is shown in blue, andRo(Z) is shown in green for λ = 0, yellow for λ = 0.1, and

red for λ = 1.
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Figure 8 Increase in the sum rate of the whole network when inequality (97) is not satisfied.

are gp1 = 9.566, gp2 = 14.5045, gs1 = 0.0808, gs2 = 0.2894,
gps = 0.7032, and gss = 16.6226.
Consequently, the achievable rate region Rig coincides

onRig(Z) at λ = 0 if and only if (99) is satisfied.

4.2 Decoding one primary signal
In Section 3.2, we have discussed the achievable rate
region in the DMC case assuming that the signal of one

primary transmitter has to be reliably decoded by the sec-
ondary receiver. Although this may impose a constraint on
the range of achievable sum rates by the primary network,
we showed in Theorem 5 and Corollary 5 that there exists
a condition for which this constraint only enhances the
achievable rates for the secondary link without degrading
the range of achievable rates by the primary network. This
condition is called PDC. When applying this condition to
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Figure 9 Overall achievable rate regionRr
1g is obtained when the whole secondary signal is decodable by the primary receiver.Rr

1g is
shown in blue.
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Figure 10 Rate splitting affects the achievable rate region.Rr
1g is shown in blue, andRr
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the given Gaussian channel, the PDC would be as follows:
If for all Z ∈ G(P1,P2,Ps) I(Yp;Xi|W ) ≤ I(Ys;Xi|UW ),
then Ro

g ⊆ Rr
ig . Equivalently, the following inequality

must hold:

τ

(
gpi Pi

gps λPs+gpj Pj+N0

)
≤τ

(
gsi Pi

gsj Pj+N0

)
,

∀λ : 0≤λ≤1, j �= i, i, j∈{1, 2}.
(100)

But since I(Ys;Xi|UW ) does not depend on λ, then a
necessary and sufficient condition to have (100) satisfied
is

gpi
gpj Pj + N0

≤ gsi
gsj Pj + N0

, j �= i, i, j ∈ {1, 2}. (101)

We call inequality (101) primary decodability condition
for Gaussian channel (PDCG).
Figure 11 shows a scenario for which three rate regions

are obtained: Ro
g , Rr

1g , and Rr
2g . It is clear that Ro

g ⊆ Rr
1g

meaning that primary user 1 satisfies the PDCG described
in (101), whereas primary user 2 does not. By decoding
the signal of primary user 1 at the secondary receiver, the
range of achievable primary rates inRo

g remains the same
forRr

1g while the secondary link can achieve higher rate at
a given primary rate in Rr

1g than in Ro
g . The power setup

used to produce this figure is the same as that of Figure 6,
and the channel gains are gp1 = 0.3413, gp2 = 10.2047, gs1 =
0.2821, gs2 = 0.3782, gps = 0.2495, and gss = 6.3337.
Note that a primary user that satisfies PDCG does not

always exist, so we evaluate the probability of PDCG as

the probability of finding at least one primary user satis-
fying (101). We assume N0 = 1 unit power and gs1 and gs2
are i.i.d. exponentially distributed with mean μs, whereas
gp1 and gp2 are i.i.d. exponentially distributed with mean
μp, where gs1, gs2, g

p
1 , and gp2 are mutually independent.

A closed form formula for the probability of PDCG is
difficult to obtain, so we evaluate it numerically by gen-
erating 107 different values for each channel gain element
and calculating the average number of times at which nei-
ther primary user satisfies (101) at a given P1 and P2;
then by subtracting it from 1, we get a numerical esti-
mate for the probability of PDCG. A simulation has been
done in which we assume that P1

N0
= P2

N0
= SNRp. We

vary SNRp and evaluate the corresponding probability of
PDCG. This simulation is done for the following pairs of(
μp,μs

)
: (1, 1), (1, 5), (5, 1), and (5, 5). The result is shown

in Figure 12, where it is obvious that the probability of
PDCG increases with SNRp and that the increase in μs
yields more increase in probability of PDCG. The mono-
tonic increase of such probability with SNRp can be seen
by explicitly expressing the probability of event (101) as

P
(

gsj SNRp +1
gpj SNRp +1 ≤ gsi

gpi
, for some i, j ∈ {1, 2}

)
, which is essen-

tially monotonically increasing in SNRp and approaches
1 as SNRp goes to ∞. While it is hard to mathematically
show the dependence of the probability of PDCG on μs
and μp, we can justify the increase of such probability
withμs relative toμp because it statistically implies higher
quality of the channel to the secondary receiver than that
to the primary, hence more chances of (101).
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5 Conclusions
In this work, we have analyzed an achievable rate region
for a primary multiple access network coexisting with a
secondary link that comprises one transmitter and a cor-
responding receiver. The achievable rate regions depict
the sum primary rate versus the secondary rate. We have
considered DMC where the secondary link employs rate
splitting and investigated two types of achievable rate
regions: the first is when the secondary receiver treats the

primary signal as noise, whereas the second is when the
secondary is able to decode the signal of only one pri-
mary transmitter. An overall achievable rate region is the
union of those two regions. Moreover, we have shown
that there exists a case for which allowing the secondary
receiver to decode a primary signal results in an achiev-
able rate region that includes the achievable rate region
obtained when the secondary receiver does not decode
the primary signal. Subsequently, we have investigated
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the performance of rate splitting in th e Gaussian chan-
nel where it has been found that rate splitting by the
secondary user is useless when the channel between the
secondary transmitter and the primary receiver supports
larger rate than the channel between the two secondary
nodes. Furthermore, on decoding the signal of a primary
transmitter at the secondary receiver, a necessary and suf-
ficient condition has been provided to allow the secondary
user to decode the primary signal without reducing the
range of achievable primary sum rates; in fact, it can only
increase the range of achievable secondary rates. Finally,
we have shown numerically that the probability of find-
ing at least one primary user that satisfies this condition
increases with the signal-to-noise ratio of the primary
users.

Appendix 1 - Proof of Theorem 1
It is sufficient to show that there exists at least one code
for which if the rate tuple (R1,R2, S,T) satisfies (13) to
(22), then the rate tuple is achievable.We use the following
random code.

Random code generation
A random code C is generated as follows. Let q =(
q(1), · · · , q(n)

)
be a random i.i.d sequence of Qn, uk =(

u(1)
k , · · · ,u(n)

k

)
, k ∈ Ls a sequence of random variables

of Un that are i.i.d given q. Moreover, uk and uk′ are inde-
pendent ∀k �= k′, k, k′ ∈ Ls. Similarly, generate wl, l ∈ Ns,
x1i, i ∈ M1 and x2j, j ∈ M2, which are respectively i.i.d.
given q.

Encoding
For primary user 1 to send a message i ∈ M1, it
sends x1i. Similarly, for primary user 2 to send a mes-
sage j ∈ M2, it sends x2j. For the secondary user to
send a message kl ∈ Ls × Ns, it sends f n (ukwl|q) =(
f (1)

(
u(1)
k w(1)

l |q(1)
)
, · · · , f (n)

(
u(n)

k w(n)

l |q(n)
))

, where q is
known at the transmitters.

Decoding: jointly typical decoding
We use the concept of jointly typical sequences and the
properties of typical sets introduced in Chapter 15 of [18]
to implement the decoding functions. Let A(n)

ε denote the
set of typical

(
q, x1, x2,wl, yp

)
sequences, then the pri-

mary receiver decides ijl if
(
q, x1i, x2j,wl, yp

)
∈ A(n)

ε . Also,

let B(n)
ε denote the set of typical

(
q,u,w, ys

)
sequences,

then secondary receiver decides kl if
(
q,uk ,wl, ys

) ∈ B(n)
ε .

Probability of error analysis
By the symmetry of the random code generation, the
conditional probability of error does not depend on the

transmitted messages. Hence, the conditional probability
of error is the same as the average probability of error. So,
let ijkl = 1111 be sent. An error occurs if the transmitted
codewords are not typical with the received sequences.

For the primary receiver
Let the event

Ep(ijl) =
{(

q, x1i, x2j,wl, yp
)

∈ A(n)
ε

}
;

hence, the probability of error averaged over the random
code C is

P̄eop = P
(
Ecp(111)

⋃
∪ijl �=111Ep(ijl)

)
,

where Ecp(111) denotes the complement of Ep(111). Using
union bound, we have

P̄eop ≤ P
(
Ecp(111)

)
+ P

(∪ijl �=111Ep(ijl)
)

≤ P
(
Ecp(111)

)
+ (M1 − 1)P

(
Ep(211)

)
+ (M2 − 1)P

(
Ep(121)

) + (Ns − 1)P
(
Ep(112)

)
+ (M1 − 1) (M2 − 1)P

(
Ep(221)

)
+ (M1 − 1) (Ns − 1)P

(
Ep(212)

)
+ (M2 − 1) (Ns − 1)P

(
Ep(122)

)
+ (M1 − 1) (M2 − 1) (Ns − 1)P

(
Ep(222)

)
.

From the properties of jointly typical sequences [18],
P
(
Ecp(111)

)
→ 0 as n → ∞, and

P
(
Ep(211)

) = 2−n(H(X1|Q)−H(X1|X2WYpQ))+6ε

= 2−n(I(X1;X2WYp|Q))+6ε

= 2−n(I(Yp;X1|WX2Q))+6ε ,

where the last equality holds from the assumption that X1,
X2,U, andW are conditionally independent givenQ. Sim-
ilarly, for other Ep(ijl �= 111) and applying Equations (6)
to (8), we get

P̄eop ≤ 2−n(I(Yp;X1|WX2Q)−R1+η−6ε)

+ 2−n(I(Yp;X2|WX1Q)−R2+η−6ε)

+ 2−n(I(Yp;W |X1X2Q)−T+η−6ε)

+ 2−n(I(Yp;X1X2|WQ)−(R1+R2)+η−6ε)

+ 2−n(I(Yp;WX1|X2Q)−(T+R1)+η−6ε)

+ 2−n(I(Yp;WX2|X1Q)−(T+R2)+η−6ε)

+ 2−n(I(Yp;X1X2W |Q)−(T+R1+R2)+η−6ε).

Thus, if (13) to (19) are satisfied, P̄eop → ε as n → ∞.

For the secondary receiver
Let the event

Es(kl) =
{(
q,uk ,wl, ys

) ∈ B(n)
ε

}
;
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hence, the probability of decoding error averaged over the
random code C is

P̄eos = P
(
Ecs (11)

⋃
∪kl �=11Ep(kl)

)
,

where Ecs (11) denotes the complement of Es(11). Using
union bound, we have

P̄eos ≤ P
(
Ecs (11)

) + (Ls − 1)P(Es(21))
+ (Ns − 1)P(Es(12))
+ (Ls − 1)(Ns − 1)P(Es(22)).

Since P(Ecs (11)) → ε as n → ∞, then

P̄eos ≤ 2−n(I(Ys;U|WQ)−S+η−6ε)

+ 2−n(I(Ys;W |UQ)−T+η−6ε)

+ 2−n(I(Ys;UW |Q)−(S+T)+η−6ε).

So, if (20) to (22) are satisfied, P̄eos → ε as n → ∞.
This concludes the proof.

Appendix 2 - Proof of Theorem 5
Sufficiency part
Suppose (82) is satisfied, we use Figure 5 to prove that
Ro(Z) ⊆ Rr

i (Z). It is sufficient to show that RAo
p = RAr

p ,
RBo
s ≤ RBr

s , RDo
s ≤ RFr

s and that lines 2Rs + Rp = ρr
2p

and Rs + Rp = ρo
sp intersect at a point

(
R∗
s ,R∗

p

)
for which

R∗
s ≥ RDo

s , i.e., the intersection between the two lines is
outsideRo(Z). Consider that the primary user whose sig-
nal is not decodable at the secondary receiver is indexed
by j, j ∈ {1, 2} and i �= j.

Proof ofRAo
p = RAr

p
From the analysis of the channels CRS and Cp

RS in
Section 3, we have

RAo
p = I

(
Yp;X1X2|WQ

)
,

RAr
p = I

(
Yp;Xj|WXiQ

) + σ ∗
p .

From (82), σ ∗
p = I

(
Yp,Xi|WQ

)
. Therefore,

RAr
p = I

(
Yp;X1X2|WQ

) = RAo
p .

Proof ofRBo
s ≤ RBr

s
From the proof of Theorem 2,

RBo
s = I (Ys;U|WQ)+min

⎧⎨
⎩

o1︷ ︸︸ ︷
I
(
Yp;W |Q)

,
o2︷ ︸︸ ︷

I (Ys;W |Q)

⎫⎬
⎭ ,

(102)

and from the proof of Theorem 4,

RBr
s = I (Ys;U|WXiQ) − [

I
(
Yp;Xi|WQ

)
− I (Ys;Xi|WQ)]+ + min

{
I
(
Yp;W |Q)

,

I(Ys;W |Q) + [
I (Ys;Xi|WQ) − I

(
Yp;Xi|WQ

)]+ ,
I(Ys;W |XiQ)} .

Case I: If I(Yp;Xi|WQ) ≤ I(Ys;Xi|WQ)

RBr
s = I (Ys;U|WXiQ) + min

⎧⎨
⎩

ν1︷ ︸︸ ︷
I
(
Yp;W |Q)

,

ν2︷ ︸︸ ︷
I (Ys;W |Q) + I (Ys;Xi|WQ) − I

(
Yp;Xi|WQ

)
,

ν3︷ ︸︸ ︷
I (Ys;W |XiQ)

⎫⎬
⎭ .

(103)

Note that, ν1 = o1.

• If o1 ≤ o2 in (102)

RBo
s = I (Ys;U|WQ) + I

(
Yp;W |Q)

,

RBr
s = I (Ys;U|WXiQ) + I(Yp;W |Q)

≥ RBo
s .

• If o2 ≤ o1 in (102)

RBo
s = I(Ys;U|WQ) + I(Ys;W |Q)

= I(Ys;UW |Q).

When ν1 = min{ν1, ν2, ν3} in (103), then

RBr
s = I(Ys;U|WXiQ) +

≥o2︷ ︸︸ ︷
I
(
Yp;W |Q)

≥ RBo
s .

When ν2 = min{ν1, ν2, ν3} in (103), then

RBr
s = I(Ys;U|WXiQ) + I(Ys;W |Q) + I(Ys;Xi|WQ)

− I(Yp;Xi|WQ)

≥ I(Ys;U|WXiQ) + I(Ys;W |Q)

≥ RBo
s .

When ν3 = min{ν1, ν2, ν3} in (103), then

RBr
s = I(Ys;U|WXiQ) + I(Ys;W |XiQ)

= I(Ys;UW |XiQ)

≥ RBo
s .



Tadrous and Nafie EURASIP Journal onWireless Communications and Networking 2014, 2014:203 Page 17 of 24
http://jwcn.eurasipjournals.com/content/2014/1/203

Case II: If I(Ys;Xi|WQ) ≤ I(Yp;Xi|WQ)

RBr
s = I(Ys;U|WXiQ) + I(Ys;Xi|WQ) − I(Yp;Xi|WQ)

+ min

⎧⎨
⎩

ν4︷ ︸︸ ︷
I(Yp;W |Q),

ν5︷ ︸︸ ︷
I(Ys;W |Q)

⎫⎬
⎭ .

(104)

Note that o1 = ν4 and o2 = ν5.

• If o1 ≤ o2 in (102)

RBo
s = I (Ys;U|WQ) + I

(
Yp;W |Q)

,

RBr
s = I(Ys;UXi|WQ) − I(Yp;Xi|WQ) + I(Yp;W |Q)

= I(Ys;U|WQ) + I(Yp;W |Q)

+
≥0 from (82)︷ ︸︸ ︷

I(Ys;Xi|UWQ) − I(Yp;Xi|WQ)

≥ RBo
s .

• If o2 ≤ o1 in (102)

The proof follows exactly as the case of o1 ≤ o2.

Proof ofRFr
s ≥ RDo

s

RFr
s = I(Ys;U|WXiQ) + min{I(Ys;W |XiQ),

I(Yp;W |X1X2Q)}.

RDo
s = I(Ys;U|WQ) + min{I(Ys;W |Q),

I(Yp;W |X1X2Q)}.
It is obvious that each term in RFr

s is greater than or
equal to its corresponding term in RDo

s . Hence, RFr
s ≥ RDo

s .

Proof of the intersection point between the two lines
2Rs + Rp = ρr

2p andRs + Rp = ρo
sp occurs at a point(

R∗
s ,R∗

p

)
whereR∗

s ≥ RDo
s

The secondary rate of the intersection point is R∗
s = ρr

2p −
ρo
sp. From Theorems 2 and 4,

RDo
s = I(Ys;U|WQ) + σ ∗, (105)
R∗
s = 2I (Ys;U|WXiQ) + 2σ ∗

s + I
(
Yp;Xj|WXiQ

)
− [

σ ∗
s − I

(
Yp;W |XiQ

)]+ + min
{
I (Ys;Xi|WQ) ,

I (Ys;WXi|Q) − σ ∗
s , I

(
Yp;Xi|Q

) + [
I
(
Yp;W |XiQ

)
−σ ∗

s
]+ , I

(
Yp;Xi|WQ

)} − I
(
Yp;X1X2|WQ

)
− I (Ys;U|WQ) − min

{
I (Ys;W |Q) , I

(
Yp;W |Q)}

.
(106)

Hence, it is required to show that R∗
s ≥ RDo

s .

If σ ∗
s = I(Ys;W |XiQ) ≤ I(Yp;W |X1X2Q)

• If I(Ys;W |XiQ) ≤ I(Yp;W |XiQ),
from (105) and (106), we have

RDo
s = I(Ys;U|WQ) + I(Ys;W |Q) = I(Ys;UW |Q), (107)

R∗
s = 2I (Ys;U|WXiQ) + 2I (Ys;W |XiQ) − I (Ys;U|WQ)

+ I
(
Yp;Xj|WXiQ

) + min

⎧⎨
⎩

ν6︷ ︸︸ ︷
I (Ys;Xi|Q),

ν7︷ ︸︸ ︷
I
(
Yp;Xi|Q

) + I
(
Yp;W |XiQ

) − I (Ys;W |XiQ),
ν8︷ ︸︸ ︷

I
(
Yp;Xi|WQ

)⎫⎬⎭ − I
(
Yp;X1X2|WQ

) − min {ν4, ν5} .

(108)

When ν6 = min{ν6, ν7, ν8} in (108), then

R∗
s = I(Ys;U|WXiQ) − I(Ys;U|WQ) +

=RDos︷ ︸︸ ︷
I(Ys;UW |Q)

+ I(Ys;W |XiQ) − min{ν4, ν5} + I(Yp;Xj|WXiQ)

+
≥I(Yp;Xi|WQ) from (82)︷ ︸︸ ︷

I(Ys;Xi|UWQ) −I(Yp;X1X2|WQ)

≥ RDo
s .

When ν7 = min{ν6, ν7, ν8} in (108), then

R∗
s = I(Ys;U|WXiQ) − I(Ys;U|WQ) +

≥RDos︷ ︸︸ ︷
I(Ys;UW |XiQ)

+ ν4 − min{ν4, ν5}
≥ RDo

s .

When ν8 = min{ν6, ν7, ν8} in (108), then

R∗
s = I(Ys;U|WXiQ) − I(Ys;U|WQ) +

≥RDos︷ ︸︸ ︷
I(Ys;UW |XiQ)

+ I(Ys;W |XiQ) − min{ν4, ν5}
≥ RDo

s .

• If I(Ys;W |XiQ) ≥ I(Yp;W |XiQ),

RDo
s will remain the same as (107) and R∗

s will be given by

R∗
s = 2I (Ys;U|WXiQ) + 2I (Ys;W |XiQ) − I (Ys;U|WQ)

+ I
(
Yp;Xj|WXiQ

) + I
(
Yp;W |XiQ

)
− I (Ys;W |XiQ) + min

⎧⎨
⎩

ν9︷ ︸︸ ︷
I (Ys;Xi|Q),

ν10︷ ︸︸ ︷
I
(
Yp;Xi|Q

)⎫⎬⎭
− I

(
Yp;X1X2|WQ

) − min {ν4, ν5} .
(109)
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When ν9 = min{ν9, ν10} in (109), then

R∗
s = I (Ys;U|WXiQ) − I (Ys;U|WQ) +

=RDos︷ ︸︸ ︷
I (Ys;UW |Q)

+ I
(
Yp;W |XiQ

) − min {ν4, ν5} + I (Ys;Xi|UWQ)

+ I
(
Yp;Xj|WXiQ

) − I
(
Yp;X1X2|WQ

)
≥ RDo

s .

When ν10 = min{ν9, ν10} in (109), then

R∗
s = I(Ys;U|WXiQ) − I(Ys;U|WQ) +

≥RDos︷ ︸︸ ︷
I(Ys;UW |XiQ)

+ I(Yp;W |XiQ) − min{ν4, ν5}
≥ RDo

s

If σ ∗
s = I(Yp;W |X1X2Q) ≤ I(Ys;W |XiQ) from (105)

and (106), we have

RDo
s = I(Ys;U|WQ) + min

⎧⎨
⎩

o2︷ ︸︸ ︷
I(Ys;W |Q),

o3︷ ︸︸ ︷
I(Yp;W |X1X2Q)

⎫⎬
⎭ ,

(110)

R∗
s = 2I(Ys;U|WXiQ) − I (Ys;U|WQ) + I

(
Yp;W |XiQ

)
+ I

(
Yp;Xj|WXiQ

) + I
(
Yp;W |X1X2Q

)
+ min

⎧⎨
⎩

ν10︷ ︸︸ ︷
I
(
Yp;Xi|Q

)
,

ν11︷ ︸︸ ︷
I(Ys;Xi|WQ),

ν12︷ ︸︸ ︷
I (Ys;WXi|Q) − I

(
Yp;W |X1X2Q

)⎫⎬⎭ − min {ν4, ν5}

− I
(
Yp;X1X2|WQ

)
(111)

• If o2 ≤ o3 in (110),

RDo
s = I(Ys;U|WQ) + I(Ys;W |Q) = I(Ys;UW |Q).

When ν10 = min{ν10, ν11, ν12} in (111), then

R∗
s = I(Ys;U|WXiQ) − I(Ys;U|WQ) + ν4

− min{ν4, ν5} +
≥RDos︷ ︸︸ ︷

I(Ys;U|WXiQ) + o3 .

Since o2 ≤ o3, then ν11 cannot be smaller than ν12.
When ν12 = min{ν10, ν11, ν12}, then

R∗
s = I (Ys;U|WXiQ) − I (Ys;U|WQ) + I

(
Yp;W |XiQ

)

− min {ν4, ν5} +
=RDos︷ ︸︸ ︷

I(Ys;UW |Q)+I (Ys;Xi|UWQ)

+ I
(
Yp;Xj|WXiQ

) − I
(
Yp;X1X2|WQ

)
≥ RDo

s .

• If o2 ≥ o3
RDo
s = I(Ys;U|WQ) + I(Yp;W |X1X2Q).

When ν10 = min{ν10, ν11, ν12} in (111), then
R∗
s = I(Ys;U|WXiQ) − I(Ys;U|WQ)

+
≥RDos︷ ︸︸ ︷

I(Ys;U|WXiQ) + I(Yp;W |X1X2Q)

≥ RDo
s .

When ν11 = min{ν10, ν11, ν12} in (111), then
R∗
s = I(Ys;U|WXiQ) − I(Ys;U|WQ) + I(Ys;Xi|UWQ)

+ I(Yp;Xj|WXiQ) − I(Yp;X1X2|WQ) − ν4

+ I(Yp;W |XiQ) +
=RDos︷ ︸︸ ︷

I(Ys;U|WQ) + I(Yp;W |X1X2Q)

≥ RDo
s .

Since o2 ≥ o3, then ν12 cannot be smaller than ν11.

Necessity part
SupposeRo(Z) ⊆ Rr

i (Z) then RAo
p must be not larger than

RAr
p which necessitates the satisfaction of (82).
This concludes the proof.

Appendix 3 - Proof of Theorem 6
From the definition of δ′o(Z) and δ′r

1 (Z), it is clear that
δo(Z) ⊆ δ′o(Z) and δr1(Z) ⊆ δ′r

1 (Z). Consequently,
Ro(Z) ⊆ R′o(Z), Rr

1 ⊆ R′r
1 (Z), and Rr

1(Z) ⊆ R′r
1 (Z).

However, we show that if there exists Z ∈ P∗ such that a
rate tuple (Rs,Rp) belongs to R′o(Z) but does not belong
to Ro(Z), then there exists another Z′ ∈ P∗ for which
(Rs,Rp) belongs toRo(Z′). Andwe do the same forR′r

1 (Z),
Rr

1(Z).

ForRo(Z)

Following a similar procedure to that used in the proof of
Theorem 2, the regionR′o(Z) is defined by

Rp ≤ I(Yp;X1X2|WQ), (112)

Rs ≤I(Ys;U|WQ) + min{I(Ys;W |Q),
I(Yp;WX1|X2Q), I(Yp;WX2|X1Q)}, (113)

Rs + Rp ≤ I(Ys;U|WQ) + I(Yp;X1X2|WQ)

+ min{I(Ys;W |Q), I(Yp;W |Q)}. (114)

Suppose that at a certain Z ∈ P∗, R′
s > I(Ys;U|WQ) +

I(Yp;W |X1X2Q), hence, the rate tuple
(
R′
s,R′

p

)
∈ R′o(Z)

but
(
R′
s,R′

p

)
/∈ Ro(Z). From (112) to (114),

(
R′
s,R′

p

)
has

to satisfy

Rs ≤ I(Ys;UW |Q) = I(Ys;Xs|Q), (115)
Rp < I(Yp;X1X2|Q). (116)
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Now, assume another Z′ ∈ P∗ such thatW = φ, i.e., no
rate splitting. At this Z′,Ro(Z′) is given by

Rs ≤ I(Ys;Xs|Q), (117)
Rp ≤ I

(
Yp;X1X2|Q

)
. (118)

Then it is clear that
(
R′
s,R′

p

)
∈ Ro(Z′). Thus,

R′o(Z) ⊆ Ro(Z) ∪ Ro (Z′) .
ForR′r

1 (Z)

First, for a point
(
R′′
s ,R′′

p

)
such that R′′

s > I (Ys;U|WQ) +
I
(
Yp;W |X1X2Q

)
at a specific Z ∈ P∗, a similar argument

as in the above subsection (‘For Ro(Z)’), or in Lemma 2
of [19], can show that there exists Z′′ ∈ P∗ such that(
R′′
s ,R′′

p

)
∈ Rr

1(Z′′).

Second, for another point
(
R∗∗
s ,R∗∗

p

)
such that R∗∗

p >

I
(
Yp;X2|WX1Q

) + I (Ys;X1|UWQ), or in other words
R∗∗
1 > I (Ys;X1|UWQ), in this case, δ′r

1 (Z) ⊂ δ′o(Z). And
since R′o(Z) is the set of

(
Rs,Rp

)
corresponding to δ′o(Z)

for which Rs = S + T and Rp = R1 + R2, then R′r
1 (Z) ⊂

R′o(Z). Moreover, it has been shown in the above sub-
section (‘For Ro(Z)’) that R′o(Z) ⊆ Ro(Z) ∪ Ro(Z′).
Therefore,

R′r
1 (Z) ⊆ Rr

1(Z) ∪ Rr
1
(
Z′′) ∪ Ro(Z) ∪ Ro (Z′) .

Consequently,

R′
1 = R1.

Appendix 4 - Proof of Theorem 7
Sufficiency part
We refer to Figure 3 to determine the effect of varying λ

onRo(Z) where Z ∈ G(P1,P2,Ps).

• Point A:

RA
p = ρo

p = τ

(
gp1P1 + gp2P2
gps λPs + N0

)

• Point D:

RD
s = ρo

s = τ

(
Psgss

gs1P1 + gs2P2 + N0

)
• Rs + Rp: We can move ρo

p + I(Ys;U|W ) inside the
min{} to have

ρo
sp=min

{
τ

(
gp1P1+gp2P2
gps λPs+N0

)
+τ

(
gssPs

P1gs1+P2gs2+N0

)
,

τ

(
λPsgss

gs1P1+gs2P2+N0

)
+τ

(
gp1P1+gp2P2+ ¯λgps Ps

λgps Ps

)}
+.

Clearly, the first argument of the min{, } is monotoni-
cally decreasing with λ. By taking the first derivative of the
second argument with respect to λ, it turns out that such

second argument is also monotonically decreasing with λ

if gssN0 ≤ gps
(
gs1P1 + gs2P2 + N0

)
. It is therefore obvious

that if (97) is satisfied, ρo
sp increase as λ decreases. Conse-

quently,Ro(Z) at λ = 0 includes all otherRo(Z) obtained
at 0 < λ ≤ 1. Hence,Ro(Z) coincides onRo

g at λ = 0.

Necessity part
Here we prove that the condition in (97) is necessary for
Ro(Z) to coincide on Ro

g at λ = 0 and Z ∈ G(P1,P2,Ps).
We do so by showing that if (97) is not satisfied, then
for any two different values of λ, the corresponding rate
regions do not contain one another. Assume that (97) is
not satisfied, then by referring to Figure 3 we have

• Point A:

RA
p = τ

(
gp1P1 + gp2P2
gps λPs + N0

)

i.e., the RA
p decreases as λ increases.

• Point D:

RD
s = τ

(
gssλPs

gs1P1 + gs2P2 + N0

)
+ τ

(
gps λ̄Ps

gps λPs + N0

)

Then by substituting with λ̄ = 1 − λ and
differentiating RD

s with respect to λ, we get

∂RD
s

∂λ
=

1
2 ln(2)Ps

(
gssN0 − gps

(
P1gs1 + P2gs2 + N0

))
(
λPsg

p
s + N0

) (
P1gs1 + P2gs2 + λPsgss + N0

) ,
(119)

and since the condition (97) is not satisfied, the
numerator of (119) is always positive; therefore, RD

s
increases as λ increases.

Since RA
p decreases and RD

s increases as λ increases, then
for any two different values of λ the corresponding rate
regions will never contain one another. Hence, the overall
rate region Ro

g does not coincide on a certain Ro(Z) at a
certain λ. This concludes the proof.

Appendix 5 - Proof of Theorem 8
For the proof, we consider i = 1, i.e., the secondary user is
assumed to be able to decode the signal of primary user 1.

Sufficiency part
In this part, we show that if inequality (99) is satisfied,
then Rr

1g coincides on Rr
1(Z) at λ = 0. We refer to

Figure 4 and determine the effect of varying λ on Rr
1(Z),

Z ∈ G (P1,P2,Ps) as follows.
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At point A

RrA
p = τ

(
gp2P2

gps λPs + N0

)
+ min

{
τ

( gs1P1
gs2P2 + N0

)
,

τ

(
gp1P1

gps λPs + gp2P2 + N0

)}
.

Therefore, RrA
p increases as λ decreases.

At point F

RrF
s = τ

(
gssPs

gs2P2 + N0

)
.

Hence, RrF
s does not depend on λ.

Rrs + Rrp = ρr
sp

ρr
sp = τ

(
gssλPs

gs2P2 + N0

)
+ τ

(
gp2P2

gps λPs + N0

)

+ min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ1︷ ︸︸ ︷
τ

(
gps λ̄Ps+gp1P1

gps λPs+gp2P2+N0

)
,

μ2︷ ︸︸ ︷
τ

(
gss λ̄Ps+gs1P1

gssλPs+gs2P2+N0

)

μ3︷ ︸︸ ︷
τ

(
gps λ̄Ps

gps λPs + gp2P2 + N0

)
+ τ

( gs1P1
gssλPsgs2 + P2 + N0

)
,

μ4︷ ︸︸ ︷
τ

(
gp1P1

gps λPs+gp2P2+N0

)
+τ

(
gss λ̄Ps

gssλPs + gssP2 + N0

)⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(120)

When μ1 = min{μ1,μ2,μ3,μ4} in (120)

ρr
sp = τ

(
gssλPs

gs2P2 + N0

)
+ τ

(
gps λ̄Ps + gp1P1 + gp2P2

gps λPs + N0

)
.

∂ρr
sp

∂λ
= − 0.5Ps

(
gps gs2P2 + gps N0 − gssN0

)
ln 2

(
gps λPs + N0

) (
gssλPs + gs2P2 + N0

)
≤ 0 from (99).

Hence, ρr
sp decreases with λ. Note that, λ̄ = 1 − λ.

When μ2 = min{μ1,μ2,μ3,μ4} in (120)

τ

(gssPs + gs1P1
gs2P2 + N0

)
+ τ

(
gp2P2

gps λPs + N0

)
,

i.e., ρr
sp decreases with λ.

When μ3 = min{μ1,μ2,μ3,μ4} in (120)

ρr
sp = τ

(gssλPs + gs1P1
gssP2 + N0

)
+ τ

(
gps λ̄Ps + gp2P2
gps λPs + N0

)
.

∂ρr
sp

∂λ
= − 0.5Ps

(
gps gs2P2 + gps gs1P1 + gps N0 − gssN0

)
ln 2

(
gps λPs + N0

) (
gssλPs + gs2P2 + gs1P1 + N0

)
≤ 0 from (99).

Thus, ρsp decreases with λ.

When μ4 = min{μ1,μ2,μ3,μ4} in (120)

ρr
sp = τ

(
gssPs

gssP2 + N0

)
+ τ

(
gp1P1 + gp2P2
gps λPs + N0

)
.

Therefore, ρr
sp decreases with λ.

Rrs + 2Rrp = ρr
s2

ρr
s2 = 2τ

(
gp2P2

gps λPs + N0

)
+ 2σ ∗

p + τ

(
gssλPs

gs2P2 + N0

)

−
[
σ ∗
p − τ

( gs1P1
gssλPs + gs2P2 + N0

)]+
+ min

⎧⎨
⎩

τ

(
gps λ̄Ps

gps λPs + gp2P2 + N0

)
, τ

(
gps λ̄Ps + gp1P1

gps λPs + gp2P2 + N0

)
− σ ∗

p ,

τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
, τ

(
gss λ̄Ps

gssλPs + gp1P1 + gp2P2 + N0

)

+
[
τ

( gs1P1
gssλPs + gs2P2 + N0

)
− σ ∗

p

]+
⎫⎬
⎭ ,

σ ∗
p =min

{
τ

(
gp1P1

gps λPs + gp2P2 + N0

)
, τ

( gs1P1
gs2P2 + N0

)}
.

At σ ∗
p = τ

(
gp1P1

gps λPs+gp2P2+N0

)
≤ τ

( gs1P1
gs2P2+N0

)

ρr
s2 = 2τ

(
gp1P1 + gp2P2
gps λPs + N0

)
+ τ

(
gssλPs

gs2P2 + N0

)

−
[
τ

(
gp1P1

gps λPs + gp2P2 + N0

)
−τ

( gs1P1
gssλPs + gs2P2 + N0

)]+

+ min
{

τ

(
gps λ̄Ps

gps λPs + gp1P1 + gp2P2 + N0

)
,

τ

(
gss λ̄Ps

gssλPs+gs1P1 + gs2P2 + N0

)
+
[
τ

( gs1P1
gssλPs + gs2P2 + N0

)

−τ

(
gp1P1

gps λPs + gp2P2 + N0

)]+
, τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)}
.

• If τ
(

gp1P1
gps λPs+gp2P2+N0

)
≤ τ

(
gs1P1

gssλPs+gs2P2+N0

)
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ρr
s2 = 2τ

(
gp1P1 + gp2P2
gps λPs + N0

)
+ τ

(
gssλPs

gs2P2 + N0

)
+ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ5︷ ︸︸ ︷
τ

(
gps λ̄Ps

gps λPs + gp1P1 + gp2P2 + N0

)
,

μ6︷ ︸︸ ︷
τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
,

μ7︷ ︸︸ ︷
τ

(
gss λ̄Ps + gs1P1

gssλPs + gs2P2 + N0

)
− τ

(
gp1P1

gps λPs + gp2P2 + N0

)⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(121)

When μ5 = min{μ5,μ6,μ7} in (121) we have

ρr
s2 = τ

(
gps λ̄Ps + gp1P1 + g2pP2

gps λPs + N0

)
+ τ

(
gssλPs

gs2P2 + N0

)

+ τ

(
gp1P1 + gp2P2
gps λPs + N0

)
.

(122)

Note that the third term in (122) is decreasing with λ,
and the first derivative of the first two terms with respect
to λ is given by

− 0.5Ps
(
gps gs2P2 + gps N0 − gssN0

)
ln 2

(
gps λPs + N0

) (
gssλPs + gs2P2 + N0

)
− 0.5gps Ps

(
gp2P2 + gp1P1

)
ln 2

(
gps λPs + N0

) (
gps λPs + gp1P1 + gp2P2 + N0

) .
Since inequality (99) is satisfied for user 1, then the

derivative is negative and consequently ρr
s2 is decreasing

with λ.
When μ6 = min{μ5,μ6,μ7} in (121), we have

ρr
s2 = 2τ

(
gp1P1 + gp2P2
gps λPs + N0

)
+ τ

(
gssPs

gs2P2 + N0

)
,

i.e., ρr
s2 is decreasing with λ.

When μ7 = min{μ5,μ6,μ7} in (121), we have

ρr
s2 = 2τ

(
gp1P1 + gp2P2
gps λPs + N0

)
− τ

(
gp1P1

gps λPs + gp2P2 + N0

)

+ τ

(gssPs + gs1P1
gs2P2 + N0

)
.

Hence, ρr
s2 is decreasing with λ.

• If τ
(

gs1P1
gssλPs+gs2P2+N0

)
≤ τ

(
gp1P1

gps λPs+gp2P2+N0

)

ρrs2 = 2τ
(
gp1P1 + gp2P2
gps λPs + N0

)
− τ

(
gp1P1

gps λPs + gp2P2 + N0

)

+ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ5︷ ︸︸ ︷
τ

(
gps λ̄Ps

gps λPs + gp1P1 + gp2P2 + N0

)
,

μ8︷ ︸︸ ︷
τ

(
gss λ̄Ps

gssλPs + gs1P1 + gs2P2 + N0

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

+ τ

( gssλPs + gs1P1
gs2P2 + N0

)

(123)

When μ5 = min {μ5,μ8} in (123), then

ρr
s2 = τ

(
gp1P1 + gp2P2
gps λPs + N0

)
− τ

(
gp1P1

gps λPs + gp2P2 + N0

)

+ τ

(
gp1P1 + gp2P2
gps λPs + N0

)
+ τ

(gssλPs + gs1P1
gs2P2 + N0

)

+ τ

(
gps λ̄Ps

gps λPs + gp1P1 + gp2P2 + N0

)
.

(124)

For all values of 0 ≤ λ ≤ 1, the difference between the
first two terms in (124) is always positive and decreasing
as λ increases. To see this, we can write such differ-
ence as I

(
Yp;X1X2|W

)− I
(
Yp,X1|W

) = I
(
Yp;X2|W

) =
τ
(
g2pP2
λgps Ps

)
. The first derivative of the last three terms in

(124) with respect to λ is given by

− 0.5Ps
(
gps gs2P2 + gps gs1P1 + gps N0 − gssN0

)
ln 2

(
gps λPs + N0

) (
gssλPs + gs2P2 + gs1P1 + N0

)
≤ 0 from (99).

Therefore, ρr
s2 is decreasing with λ.

When μ8 = min{μ5,μ8} in (123), then

ρr
s2 = 2τ

(
gp1P1 + gp2P2
gps λPs + N0

)
− τ

(
gp1P1

gps λPs + gp2P2 + N0

)

+ τ

(gssPs + gs1P1
gs2P2 + N0

)
.

In the above formula, the difference between the first
two terms is always positive and decreasing as λ increases.
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The third term does not depend on λ. Hence, ρr
s2 is

decreasing with λ.

At σ ∗
p = τ

( gs1P1
gs2P2+N0

)
≤ τ

(
gp1P1

gps λPs+gp2P2+N0

)

ρr
s2 = 2τ

(
gp2P2

gps λPs + N0

)
+ τ

( gs1P1
gs2P2 + N0

)
+ τ

( gssλPs + gs1P1
gs2P2 + N0

)

+ min

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

μ8︷ ︸︸ ︷
τ

(
gss λ̄Ps

gssλPs + gs1P1 + gs2P2 + N0

)
,

μ9︷ ︸︸ ︷
τ

(
gps λ̄Ps

gps λPs + gp2P2 + N0

)
,

μ10︷ ︸︸ ︷
τ

(
gps λ̄Ps + gp1P1

gps λPs + gp2P2 + N0

)
− τ

( gs1P1
gs2P2 + N0

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(125)

When μ8 = min{μ8,μ9,μ10} in (125), we have

ρr
s2 = 2τ

(
gp2P2

gps λPs + N0

)
+ τ

( gs1P1
gs2P2 + N0

)

+ τ

(gssPs + gs1P1
gs2P2 + N0

)
.

That is, ρr
s2 is decreasing with λ.

When μ9 = min{μ8,μ9,μ10} in (125), we have

ρr
s2 = τ

(
gp2P2

gps λPs + N0

)
+ τ

( gs1P1
gs2P2 + N0

)

+ τ

(gssλPs + gs1P1
gs2P2 + N0

)
+ τ

(
gps λ̄Ps + gp2P2
gps λPs + N0

)
.

(126)

The first term in (126) is decreasing with λ for all values
of λ. The first derivative of the other terms with respect to
λ is given by

− 0.5Ps
(
gps gssP2 + gps gs1P1 + gps N0 − gssN0

)
ln 2

(
gps λPs + N0

) (
gssλPs + gs2P2 + gs1P1 + N0

)
≤ 0 from (99).

Hence, ρr
s2 is decreasing with λ.

When μ10 = min {μ8,μ9,μ10} in (125), we have

ρr
s2 = τ

(
gp2P2

gps λPs + N0

)
+ τ

(
gps λ̄Ps + gp1P1 + gp2P2

gps λPs + N0

)

+ τ

(gssλPs + gs1P1
gs2P2 + N0

)
. (127)

The first term in (127) is decreasing with λ, and the first
derivative of the other three terms with respect to λ is
given by

− 0.5Ps
(
gps gs2P2 + gps gs1P1 + gps N0 − gssN0

)
ln 2

(
gps λPs + N0

) (
gssλPs + gs1P1 + gs2P2 + N0

)
≤ 0 from (99).

Thus, ρr
s2 is decreasing with λ.

2Rr
s + Rr

p = ρr
2p

From (99),

σ ∗
s = τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
.

ρr
2p = 2τ

(
gssPs

gs2P2 + N0

)
+ τ

(
gp2P2

gps λPs + N0

)

−
[
τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
−τ

(
gps λ̄Ps

gps λPs + gp2P2 + N0

)]+

+ min
{

τ

( gs1P1
gssPs + gs2P2 + N0

)
, τ

(
gp1P1

gps Ps + gp2P2 + N0

)

+
[
τ

(
gps λ̄Ps

gps λPs + gp2P2 + N0

)
−τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)]+
,

τ

(
gp1P1

gps λPs + gp2P2 + N0

)}
.

If τ
(

gss λ̄Ps
gssλPs+gs2P2+N0

)
≤ τ

(
gps λ̄Ps

gps λPs+gp2P2+N0

)

ρr
2p = 2τ

(
gssPs

gs2P2 + N0

)
+ τ

(
gp2P2

gps λPs + N0

)

+ min

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

μ11︷ ︸︸ ︷
τ

( gs1P1
gssλPs+gs2P2+N0

)
,

μ12︷ ︸︸ ︷
τ

(
gp1P1

gps λPs + gp2P2 + N0

)
,

μ13︷ ︸︸ ︷
τ

(
gp1P1 + gps λ̄Ps

gps λPs + gp2P2 + N0

)
− τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
.

(128)

• When μ11 = min{μ11,μ12,μ13} in (128), then

ρr
2p = 2τ

(
gssPs

gs2P2 + N0

)
+ τ

(
gp2P2

gps λPs + N0

)

τ

( gs1P1
gssλPs + gs2P2 + N0

)
.

It is clear that ρr
2p is decreasing with λ.
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• When μ12 = min{μ11,μ12,μ13} in (128), then

ρr
2p = 2τ

(
gssPs

gs2P2 + N0

)
+ τ

(
gp2P2

gps λPs + N0

)

+ τ

(
gp1P1

gps λPs + gp2P2 + N0

)
.

It is also clear that ρr
2p is decreasing with λ.

• When μ13 = min{μ11,μ12,μ13} in (128), then

ρr
2p = 2τ

(
gssPs

gs2P2 + N0

)
+ τ

(
gp1P1

gps Ps + gp2P2 + N0

)

+ τ

(
gps λ̄Ps + gp2P2
gps λPs + N0

)
− τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
.

∂ρr
2p

∂λ
= − 0.5Ps(g

p
s gs2P2 + gps N0 − gssN0)

ln 2
(
gps λPs + N0

) (
gssλPs + gs2P2 + N0

)
≤ 0 from (99).

Thus, ρr
2p is decreasing with λ.

If τ

(
gps λ̄Ps

gps λPs+gp2P2+N0

)
≤ τ

(
gss λ̄Ps

gssλPs+gs2P2+N0

)

ρr
2p = 2τ

(
gssPs

gs2P2 + N0

)
+ τ

(
gps λ̄Ps + gp2P2
gps λPs + N0

)

− τ

(
gss λ̄Ps

gssλPs + gs2P2 + N0

)
+min

{
τ

( gs1P1
gssPs + gs2P2 + N0

)
,

τ

(
gp1P1

gps Ps + gp2P2 + N0

)}
.

∂ρr
2p

∂λ
= − 0.5Ps

(
gps gs2P2 + gps N0 − gssN0

)
ln 2

(
gps λPs + N0

) (
gssλPs + gs2P2 + N0

)
≤ 0 from (99).

Therefore, ρr
2p is decreasing with λ.

Thus, since we showed that if (99) is satisfied, assum-
ing that the secondary receiver can decode the signal of
primary user 1, then ρr

p, ρr
sp, ρr

s2, and ρr
2p decrease with λ,

whereas ρr
s does not depend on λ; hence, Rr

1(Z) at λ = 0
coincides onRr

1g . And for any λ1 and λ2 such that λ1 > λ2,
Rr

1(Z) at λ1 is a subset ofRr
1(Z) at λ2.

Necessity part
In this part of the proof, we show that if condition (99) is
not satisfied, thenRr

1g does not coincide on anyRr
1(Z) for

all values of λ. So, assume that (99) is not satisfied, i.e.,

N0gss > gps gs2P2 + gps N0. (129)

By referring to Figure 4, the effect of λ on Rr
1(Z) at

points A and F is determined as follows.

At point A

RrA
p = τ

(
gp2P2

gps λPs + N0

)
+ min

{
τ

( gs1P1
gs2P2 + N0

)
,

τ

(
gp1P1

gps λPs + gp2P2 + N0

)}
.

It is clear that RrA
p is decreasing with λ.

At point F

RrF
s = τ

(
gssλPs

gs2P2 + N0

)
+ τ

(
gps λ̄Ps

gps λPs + N0

)
.

∂RrF
s

∂λ
= 0.5Ps

(
gssN0 − (

gps gssP2 + gps N0
))

ln 2
(
gps λPs + N0

) (
gssλPs + gs2P2 + N0

)
> 0 from (129).

Consequently, RrF
s is increasing with λ.

So, for any two different values of λ, the corresponding
rate regionsRr

1(Z) do not include one another; thus,Rr
1g

does not coincide onRr
1(Z) at any value of λ.
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