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Abstract

Promoted by the leading industrial companies, cloud computing has gained widespread concern recently. With an
increasing number of cloud service providers (CSPs) delivering services to customers from the cloud, maximizing the
profits of CSPs becomes a critical problem. Existing approaches are difficult to solve the problem because they do not
make full use of temporal price differences. This paper introduces a dynamic virtual resource renting approach that
attempts to dynamically adjust the virtual resource rental strategy according to price distribution and task urgency.
Considering task urgency and price distribution, we design a weak equilibrium operator to calculate the acceptable
price for each type of virtual resource. All types of virtual resources that are at an acceptable price are inserted into a
set. Then, a price prediction algorithm is presented to predict the price of virtual resources at the next price interval.
Finally, we design a novel rental decision-making algorithm to select the most profitable resource from the set. We
have implemented our approach and conducted experiments on both real and synthetic datasets. The results
demonstrate that our approach obtain the better profit than other five approaches.
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1 Introduction
Cloud computing is becoming increasing popular re-
cently. With the advent of cloud computing, the dream
that delivers computing as the fifth utility after water,
electricity, gas, and telephony has come true [1]. Because
cloud computing can allocate resources transparently and
instantaneously as needed, it has gained widespread con-
cern from academia and industry [2-4]. In cloud comput-
ing, cloud service providers rent virtual resources to host
their applications. The pay-as-you-go model allows cloud
service providers to be charged only for the resources they
use, and these costs are much lower than making invest-
ments to build their own infrastructure. Hence, cloud
computing can effectively reduce overhead and increase
profits.
As shown in Figure 1, generally, there are three roles in

the cloud computing environment: virtual resource sup-
plier (VRS), cloud service provider (CSP), and end user

*Correspondence: hellozhouao@gmail.com
State Key Laboratory of Networking and Switching Technology, Beijing
University of Posts and Telecommunications, Beijing 100876, China

(user). The VRS is responsible for the provision of large-
scale virtual resources connected by the network. They
offer different types of virtual resources and profit from
virtual resource renting services. The CSP purchase the
virtual resources from the VRS and process requests from
the end-user. The user purchases services from the CSP
to meet its needs. The CSPs charge the end-users for the
services they provide.
Recently, cloud computing has been promoted by the

leading industrial companies and has achieved rapid
development in the industry. However, many challenges
[5,6] remain before cloud computing becomes a proven
commercial system. One of the key challenges is whether
CSPs can earn higher profits after migrating their services
to the cloud. Hence, maximizing the profits of a CSP is a
critical issue.
Numerous schemes have been designed to increase the

profit of CSP. There are varieties of virtual resources and
pricing models in cloud computing environment; there-
fore, it is challenging for the CSP to choose the most
profitable VRS. To solve the problem, Li et al. [7] proposed
a VRS selection framework called CloudCmp. CloudCmp
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Figure 1 Business model of cloud computing.

uses a set of benchmarking tools to predict cost and per-
formance when the same application is deployed on the
virtual resources of different VRS. Deelman et al. [8] tried
to study the trade-off between performance and cost by
using a real-life astronomy application. The CSP can pro-
vide the right amount of computer and storage resources
based on the results. Pandey et al. [9] attempted to mini-
mize the execution cost of workflow on cloud computing
environment. The work takes both computation and data
transmission cost into consideration. A heuristic algo-
rithm was proposed to solve the problem. Liu et al. [10]
presented a virtual resource renting and request schedul-
ing algorithm. The presented algorithm attempt to reduce
the rental costs for CSP by improving resource utilization.
Without considering temporal price differences, afore-

mentioned schemes are difficult to make the profit max-
imization in the dynamic virtual resource pricing model.
To reduce the peak traffic and to achieve a higher utiliza-
tion of the spare resources, academia and industry pro-
posed the dynamic pricing model [11-15]. In the dynamic
pricing model, the price of resource is not fixed, but
changes dynamically and periodically based on current
demand and supply. Hence, it usually determines the
current prices of virtual resources through an auction.
Some existing works discussed how to increase the

profit of CSP under dynamic virtual resource pricing
model. Song et al. [16] investigated the optimal bidding
strategy and proposed an approach to increase the profit
of cloud service agents. By using the optimization the-
ory, it selects virtual resources adaptively to maximize
the average profit of the cloud service broker. Mazzucco
et al. [17] presented an approach to maximize the rev-
enue for CSPs who provide cloud web service. It supposes

a virtual resource allocation and admission control pol-
icy to address the problem. Moreover, in order to achieve
high performance and reduce the overhead of repeated
execution, the work proposes an optimal price predic-
tion algorithm. Zafer et al. [18] considered the profit
maximization problem for parallel and serial job under
dynamic virtual resource pricing model. A discrete-time
stochastic dynamic programming formulation is used to
format the problem. An optimization algorithm is also
presented to obtain the optimal rental strategy.
As we know, a VRS provides a varying type of virtual

resources with different prices. The CSP should deter-
mine the most profitable renting strategy when purchas-
ing the virtual resources from the VRS. However, none
of the existing works deal with a varying number of vir-
tual resources with different types and prices. Because the
prices of different resource types fluctuate inconsistently,
the most profitable resource may change at different price
intervals. Chen et al. [19] took advantage of this concept
and rented different types of resources for the same task at
different price intervals. But for delay-tolerant service, we
find that the approach ignores rental cost saving brought
about by two factors: (1) it fails to take full advantage of
price distribution and still rents resources when prices for
all types are high and (2) the acceptable price is not cal-
culated in view of task urgency. The highest price a CSP
can accept for a special resource type is called the accept-
able price, as it is well known that the acceptable price is
different for a task that needs to be completed one second
later or one hour later. The more urgent the task is, the
higher the acceptable price should be, and a less urgent
task should imply a lower acceptable price. This paper
makes full use of the two factors to reduce the rental cost
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as long as the finish time satisfies service level agreement
(SLA).
Therefore, in contrast to existing schemas, we propose

a dynamic virtual resource renting approach to maximize
the profits of cloud service providers. We only take com-
putational resource into consideration. Therefore, virtual
resources and computational resources are not identical
in meaning in this paper. Based on our previous work [20],
our approach takes into account task urgency and price
distribution when calculating the acceptable price. If the
prices of all types of resources are high with respect to
task urgency, it is appropriate to postpone the execution of
the task. Then, we can rent resources and restart the task
when the price declines. Our contributions are as follows.
First, our approach saves on execution costs by pre-

treating the historical price series of virtual resources
using time series analysis, and then the outlier detection
technique is used to filter the extreme price.
Second, to calculate the highest rental rate that a CSP

can accept for a special resource type, a weak equilibrium
operator is designed by considering task urgency and price
distribution. As such, a price prediction algorithm is pro-
posed to predict the price of virtual resources at the next
price interval.
Third, we propose a rental decision-making algorithm

to decide on the type of virtual resources to rent for
each task. In the algorithm, the type of virtual machine
whose current price is lower than the acceptable price is
inserted into a set. If the set is not empty, it rents the
most profitable resource to process the task at the next
price interval. Otherwise, if the SLA allows, the task will
be suspended until the price falls.
Finally, we have been implemented our approach

and conducted experiments on both real and synthetic
datasets. We compare our approach with five other
approaches, and the results show that our approach can
obtain higher profits than other approaches.
The remainder of this paper is organized as follows. To

better express the proposed approach, Section 2 intro-
duces the background and provides a formalized defini-
tion of the problem. Section 3 presents the details of our
approach. Section 3.4 shows the utility of our approach
through simulation-based experimental results. Finally,
we conclude the paper in Section 5.

2 Preliminaries
In order to most effectively outline the proposed
approach, we first introduce the three roles of cloud com-
puting environment and define some notations that will
be used throughout the paper. The formalized definition
of the problem is also given in the section. The notations
in Table 1 will be used throughout the paper.
In this paper, if no special specification, we use T and t

denote a task and a sampling time, respectively. Request

Table 1 Notations

Symbol Meaning

R Virtual resource

VMi A virtual machine

Tj A task submitted by users

pl Price list of a virtual machine

I Price interval of a virtual machine

p The price of a virtual machine

Size The time a virtual machine takes to finish the task

N The execution state of a task

e The urgency of the current task

AP The acceptable price

Decision The virtual machine rental strategy decision

Revenue The fee a CSP can obtain after it completes a task

Rental The accumulated cost of renting virtual machines for
processing a task

Profit The profits that a CSP gains from completing a task

from user and task are not identical in meaning. The high-
est rental rate a CSP can accept for a special resource type
is called the acceptable price.

2.1 Three roles in the cloud computing environment
We now introduce the background and define the nota-
tions used throughout the paper.

• Virtual resource supplier: The VRS charges CSPs for
renting its virtual resources to deploy the service. The
virtual resource is supplied in the form of a virtual
machine (VM). We use VMi to denote all virtual
machines of the same configuration (such as CPU
type, memory size, and thus the same price) and i is
the type index. VMi is characterized by a
three-parameter tuple:

VMi = (name, tc, pl) (1)

where name is used as an identification, pc denotes
the current price of, and pl (price list)denotes the
historical prices. A VRS holds a sealed-bid auction or
ascending bid auction in each price interval (this
paper uses Iλ instead of a price interval and Iλ as the
basic time unit) to determine the price of at the next
Iλ. If a CSP wins the bid, it obtains the right to use the
virtual machines for which it bid. The CSP is charged
by the price interval. Then, the virtual resource (R) is
given in Equation 2 denoting all virtual machines a
virtual source supplier provides.

R = (VM1, VM2, . . . , VMn) (2)

• Cloud service provider: To provide services in the
cloud, the CSP needs to rent virtual resources from
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the VRS to process the task requested by the user.
We use Tj to denote a service request from the user
and j is the index. Tj is characterized by the following:

Tj = ({size(VMi)|∀VMi ∈ R}, revenue(Tj)) (3)

where size(VMi), which can be predicted by some
measuring tools, such as the one proposed in [7],
denotes the number of price interval VMi need to
complete Tj, and revenue(Tj) denotes the fee the end
user should pay after the CSP completes Tj.

• End user: The user pays for the service received from
the CSP. The fee that it should pay is determined by
the SLA, which can be expressed as follows [10,21]:

revenue(Tj)=
⎧⎨
⎩

rpay tuse ≤ tmin
rpay−ϕ ∗ (tuse−tmin) tmin ≤ tuse ≤ tmax

−rpenlty tuse ≤ tmin

(4)

where rpay is the maximum fee from serving a request
of an end user, tuse is the number of Iλ that the cloud
service provider uses to complete Tj. tmin is the
average time required to finish Tj, which is
proportional to the size of Tj and the delay tolerant
level. ϕ is the decline rate, and a larger ϕ indicates
that the profits decrease rapidly with the increase in
completion time, thus the delay tolerant level of the
task is low. When tuse exceeds tmin, a SLA violation
occurs. Hence, revenue decreases as tmin increase.
rpenlty is the bottom line of compensation. Since there
are many types of virtual machines, the average time
required for processing Tj can be calculated using the
following:

tmin = φ ∗
[
t (VM1) + t (VM2) + . . . + t (VMn)

n

]
(5)

where φ is the delay tolerance factor and its value is
larger than 1.

If no special specification, the task discussed in our
paper is divisible, large-scale, and delay-tolerant task, such
as scientific data processing, which takes more than one
price interval to complete. A task that cannot be com-
pleted in the current price interval will join the auction of
the next one.

2.2 Virtual resource rental problem
Based on this introduction, this section describes the vir-
tual resource rental problem. Cloud service providers rent
virtual resources to service users. The profits that gener-
ated from processing Tj can be calculated for CSPs using
the following:

profit(Tj) = revenue(Tj) − rental(Tj) (6)

where profit(Tj) denotes the profits that the CSP gains
from processing Tj and rental(Tj) denotes the accumu-
lated cost of renting virtual machines for processing Tj.
An SLA violation can result in a loss of revenue. Hence, to
maximize Equation 6, we need to minimize the rental cost
but still comply with the SLA. Because the large-scale task
cannot be completed within one Iλ, we should decide on
the type of VM to rent for each incomplete task in every
auction. The rental decision made for Tj in the current
auction time t can be denoted by the following:

Decision(Tj) = (VMk , p) (7)

where VMk denotes the type of VM that we rent to pro-
cess Tj at the next Iλ and p‘ denotes the price of VMk
at the next Iλ . Because the prices of different types of
VMs fluctuate inconsistently, themost profitable typemay
change at different price intervals. Hence, wemay rent dif-
ferent types of VMs for the same task, which is similar to
reference [19]. Because the VMs can share the same file
system, moving the remaining workload of a divisible task
to another VM is feasible. The startup latency for a cloud
application is less than 100 s [22], much smaller than the
task size; therefore, we ignore it. Based on this description,
rental(Tj) can be derived from:

rental(Tj) =
n∑

t=1
(Decision(Tj, t).p) (8)

where n denotes the number of price intervals that
the approach takes to finish Tj. Different from other
approaches that still rent resources even if all types of VM
are at the peak price, we believe that the right Decision
Decision(Tj, t) should suspend the task and restart it when
the price falls, as follows:

Decision(Tj, t) =
⎧⎨
⎩

(VMnone, 0) when the prices of all types
of VMS are high

(VMk, 0) otherwise
(9)

where (VMnone, 0) denotes that we suspend renting
resources to process Tj.
This introduction shows that we attempt to avoid the

‘peak price’ and attempt to rent resources when doing so
is relatively inexpensive. When to suspend the execution
of Tj and how to choose the most profitable resources are
addressed in the next section.

3 Virtual resource renting approach
To rent the most profitable resource, this paper presents
a dynamic virtual resource renting approach called DRAP.
Taking full advantage of price distribution and task
urgency, this approach attempts to rent virtual machines
to process tasks when the rental rate is relatively inexpen-
sive. As shown in Figure 2, DRAP contains the following
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Figure 2 DRAP work procedures.

four phases: in phase 1 (Section 3.1), to save on execu-
tion costs for our approach, we test the stationarity of
the price series using time series analysis. Moreover, we
adopt an outlier detection technique to filter the extreme
price from the series. In phase 2 (Section 3.2), taking into
account task urgency and price distribution, we design
a weak equilibrium operator to calculate the acceptable
price. In phase 3 (Section 3.3), we predict the future
price of each type of VM. Phase 4 (Section 3.4) presents
our rental decision-making algorithm (RDA) to select the
most profitable VM. In our approach, the first two steps
are semi-offline, and the last two steps are online.

3.1 Pretreatment
We first pretreat the historical prices before executing the
follow-up steps. The series of observed historical prices of
a special VM type VMi is called the price series (PS(VMi)).
In time series analysis, if the mean, variance, and auto-

correlation of the series do not change over time, the series
is stationary [23]. If the price series is stationary, the price
series processing result in the latter step is available for
multiple auctions. We use this result to lower costs and
save time.
However, practically, a strictly stationary sequence does

not exist. We simply focus on the ‘daily weakly station-
ary’ price series, which implies that themean and standard
deviation of prices do not change much on different days.
Therefore, in this paper, as long as the price series during
a period satisfies (10), we recognize that the price series is
daily weakly stationary:

std(E(1, n))

E(1, n)
≤ 10−2 ∧ std(std(1, n))

std(1, n)
≤ 10−2 (10)

E(E(1, n)) = 1
n/k

n/k∑
i=0

E(i ∗ k, (i + 1) ∗ k) (11)

std(E(1, n))2 = 1
n/k

n/k∑
i=0

(E(i ∗ k, (i + 1) ∗ k)

− E(E(1, n)))2

(12)

E(std(1, n)) = 1
n/k

n/k∑
i=0

std(i ∗ k, (i + 1) ∗ k) (13)

std(std(1, n))2 = 1
n/k

n/k∑
i=0

(std(i ∗ k, (i + 1) ∗ k)

− E(std(1, n)))2

(14)

where k is the number of price intervals in a day and
E and std denote the mean and standard deviation,
respectively.
Sometimes, there is a long tail in the price distribu-

tion graph that is affected by unexpected factors. In other
words, the low probability exists for an extremely low or
high price to occur. The acceptable price rises as task
urgency increases. If the starting value of the acceptable
price is the lowest price, the chance that the current price
is lower than the acceptable price is too small for the
long tail. Therefore, the task cannot be processed until
the acceptable price increases to fall within the normal
range. To avoid the ‘slow start symptom’, we need to first
confirm the existence of the extreme price. The Pauta
criterion [24] identifies the abnormal values of the sam-
ple data and is suitable to our problem. Therefore, if the
highest price pmax or the lowest price pmin meets condi-
tion (15), we can recognize the existence of the extreme
price. Otherwise, all prices are absolutely not extreme
prices.(

pmin − E(1, n)

std(1, n)
< −3

)
∪

(
pmax − E(1, n)

std(1, n)
> 3

)
(15)

To filter the extreme price, we calculate the lower cut-off
lmin(VMi) and the upper cut-off lmax(VMi). These prices
are lower than lmin(VMi) or higher than lmax(VMi) would
be treated separately in our approach. The outlier detec-
tion [23] can effectively eliminate exceptions in the actual
data; hence, we adopt outlier detection to calculate the
value of lmin(VMi) and lmax(VMi) . For each type of VM,
we first sort the price series in ascending order. Suppose
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the result is (p(1), p(2) . . . p(max)); we can use the fol-
lowing equations to calculate lmin(VMi) and lmax(VMi):

lmin =
{

p(floor(m) + 1) − 1.5 ∗ Q m /∈ Z
(p(m) + p(m + 1))/2 − 1.5 ∗ Q other

(16)

lmax =
{

p(floor(n) + 1) + 1.5 ∗ Q n /∈ Z
(p(n) + p(n + 1))/2 + 1.5 ∗ Q other

(17)

where m = 0.25∗length(PS), n = 0.75∗length(PS),
length(PS) returns the length of PS, floor(m) denotes the
maximum integer that is less than m, and Q denotes the
interquartile range [23]. If no price meets the condition of
(15), lmin(VMi) and lmax(VMi) are set as the lowest and
the highest prices of PS(VMi) , respectively.

3.2 Acceptable price calculation
In this section, we calculate the acceptable price for Tj
based on its urgency. The goal of this section is expressed
by the following:

f : e(Tj, VMi) →[ lmin(VMi), lmax(VMi)] , VMi ∈ R
(18)

As shown in Equation 18, for each type of resource VMi
and task Tj, we want to map the task urgency factor (e)
of Tj to a price p that belongs to the interval [ lmin(VMi),
lmax(VMi)]. The price represents the highest rental rate of
VMi that the CSP can afford to pay based on the urgency
of the current task. If the current price of VMi is lower
than p, we can consider renting VMi to process Tj.

We first give the definition of the current status of Tj
before introducing e. The current status of Tj , denoted by
N(Ti), is given as follows:

N
(
Tj

) = (t(VMi), tdeadline) (19)

where t(VMi) denotes the time required if the rest work-
load of Tj is processed by VMi and tdeadline denotes the
remaining time to deadline.
Suppose the current status of Tj is N(Tj) = (t(VMi),

tdeadline, the current task urgency factor is obtained as:

e(Tj, VMi) = ((N(Tj).tVMi)/(N(Tj).tdeadline) (20)

As e approaches 0, the task becomes more urgent; as e is
further from 0, the task becomes less urgent. If e equals
1, the remaining time to the deadline equals the required
time if Tj is processed by VMi.
We can learn from the definition that the acceptable

price is in proportion to e. We design a weak equilib-
rium operator to fit the mapping f in (18), which uses an
exponential function and a non-uniform mutation opera-
tor [25]. The exponential function can control the overall
shape of its curve, and the non-uniform mutation opera-
tor is used to locally fine-tune the value of the operator.
The weak equilibrium operator is expressed as follows:

� = exp
(

−K − e
δ

)
+

(
1 − rand(0, 1)(1−

K−ε
k )∗δ

)
(21)

where K is the max value of e and rand(0, 1) is a random
value between 0 and 1. Figure 3 shows the curve of the
weak equilibrium operator under different values of δ and
ε. We observe that a greater δ results in a higher curve.
Moreover, as ε increases, the adjustment increases.

Figure 3 Graph of non-uniformmutation operator under different parameter values. (a) Line by different param δ when ε = 0.01. (b) Line
when δ = 0.1 and ε = 0.01. (c) Line when δ = 0.1 and ε = 0.05. (d) Line when δ = 0.1 and ε = 0.1.
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Based on the weak equilibrium operator, we calculate
the acceptable price of VMi by using the following:

AP(VMi) = lmin + (lmax − lmin) ∗
[
exp

(
−K − e

δ

)

+
(
1 − rand(0, 1)

(
1− K−ε

k

)
∗δ

)]
(22)

where lmin(VMi) is the upper cut-off and lmax(VMsi) is the
lower cut-off. The values of δ and ε can be trained using
historical prices.

3.3 Future price prediction algorithm
In this section, we predict the future price of each type of
VM. This step is needed only if the VRS holds a sealed bid
auction [15] to determine the price of VMs, e.g., Amazon
EC2. If the VRS adopts an ascending bid auction [14], this
step can be skipped. We use the prices the VRS declares
to determine our rental strategy. Many researchers have
exploited properties of the Amazon EC2 historical price,
and we just adopt the proposed prediction algorithm in
this step [17].
In order to predict the future price, we first calculate

the autocorrelation coefficient [23] of historical prices.
The value denotes the correlation of historical prices with
itself at different time point. The value of autocorrelation
function (ACF) lies between -1 and 1, with -1 indicating
anti-correlation, 0 indicating no correlation, and 1 indicat-
ing perfect correlation. If the autocorrelation coefficient
is higher than 0.4, then the future prices are predicted by
using linear regression [23]; if the autocorrelation coeffi-
cient is lower than 0.4, the future prices are predicted by
using the inverse cumulative distribution function of the
normal distribution. The inverse cumulative distribution
function return the value of x such that P(price < x) with
the availability target p. We set p as 0.99 to obtain a high
level of availability.
We will introduce our rental decision-making algorithm

in the next section.

3.4 Rental decision-making algorithm
Based on these steps, we propose a rental decision-making
algorithm called RDA (Algorithm 1). Before the auction,
all incomplete tasks are inserted into a queue. RDAmakes
decisions on the type of VM to rent for each task in
the queue. In the algorithm, the type of virtual machine
whose current price is lower than the acceptable price is
inserted into a set. If the set is not empty, it rents the
most profitable resource to process the task at the next
price interval. Otherwise, while allowed by the SLA, the

task is suspended until the price declines. Apart from the
penalty caused by SLA violations, a task that fails to be
completed in time affects the quality of service (QoS).
Therefore, we would like to complete every task within
tmin.
Algorithm 1 describes our rental decision-making algo-

rithm. RDA traverses the task queue and makes rental
decisions for each task using the following steps:

Step 1. RDA first initializes the rental decision list
Step 2. If the task queue is empty, we go to step 10.
Otherwise, we fetch the head task Tj in the task
queue, remove it from the queue.
Step 3.We calculate the weighted urgency factor
eave of Tj. tave in lines 4 denotes the average time
required to finish Tj l.
Step 4. If the weighted urgency factor is equal to 1,
the task is very urgent. To complete Tj in time, all
types of VMs that can finish Tj in time are added to
the price-acceptable resource set (lines 5 to 6).
Step 5. If the weighted urgency factor is less than 1,
RDA traverses the resource set R.
Step 6. If all VMs in R have been visited, we go to
step 9. Otherwise, we assign the next VM in the set
to VMi .
Step 7. If VMi can finish Tj in time and the current
price of VMi is less than lmin(VMi), VMi is added to
the price-acceptable resource set. We now go back to
step 6 (lines 11 to 12).
Step 8. If VMi can finish Tj in time and its current
price is higher than lmin(VMi), RDA calculates the
acceptable price of using (22). If the current price of
VMi is lower than the acceptable price, VMi is added
to the price-acceptable resource set. We now go back
to step 6 (lines 14 to 18).
Step 9. If the acceptable-price resource set is not
empty, RDA will sort the set by rental rate per unit
computing power. The head VM is chosen to rent in
the following price interval. We now go back to step
2 (lines 22 to 26).
Step 10. If the set is empty, we suspend renting VM
for Tj. Therefore, (VMnone, 0) is added to the DL
(line 28). We now go back to step 2.
Step 11. All rental decisions in DL are combined as
the final rental strategy (line 31).

Therefore, based on the preceding steps, we obtain
a virtual resource renting approach that can maximize
the profits of a cloud service provider and satisfy the
SLA.
The time complexity of RDA is linear to the number of

requests in the queue. To reduce the execution time of our
algorithm, we divide it into sub-queues and schedule them
to the distributed computing node.
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Algorithm 1: Rental decision-making algorithm
Input: current price {p1,p2,. . .,pn} of each VM

type{VM1, VM2 . . .VMn},state of each task Tj
in the task queue

Output: Decision list DL that stores the rental
decision of each Tj

1 Initialize rental decision list DL;
2 for each Tj in task queue do
3 Initialize the acceptable VM list AL;
4 Calculate the weighted urgency factor eave for Ti

by using: tave = N(Tj)→t(VM1)+...+N(Tj)→t(VMn)
n

eave = N(Tj).tdeadline
tave ;

5 if eave ==1 then
6 For any VMi in R, add VMi to AL if

(N(Tj).t(VMi))<tmin ;
7 end
8 else
9 for each VM type VMi do

10 Calculate lmin(VMi),lmax(VMi);
11 if pj < lmin(VMi) and

(N(Tj).t(VMi))<tmin then
12 Add VMj to AL ;
13 end
14 if pj > lmin(VMi) and pj < lmax(VMi)

and (N(Tj).t(VMi)) < tmin then
15 PMAX=acceptPrice(N(Tj),VMi);
16 if pj < PMAX then
17 Add VMj to AL ;
18 end
19 end
20 end
21 end
22 if length(AL) 	=0 then
23 Rank AL according to pi/(Tj.size(VMi)) by

desc;
24 Add the head of AL named VMtop as target

rental type;
25 Add the decision(VMtop, pctop) to DL
26 end
27 else
28 Rent none VM for Tj ,and add (VMnone, 0) to

DL;
29 end
30 end
31 Return DL

4 Performance evaluation
The performance of our approach is evaluated using our
three-layer simulator developed in java. The following
sections first describe the experimental setting. Then, we
compare five other approaches in terms of profit, rental

cost, and execution time. Finally, we study the parameters
of our approach.

4.1 Experiment setup
Comparisons are carried out under the same experimen-
tal environment. The CPU is the Intel Core Duo T2250,
memory size is 1.99 GB, and the operating system is
Windows 7.
To effectively evaluate the performance of DRAP, we

first build a three-layer simulator that contains a virtual
resource-supplying layer, a cloud service providing layer, and
a service-requesting layer. Table 2 shows that the configu-
ration of virtual machines is the same as the Amazon EC2
small instance, large instance, and extra large instance [15].
We experiment with two types of datasets: a generated
dataset with normally distributed prices generated by Matlab
and the Amazon EC2 spot price dataset. We set the price
of the next Iλ for each VM type according to the dataset.
For all experiments on Amazon spot prices, the prices from
May 20, 2011 to May 31, 2011 are used to train the values
of δ and ε. We also generate 10 days of training prices by

Table 2 Experimental configuration

Type Parameter Value

Service requesting
layer

Number 10,000

Arrive rate Poisson task at the rate of 80 per
Iλ Measured by small instance,
the size is uniformly distributed

Task size between 100 Iλ to 300 Iλ , that is
60 Iλ to 160 Iλ when measured
by extra large instance

Service providing
layer Rental approach RS, RL, RXL, RR, FFP, DRAP

Virtual resource
supplying layer

Virtual machine Small instance, large instance,
xlarge instance with the same
configuration as Amazon small,
large, xlarge spot instance

Dataset 1: spot prices of Amazon
small, large, xlarge instance from
June 1, 2011 to June 30, 2011 in
eastern United States.

Price The OS is Windows

Dataset 2: normally distributed
prices. The mean and variance is
equal to Dataset 1

SLA

rpay $ 0.078 per unit size

ϕ 0.8

φ 1.1

rpenlty 0

Parameter of weak
equilibrium
operator

δ 0.9 and 0.8, respectively, for
dataset1 and dataset2

ε 0.01 and 0.05, respectively, for
dataset1 and dataset2
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Figure 4 Results under Amazon EC2 historical prices. (a) Profit ($).
(b) Rental ($).

Matlab for all experiments on normally distributed prices.
The service fee is set as the average rental cost plus 50%.
tmin is set as average executing time plus 10%, and the rev-
enue decline rate is 0.8. All of the tasks arrive in a Poisson
process at the rate of 80 per price interval.
We compare our approach with five other approaches.

The first one always rents the small instance in the auc-
tion (RS). The second one always rents the large instance
in the auction (RL). The third one always rents the extra
large instance in the auction (RXL). The fourth randomly

Table 3 Result under normally distributed price

Approach type Rental ($) Profit ($)

RS 10.05 -100,500

RL 10.1279 54,541

RXL 11.4382 41,438

RR 10.8864 46,956

FFP 10.0473 55,347

DRAP 9.8901 56,908

chooses a type to rent from the three VM types. Finally,
we compare our approach with the ‘First Fit Profit’ (FFP)
[19]. FFP rents the current cheapest virtual machine in the
auction.
We evaluate our approach using the following perfor-

mance metrics:

• Average unit rental cost per task (rental): The
average rental rate paid by CSP for the processing of
task Ti. Rental can be calculated as below:

Rental =
∑n

i=1[ rental(Ti)]
n

(23)

• Total profit (profit): Total profit gained by CSP after
completes Ti. Profit can be obtained as follows:

Profit =
n∑

i=1
revenue(Ti) −

n∑
i=1

rental(Ti) (24)

(b). Result on normally distributed prices 

Figure 5 Performance of DRAP under different task sizes. (a)
Result on Amazon EC2 spot prices. (b) Result on normally distributed
prices.
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• Average time difference (Time-Diff): The average
difference between deadline and task completion
time. Time − Diff is given by:

Time − Diff =
∑n

i=1[ tdeadline(Ti) − tfinish(Ti)]
n

(25)

4.2 Experiment results based on the Amazon EC2 dataset
We first study the performance of the various approaches
on Amazon EC2 spot prices. The request arrival rate fol-
lows a Poisson distribution, as shown in Table 1. The
results are shown in Figure 4.
As Figure 4a shows, our approach achieves higher prof-

its than other approaches. Figure 4b also shows that our
approach experiences a significant gain in rental cost
reduction. We need to note that a lower rental cost does
not mean a higher profit. Figure 4b shows that the rental
cost of RS is lower than RL, RXL, RR, FFP, and DRAP.
However, Figure 4a illustrates that the average profit of RS
is much lower than other approaches except DRAP. That
is because the computing power of the small instance is

Figure 6 DRAP performance under different δ values. (a) Rental
under different value of δ. (b) Time-Diff under different value of δ.

weaker than other instances. Therefore, RS takes a much
longer time to complete the same task, whichmay result in
numerous of SLA violations. DRAP pays the lowest rental
rate but satisfies SLA. Hence, it can obtain higher profits
than other approaches.
Because considering the price distribution and the task

urgency, we appropriately postponed the execution of
the task when complying with the SLA; therefore, the
task completion time is closer to the deadline. Over-
all, our approach can escape from the peak price and
enable renting of VMs when they are inexpensive, thus
reducing the rental cost and increasing the profits of
a CSP.

4.3 Experiment results based on generated dataset
The experiment focuses on comparing the performance
of all approaches on normally distributed prices, and the
configuration is the same as in Section 4.2. Table 3 shows
the result.
The first column shows that the average rental cost

($9.8901) of our approach is much lower than that of

Figure 7 DRAP performance under different ε values. (a) Rental
under different value of ε. (b) Time-Diff under different value of ε.
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other approaches. The second column shows that our
average profit ($5.6908) is the highest. In other words,
DRAP can make full use of the delay tolerance to avoid
the price and reduce the rental cost, which can improve
profits.

4.4 Study the paramenters
This section studies the parameters of our approach. First,
we investigate how task size affects our approach. Next,
we attempt to determine how the parameters δ and ε of
the non-uniform mutation operator affect DRAP.

4.4.1 Effect of parameter task size
We now investigate how task size affects our approach.
Task size is the price interval that the small instance needs
to finish the task. Figure 5a displays the result using the
Amazon spot prices. Figure 5b shows the result using the
normally distributed prices. The Y -axis represents rental
cost per unit task size, which can be calculated from
dividing the total rental cost by the task size.
Figure 5 shows that the rental cost per unit task size is

affected when task size is varied. The rental cost falls with
an increase in task size. That is because this increase pro-
vides a greater opportunity for us to avoid a high price,
enabling the task to be processed when the rental rate
is relatively low. Hence, the rental cost per unit task size
decreases and we earn higher profits from processing the
task.

4.4.2 Effect of parameter δ and ε

To study how parameters δ and ε affect DRAP, we con-
duct the experiment on the Amazon spot prices. In the
experiment, the task size is set to 200 Iλ. Figure 6 depicts
the performance of our approach when ε is 0.01. When δ

is less than 0.8, the rental cost is observed to decline with
an increase in δ. However, when δ exceeds 0.8, rental cost
increases with an increase in δ. Time-Diff is also on an
upward trend.
We discern the reason from Figure 6b. With an increase

in δ, our approach is more afraid that the task cannot
be completed on time. In other words, when the task
urgency stays unchanged, the acceptable price increases
as δ increases. Therefore, a higher chance exists that the
current price is lower than the acceptable price, leading
to an earlier completion time. An earlier completion time
results in losing the chance to avoid the peak price, and
the rental cost increases. However, this increase does not
mean that smaller value of δ is better. When the value of
δ is very small, it is unwilling to rent resources unless the
price is very low. Therefore, other things being equal, the
acceptable price declines while δ decreases. Because the
chance is too small that the current price is lower than
the acceptable price, the task is always suspended. As time
goes by, to complete the task on time, the acceptable price

increases as task urgency dramatically increases. There-
fore, when δ is 0.6 or 0.7, the rental cost is higher than
when δ is 0.8, as in Figure 6a.
Figure 7 depicts the performance of our approach when

δ is 0.9. δ is used to control the overall shape of the weak
equilibrium operator, and ε is used to locally fine-tune the
value of the operator. The two have an effect similar to our
approach. As Figure 7 shows, the rental cost and Time-Diff
also show an upward trend as ε increases.

5 Conclusions
This paper studied the profit maximization problem for
cloud service providers using a dynamic pricing model.
Taking full advantage of the temporal price differences
and the delay tolerance of the task, this paper presents
a dynamic virtual resource renting approach. We have
experimented on Amazon EC2 spot prices as well as nor-
mally distributed prices. The experimental result shows
that the proposed approach can reduce rental costs and
maximize profits of cloud service providers.
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