
Wang et al. EURASIP Journal onWireless Communications and
Networking  (2015) 2015:204 
DOI 10.1186/s13638-015-0428-9

RESEARCH Open Access

Robust beamforming designs for multiuser
MISO downlink with per-antenna power
constraints
Feng Wang1, Yongwei Huang2, Xin Wang1* and Yu Zhu1

Abstract

This paper studies the robust beamforming designs for a multiuser multiple-input single-output (MISO) downlink
system. Different from the conventional sum-power constraint across all transmit antennas, we consider individual
power constraints per antenna at the base station. Assuming that the channel uncertainty is bounded by a spherical
region, we develop the optimal robust designs to maximize the minimum worst-case signal-to-interference-plus-noise
ratio (SINR) among all users. Specifically, we show that the optimal max-min SINR beamformers can be obtained by
solving a sequence of “dual” min-max power problems. Relying on the S-procedure and the linear matrix inequality
representation for the cone of Lorentz-positive maps (LPMs), respectively, two designs, which are referred to as
Robust-SP and Robust-LPM, are proposed to efficiently solve such min-max power problems. Building on either
Robust-SP or Robust LPM, a bisection search algorithm is then developed to find the robust max-min SINR
beamformers with guaranteed global optimality and geometrically fast convergence speed. Using the max-min SINR
solutions as a cornerstone, we further put forth the optimal robust design for the worst-case weighted sum-rate (WSR)
maximization. By formulating the worst-case WSR maximization problem into a monotonic program (MP), we develop
a polyblock outer approximation algorithm to obtain the globally optimal solution. Numerical results are presented to
demonstrate the merits of the proposed robust beamforming designs.

Keywords: Lorentz-positive maps; MISO robust beamforming; Monotonic program; Per-antenna power constraints;
Semidefinite program

1 Introduction
For a multiuser wireless downlink with multiple anten-
nas at the base station (BS), transmit beamforming is a
low-complexity solution to provide spatial diversity and to
reduce co-channel interference [1]. Under the assumption
of perfect channel state information (CSI), the optimal
and suboptimal beamforming designs were developed to
maximize the minimum user signal-to-interference-plus-
noise ratio (SINR) [1–4] or to maximize the weighted
sum of user rates [5–7]. However, perfect CSI is usually
unavailable in practical systems due to many practical fac-
tors, such as inaccurate channel estimation, quantization
of CSI, erroneous or outdated feedback, and time delays
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or frequency offsets between the reciprocal channels. For
these reasons, robust linear and nonlinear beamforming
(precoding) designs to combat against channel uncer-
tainty have received intensive research interests for differ-
ent multi-user multiple-input multiple-output (MIMO)
(single-/multi-cell downlink or relay) systems [8–19].
Generally, robust beamforming is addressed by either a
stochastic or a worst-case approach. In the stochastic
approach, the CSI uncertainty is often modeled as a ran-
dom variable subject to a known probability distribution,
and the robustness can be provided based on optimizing
the average or the outage performance such as summean-
square-error (MSE) [8] and weighted-sum-rate (WSR)
[9, 10]. On the other hand, the worst-case approach
assumes that the CSI lies in a bounded uncertainty region.
In this case, the robustness is achieved by optimizing
the system under the worst-case channel condition and
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it usually leads to a min-max or max-min problem for-
mulation. With this approach, robust linear beamforming
designs were developed for max-min SINR [11–16] or
WSR maximization [17–19].
All the existing beamforming designs in [1–19] were

developed under a sum-power constraint across all trans-
mit antennas. However, in physical implementation of a
multi-antenna BS, each antenna usually has its own power
amplifier in the analog front-end, and it is individually lim-
ited by the linearity of this amplifier [20]. Hence, instead
of the sum-power constraint, this leads to power con-
straints imposed on a per-antenna basis. Under suchmore
realistic power constraints, the transmitter optimization
was addressed in [20], where the elegant uplink-downlink
duality under a sum-power constraint was extended to
downlink problems with per-antenna power constraints.
The robust sum-MSE minimizations with per BS antenna
and per BS power constraints were investigated in [21]
through the downlink-uplink duality. By establishing the
MSE downlink-interference duality, the authors in [22]
extended the work of [21] to solve the weighted sum-
MSE minimization and min-max MSE problems under
general power constraints for multiuser MIMO systems.
Downlink beamforming designs under per-antenna power
constraints were also addressed in some other works.
Moore-Penrose zero forcing (ZF)-based beamforming
design was derived to maximize the minimum user rate
in [23]. Aiming to minimize the stochastic or worst-case
sum-MSE, a nonlinear Tomlinson-Harashima precoding
(THP) design was investigated in [24] under per-antenna
power constraints. Based on block coordinate ascent and
signomial programming methods, beamforming designs
were put forth to maximize the WSR for a multiuser
downlink with power constraints per antenna groups in
[25]. For a large antenna array at the BS, an achievable
rate for single-user multiple-input single-output (MISO)
beamforming under per-antenna constant-envelop con-
straints was derived in [26].With per-antenna array power
constraints, the surrogate duality of the max-min beam-
forming was investigated in [27].
In this paper, we investigate the robust transmit beam-

forming designs for a MISO downlink with norm-
bounded uncertain CSI at the BS. Under the per-antenna
power constraints, the robust designs aim tomaximize the
minimum worst-case SINR among all users, or to max-
imize the worst-case WSR. The main contributions are
summarized as follows:

• This paper shows that the robust max-min SINR
beamformers can be obtained by solving a sequence
of “dual” robust min-max power problems. Building
on the solutions to these “dual” problems, an efficient
bisection search algorithm can thus be applied to find
the optimal max-min SINR solution.

• Two robust designs (i.e., Robust-SP and Robust-LPM)
are developed to solve the “dual” robust min-max
power problem. This problem is well-known
nonconvex due to the infinitely many SINR
constraints. For Robust-SP, we use the S-procedure
to convert the problem into a rank-constrained
semidefinite program (SDP), and then apply the SDP
relaxation technique to find its (near-)optimal
solution. Like [15], we give a computable CSI
uncertainty bound which ensures the tightness of the
SDP relaxation. For Robust-LPM, we consider a
slightly conservative problem reformulation. Relying
on a linear matrix inequality (LMI) representation for
the cone of Lorentz-positive maps (LPMs), the new
problem is shown to be equivalently transformed into
a convex SDP which can be efficiently solved with
guaranteed global optimality.

• We further put forth the robust beamforming for the
worst-case WSR maximization and formulate this
problem into a monotonic program (MP). Relying on
solving a sequence of robust max-min SINR
problems, a polyblock outer approximation
algorithm is developed to find the globally optimal
solution.

The remainder of this paper is organized as follows.
Section 2 presents the systemmodel. Section 3 introduces
the proposed approach to the optimal max-min SINR
beamforming design with perfect CSI. Section 4 gives the
problem formulation of the optimal robust max-min SINR
beamforming, and then develops Robust-SP and Robust-
LPM to solve its “dual” min-max power problem. The
robust design for the worst-case WSR maximization is
presented in Section 5. Numerical results are provided in
Section 6, followed by the conclusion in Section 7.
Notations: Uppercase and lowercase boldface letters

denote matrices and vectors, respectively. All vectors are
column vectors. Rn and Cn are the n-dimensional spaces
of real and complex vectors, respectively. E[ ·] denotes the
expectation, (·)T is the transpose, (·)H is the Hermitian
transpose, |·| is the absolute value, and ‖·‖ is the Euclidean
norm of a vector. 0 and 1 are all-zero and all-one vec-
tors of appropriate dimension, respectively. R(·) and I(·)
denote the real part and imaginary part of the argument,
respectively. The letter j represents the imaginary unit
(i.e., j = √−1), while the letter i often serves as an index
in this paper. In denotes an n × n identity matrix. A �
0 means that A is Hermitian and positive semi-definite,
[A]n,n is the (n, n)-th entry ofA. tr(A) and rank(A) are the
trace and rank ofA, respectively.⊗ denotes the Kronecker
product. A circular symmetric complex Gaussian (CSCG)
random vector a with mean ā and covariance matrix � is
denoted as a ∼ CN (ā,�). A ∪ B and A ∩ B denote the
union and intersection of set A and set B, respectively.
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A\B denotes the part of A that does not intersect with
B. A ⊂ B denotes that A is contained in B. Finally, the
element-wise (strictly) inequality for x, y is denoted as
x ≤ y (x < y).

2 Modeling preliminaries
Consider a wireless multiuser MISO downlink system
where the BS equipped with M antennas simultaneously
transmits K independent signals to K single-antenna
users, as shown in Fig. 1. The baseband equivalent repre-
sentation of the received signal at user k is expressed as:

yk = hHk x + nk ,∀k, (1)

where hk ∈ CM is the channel vector from the BS to
user k, x ∈ CM is the transmitted signal at the BS, nk ∼
CN (0, σ 2

k ) is the additive white complex Gaussian noise.
Assuming that a linear beamforming strategy is employed
at the BS, the transmitted signal x at the BS is then given
by

x = ∑K
k=1 wksk , (2)

where wk ∈ CM and sk ∈ C are the beamforming vector
and the information signal for user k, respectively. With-
out loss of generality (w.l.o.g.), we assume that sk , ∀k, has
a unit power, i.e., E[ |sk|2]= 1.
Suppose that each transmit antenna has its own power

constraint Pm, ∀m. Given the beamformers wk , ∀k, such
per-antenna power constraints can be expressed as[∑K

k=1 wkwH
k

]
m,m

≤ Pm,∀m. (3)

Define W :=[w1, ·,wK ], then the received SINR at user
k in terms ofW is given by

SINRk(W ) = |hHk wk|2∑K
l=1,l 
=k |hHk wl|2 + σ 2

k
, ∀k. (4)

3 Max-min SINR beamforming with perfect CSI
As a good starting point, we first develop an efficient
approach to find the optimal beamformers that maxi-
mize the minimum SINR among all users under the per-
antenna power constraints (3), when the perfect CSI is
available at the BS.

Based on the SINRs in (4), we consider the following
classic max-min SINR balancing problem:

max
W

min
1≤k≤K

SINRk(W )

γk

s. t.
[∑K

k=1 wkwH
k

]
m,m

≤ Pm,∀m,
(5)

where γk > 0 is the prescribed SINR target for user k.
Define theM × M square matrix Dm with

[Dm]i,l :=
{
1, i = l = m,
0, otherwise. (6)

The per-antenna power constraints of (5) are then
rewritten as∑K

k=1 wH
k Dmwk ≤ Pm,∀m, (7)

which are convex quadratic inequality constraints with
respect to wk .
Due to the nonconvexity of SINRk(W ), the max-min

SINR problem (5) is non-convex, and hence difficult to
solve. Yet, we next show that it can be solved by alter-
natively solving the tractable “dual” per-antenna power
balancing problems.
For a given scalar λ > 0, as shown in [28], by introducing

an auxiliary variable α, we formulate the following per-
antenna power balancing problem:

α∗(λ) =min
W , α

α

s. t.
∑K

k=1 wH
k Dmwk

Pm
≤ α,∀m,

SINRk(W )

γk
≥ λ,∀k,

(8)

where the SINR constraints in (8) can be rewritten as:(
1 + 1

λγk

)
|hHk wk|2 ≥

∥∥∥∥
[
hHk W

σk

]∥∥∥∥
2
, ∀k. (9)

Observe that an arbitrary phase rotation can be added to
the beamformers without affecting the SINRs. Hence, we
choose phases such that hHk wk ,∀k, are real and nonneg-
ative. By taking the square root operation for both sides
of (9), the constraints then become convex second-order
cone (SOC) (as known as Lorentz cone) constraints [29].

Fig. 1 The multiuser MISO downlink model
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As a result, (8) can be reformulated into the following
convex SOCP problem:

α∗(λ) = min
W , α

α

s. t.
∑K

k=1 wH
k Dmwk ≤ αPm,∀m,√

1 + 1
λγk

hHk wk ≥
∥∥∥∥
[
hHk W

σk

]∥∥∥∥ , ∀k,
(10)

which can be efficiently solved by interior-point methods
with given parameter λ [29]. Note that, with the given γk ,
∀k, the problem (10) may be infeasible for large positive λ,
since that the SINR constraints cannot be satisfied. In this
case, we define the optimal value α∗(λ) := +∞. When
(10) is feasible, we defineW ∗(λ) as the optimal solution to
(10) for a given λ. It can be shown that the function α∗(λ)

obeys the following two properties1:

• Monotonicity: If 0 < λ1 ≤ λ2, then α∗(λ1) ≤ α∗(λ2);
• Optimum condition: If it holds α∗(λ) = 1, then λ and

the correspondingW ∗(λ) for (10) are the optimal
value and the optimal solution for (5), respectively.

The two properties clearly indicate that the optimal
solution of (5) can be obtained by solving the equation
α∗(λ) = 1. Building on the solution for (10), an efficient
bisection search algorithm can be then implemented to
find the max-min SINR beamformers for (5) with guaran-
teed global optimality and geometrically fast convergence
speed [28].
It is worth mentioning that the max-min SINR prob-

lem (5) can be equivalently formulated as a quasi-concave
problem:

max
W

λ (11)

s. t.

√
1 + 1

λγk
hHk wk ≥

∥∥∥∥
[
hHk W

σk

]∥∥∥∥ ,∀k,
K∑

k=1
wH
k Dmwk ≤ Pm,∀m,

where the phases ofwk ,∀k, are chosen such that hHk wk ,∀k,
are real and nonnegative. Clearly, (11) can be efficiently
solved using a similar bisection search, where each step
involves checking a convex feasibility problem with an
updated λ:

Find W (12)

s. t.

√
1 + 1

λγk
hHk wk ≥

∥∥∥∥
[
hHk W

σk

]∥∥∥∥ ,∀k,
K∑

k=1
wH
k Dmwk ≤ Pm,∀m.

We note that (10) and (12) correspond to a similar
SOCP; hence, a similar computational effort is required
to solve each instance of (10) and that of (12), practically
using a software like CVX [29]. Also since that the simi-
lar bisectional searchmethods are applied in the proposed
scheme and the feasibility check approach, it is expected
that both algorithms can achieve the optimal solution of
(5) after the same iterations. While the proposed scheme
can solve the max-min SINR problem with similar com-
putational complexity compared to the feasibility check
approach, it provides a new and important insight for
the close relationship between the max-min SINR prob-
lem and the min-max power problem in beamforming
designs. This allows us to freely choose a more tractable
form as the corner stone to pursue the optimal beam-
forming designs under various important criteria such as
rate maximization, MSE minimization, and bit-error-rate
(BER) minimization, as detailed in Section 5.

4 Robust max-min SINR beamforming design
In this section, we generalize the approach in the per-
fect CSI case to the robust downlink beamforming designs
where the BS has the bounded CSI uncertainty. We firstly
formulate a robust max-min SINR beamforming problem
and show that the optimal solution can be obtained by
solving a sequence of its “dual” min-max power problems.
An efficient bisection search algorithm is thus developed.
Resorting to the S-procedure and the LMI representation
for the cone of LPMs, respectively, Robust-SP and Robust-
LPM are then proposed to solve these robust min-max
power problems.

4.1 Robust max-min SINR beamforming problem
The downlink CSI uncertainty at the BS could be caused
by estimation errors, feedback quantization, hardware
deficiencies, and delays in CSI acquisition [11]. Motivated
by these considerations, we assume the following additive
error model:

hk = ĥk + δk ,∀k, (13)

where ĥk is the estimated channel at the BS, and δk
denotes the channel uncertainty. Similar to [11, 13, 15], we
further assume that δk is bounded by a spherical region2:

Hk :=
{
ĥk + δk |

√
δHk δk ≤ εk

}
,∀k, (14)

where the real parameter εk > 0 specifies the radius ofHk .
Next, based on the CSI uncertainty region Hk , define

the worst-case SINR for user k in terms ofW as:

S̃INRk(W ) := min
hk∈Hk

|hHk wk|2∑K
l=1,l 
=k |hHk wl|2 + σ 2

k
,∀k. (15)

We consider the robust designs aiming to maximize the
minimum worst-case SINR among all users. By replacing
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the SINRs in (5) with the worst-case SINRs in (15), we
have the following robust max-min SINR balancing for-
mulation:

λ∗ =max
W

min
1≤k≤K

S̃INRk(W )

γk

s. t.
∑K

k=1 wH
k Dmwk ≤ Pm,∀m.

(16)

Again the problem (16) is nonconvex. It is worth men-
tioning that, like the perfect CSI case, (16) can be con-
verted into a quasi-concave problem with the aid of the
S-procedure and rank-relaxation, and the (near-)optimal
solution can be found by iteratively checking the feasi-
bility of an SDP. Here, we show that (16) can be solved
by alternatively solving a sequence of the min-max power
problems. For a given λ > 0, we consider:

α̃∗(λ) =min
W

max
1≤m≤M

∑K
k=1 wH

k Dmwk

Pm

s. t.
S̃INRk(W )

γk
≥ λ,∀k,

(17)

where Pm serves as a “power target” for antenna m and
α̃∗(λ) denotes the optimal value of problem (17). Again
the problem (17) may be infeasible for large nonnegative
λ. In this case, we define α̃∗(λ) := +∞. As with the
perfect CSI case, we can establish the following property:

Lemma 1. α̃∗(λ) is a strictly increasing function for λ > 0.

Proof. Please see Appendix 1.
Let W ∗(λ) denote the optimal beamforming matrix for

(17) with the given λ > 0. Relying on the monotonic-
ity of α̃∗(λ), we can further show the following close
relationship between (16) and (17):

Lemma 2. If it holds α̃∗(λ) = 1, then λ and the corre-
sponding W ∗(λ) =[w∗

1(λ), ·,w∗
K (λ)] are the optimal value

and the optimal solution for (16), respectively.

Proof. Please see Appendix 2.

Similar to the perfect CSI case, Lemma 2 indicates that
the optimal solution to (16) can be obtained by solving
the equation α̃∗(λ) = 1. Therefore, a bisection search
over λ can be then implemented to obtain the robust max-
min SINR beamformers. We describe it in Algorithm 1 in
detail.
For Algorithm 1, an appropriate interval of λ∗ should be

determined. Obviously, λmin = 0, a lower bound of the
interval. An upper bound λmax is determined as follows. It
is clear that,

Algorithm 1 for the max-min SINR beamforming problem
(16)
1: Initialize: Select a tolerance level δ > 0;

2: Set λmin = 0, λmax = maxk

{(
‖ĥk‖+‖εk‖

)2(∑M
m=1 Pm

)
γkσ

2
k

}
.

3: Repeat: Let λ = (λmax + λmin)/2;
4: Solving (17) to obtain α̃∗(λ) andW ∗(λ);
5: If α̃∗(λ) ≥ 1, then λmax = λ;
6: Else if α̃∗(λ) < 1, then λmin = λ;
7: Until: (λmax − λmin)/λmax < δ.
8: Output: λ∗ = λ andW ∗ = W ∗(λ).

S̃INR(W )

γk
= min

‖δk‖≤εk

|(ĥk + δk)
Hwk|2

γk

(∑K
l=1,l 
=k|

(
ĥk + δk

)H
wl|2 + σ 2

k

)

≤
(
‖ĥk‖ + ‖εk‖

)2 (∑M
m=1 Pm

)
γkσ

2
k

, ∀W ,∀k.

This implies that

λ∗ =max
W

min
1≤k≤K

{
S̃INRk(W )

γk

}

≤ max
1≤k≤K

⎧⎪⎨
⎪⎩

(
‖ĥk‖ + ‖εk‖

)2 (∑M
m=1 Pm

)
γkσ

2
k

⎫⎪⎬
⎪⎭ .

(18)

With such λmin and λmax, the bisection search requires
O(log2((λmax − λmin)/δ)) iterations (e.g., see [29] page
146) to solve α̃∗(λ) = 1 up to a desired accuracy level,
due to the monotonicity of α̃∗(λ) with respect to λ > 0.
Clearly, Algorithm 1 converges to the optimal solution
geometrically fast.
Summarizing, we have the following proposition [29]:

Proposition 1. Algorithm 1 converges geometrically fast
to the global optimal solutionW ∗ for (16).

To implement Algorithm 1, it is desirable to efficiently
solve problem (17) with any given λ > 0. Introducing an
auxiliary variable α, we rewrite (17) as:

α̃∗(λ) =min
W , α

α

s. t.
∑K

k=1 wH
k Dmwk ≤ αPm,∀m,

S̃INRk(W )

γk
≥ λ,∀k.

(19)

Although (19) is still non-convex due to the infinitely
many SINR constraints, two efficient designs will be pro-
vided in the next two subsections.
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4.2 The Robust-SP design
The basic idea of Robust-SP is to firstly convert (19) into
a rank-constrained SDP by applying the well-known S-
procedure [29, 30], and then the converted problem is
(near-)optimally solved via the SDP relaxation [31].
Based on the definitions of Hk and S̃INRk , the con-

straints S̃INRk(W )/γk ≥ λ can be rewritten as:

Fk(δk , λ) ≥ 0 for all δk such that δHk δk ≤ ε2k , ∀k,
(20)

where

Fk(δk , λ) :=
(
ĥk + δk

)H ⎛
⎝wkwH

k
λγk

−
K∑

l=1,l 
=k
wlwH

l

⎞
⎠

×
(
ĥk + δk

)
− σ 2

k .

Next, we will show that the infinitely many constraints
(20) have an equivalent LMI representation. To this end,
we resort to the well-known S-procedure in optimiza-
tion. This procedure provides an LMI representation
for a robust quadratic constraint over an uncertainty set
defined by one or two quadratic inequalities. For conve-
nience, we cite the S-procedure in [30] and [29] below:

Lemma 3. (S-procedure) Let A and B be two n × n
Hermitian matrices, c ∈ Cn and d ∈ R. Then the following
two conditions are equivalent:

(i) xHAx + cHx + xHc + d ≥ 0 for all x ∈ Cn such that
xHBx ≤ 1;

(ii) There exists a t ∈ R such that

t ≥ 0,
[
A + tB c
cH d − t

]
� 0.

By applying Lemma 3, problem (19) can be reformulated
as an SDP with rank constraints. Define Xk := wkwH

k ,∀k. Then Xk � 0 and rank(Xk) = 1. Using the above S-
procedure, (20) can be transformed as �k(λ) � 0 with
respect to λ:

�k(λ) :=
[
Y k(λ) + tkI Y k(λ)ĥk
ĥ
H
k [Y k(λ)]H ĥ

H
k Y k(λ)ĥk − σ 2

k − tkε2k

]
� 0,

where tk ≥ 0, ∀k, and

Y k(λ) := 1
λγk

Xk −
K∑

l=1,l 
=k
X l,∀k. (21)

Using the property that wH
k Dmwk = tr(DmXk), we get

the following equivalent SDP linear constraints:∑K
k=1 tr(DmXk) ≤ αPm,∀m. (22)

Until now, we are ready to show the following
proposition:

Proposition 2. (Robust-SP) The problem (19) can be
equivalently reformulated as a rank-constrained SDP:

α̃∗(λ) = min{Xk , tk , α} α

s. t.
∑K

k=1 tr(DmXk) ≤ αPm,∀m,
�k(λ) � 0, tk ≥ 0,∀k,
Xk � 0, rank(Xk) = 1,∀k.

(23)

From Proposition 2, it is evident that, by dropping the
rank-one constraints, Robust-SP (23) becomes an SDP
which can be solved in a numerically reliable and efficient
fashion [29]. Suppose X∗

k ,∀k, are the optimal solutions
to the SDP relaxation of (23). If X∗

k = w∗
kw

∗H
k ,∀k, i.e.,

the SDP relaxation is tight, then we obtain the optimal
w∗
k ,∀k, for (19). In fact, it was shown in ([15] Theorem 1)

that the SDP relaxation under a sum-power constraint
always admits a rank-one optimal solution when εk , ∀k,
are sufficiently small. Likewise, we extend the approach to
establish the following lemma for (23) under per-antenna
power constraints:

Lemma 4. Suppose that for some choice of channel uncer-
tainty bounds ε̄ =[ ε̄1, ·, ε̄K ]T , the SDP relaxation of (23) is
feasible. Define the set

�(ε̄) :=
⎧⎨
⎩ε =[ ε1, ·, εK ]T | εk ≤ ε̄k , and εk (24)

<

√
λγkσ

2
k minm(qm)

V (ε̄)
,∀k

⎫⎬
⎭ ,

where qm,∀m, are the optimal Lagrange multipliers cor-
responding to the per-antenna power constraints in (23),
and V (ε̄)/(

∑M
m=1 Pm) is equal to the optimal value for the

SDP relaxation of (23) with given ε̄. Then, for any vector
ε ∈ �(ε̄), we have rank(X∗

k) = 1,∀k.

Proof. Please see Appendix 3.

On the other hand, for the case of large εk , ∀k, the exis-
tence of rank-one optimal solutions for the SDP relaxation
of (23) cannot be provably guaranteed. Hence, the exact
optimal solution to (19) may not be constructed from
X∗
k with possibly a rank greater than one. In this case,

randomization is a widely adoptedmethod to obtain a fea-
sible rank-one approximate matrix solution from the SDP
relaxation. Specifically, a Gaussian randomization strategy
[31] can be applied to get a vectorw∗

k fromX∗
k , ∀k, to nicely

approximate the solution to (19).

4.3 The Robust-LPM design
As shown in the previous subsection, when the CSI uncer-
tainty bounds εk , ∀k, are small to some extent, the SDP
relaxation of Robust-SP (23) is globally optimal. However,
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it remains open whether (19) has an equivalent convex
reformulation (i.e., there always exists a tight SDP relax-
ation) in general. As a compromise, we consider another
interesting reformulation based on more conservative
robust SINR constraints compared to those in (19).
The robust SINR constraints in (19) can be rewritten as:

1√
λγk

∣∣hHk wk
∣∣ ≥

√√√√√ K∑
i=1,i
=k

wH
i hkh

H
k wi + σ 2

k , (25)

for ‖δk‖ ≤ εk , where δk = hk − ĥk , ∀k. Consider
the following robust SINR constraints which appear a bit
conservative:

1√
λγk

R
(
hHk wk

) ≥

√√√√√ K∑
i=1,i
=k

wH
i hkh

H
k wi + σ 2

k , (26)

for ‖δk‖ ≤ εk . Since R
(
hHk wk

) ≤ |hHk wk|, the set of wk
defined by (26) is always contained in that by (25).
With the conservative SINR constraints (26), we con-

sider the following robust beamforming problem formu-
lation:

α̂∗(λ) = min
W , α

α

s. t.
∑K

k=1 wH
k Dmwk ≤ αPm,∀m,

1√
λγk

R(hHk wk) ≥
√∑K

i=1,i
=k wH
i hkh

H
k wi + σ 2

k ,∀k,
hk = ĥk + δk ,∀‖δk‖ ≤ εk , ∀k. (27)

The problem (27) is a semi-infinite SOCP and hence con-
vex, but it is still not easy to be solved efficiently in the
current form. Nevertheless, the conservative SINR con-
straints (26) can be reformulated as LPMs, where the set
of each LPM actually forms a convex cone [32]. Further-
more, the recent elegant result in [33] shows that one can
construct an LMI to describe a cone of LPM. Resorting to
such an LMI representation, the intended beamforming
problem (27) can be reformulated as a convex SDP.
To begin with, we define some notations. The n-

dimensional SOC (which is also termed Lorentz cone) is
defined as [33]:

Ln =
{
x =[ x1, ·, xn]T ∈ Rn|x1 ≥

√
x22 + · · · + x2n

}
.

The real-valued 2M×2Mmatrices D̃m, ∀m, are defined as

D̃m :=
[
R(Dm) −I(Dm)

I(Dm) R(Dm)

]
∈ R2M×2M,

and the real-valued 2K × (2M + 1) matrices Bk(λ, w̃), ∀k,
are Lorentz positive and satisfy that

Bk(λ, w̃)yk ∈ L2K ,∀yk ∈ L2M+1.

Given G =[ g1, ·, gP]T (with P,Q ≥ 3, gp ∈ RQ,
∀p = 1, ..,P), Â(G) is generated by the P arrow matrices
{A(g1), ·,A(gP)}, i.e.,

Â(G) :=

⎡
⎢⎢⎢⎢⎢⎣

A(g0) A(g3) A(g4) · A(gP)
A(g3) A(g−1) 0 · 0
A(g4) 0 A(g−1) · 0
...

...
...

. . .
...

A(gP) 0 0 · A(g−1)

⎤
⎥⎥⎥⎥⎥⎦ , (28)

where g0 = g1 + g2, g−1 = g1 − g2, gp =[ gp1, gp2, ·, gpQ]T ,
∀p, and

A(gp) :=

⎡
⎢⎢⎢⎢⎢⎣

gp1 + gp2 gp3 gp4 · gpQ
gp3 gp1 − gp2 0 · 0
gp4 0 gp1 − gp2 · 0
...

...
...

. . .
...

gpQ 0 0 · gp1 − gp2

⎤
⎥⎥⎥⎥⎥⎦.

With these notations, we canmimic the approach in [32]
to show the following proposition.

Proposition 3. (Robust-LPM) The problem (27) can be
reformulated as an SDP:

α̂∗(λ) = min
{Zk},w̃,α

α

s. t.
[ √

αPm
(IK ⊗ D̃m)w̃

]
∈ L2MK+1,∀m,

Â(Bk(λ, w̃)) + Zk � 0,∀k,
Zk ∈ L⊥

2K−1,2M,∀k,

(29)

where w̃ := [
wT
11,w

T
12, ·,wT

K1,w
T
K2

]T , wk1 = R(wk), wk2 =
I(wk), ∀k, and L⊥

2K−1,2M denotes a linear subspace as
in (58).

Proof. Please see Appendix 4.

Proposition 3 shows that the robust beamforming prob-
lem (27) can be reformulated as an equivalent SDP (29).
We highlight that (29) can be efficiently solved using a
handy solver (like SeDuMi [29]) with a guaranteed glob-
ally optimal solution. This is different in nature from the
Robust-SP (23), where the original problem (19) is solved
through the SDP relaxation technique (again noting that
there is no mathematical proof for the zero gap between
(19) and the SDP relaxation of (23) in general). Since more
conservative SINR constraints are employed, it is clear
that α̂∗(λ) ≥ α̃∗(λ), i.e., the proposed Robust-LPM might
yield a sub-optimal solution to (19). However, simulation
results in Section 6 show that Robust-LPM can always
provide an (near-)optimal solution.
Before leaving this section, we would like to remark

that Robust-LPM (29) includes larger size matrices in the
LMI constraints than Robust-SP (19), which means that
the Robust-LPM has higher computational complexity
than the SDP relaxation of Robust-SP (i.e., removing the
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rank-one constraints). However, as a trade-off, the global
optimality for Robust-LPM can be achieved while the
global optimality for Robust-SP cannot be always guar-
anteed (i.e., there is a positive gap between the SDP
relaxation and the problem itself ). Both Robust-LPM and
the relaxed Robust-SP can be efficiently solved by interior
methods, practically using a software like CVX. Accord-
ing to Boyd and Vandenberghe ([29] Chapter 11.7), the
computational complexities of the interior-point method
for solving Robust-LPM and the relaxed Robust-SP are
O(K7M6.5) andO

(√
KM + M2K3M6

)
, respectively.

5 Worst-case weighted sum-rate maximization
In this section, we extend the proposed approach to
the optimal robust beamforming for the worst-case WSR
maximization under per-antenna power constraints. Rely-
ing on the MP method [5–7, 16, 18, 19], we show that an
efficient algorithm can be developed for the worst-case
WSR maximization through solving a sequence of robust
max-min SINR problems.

5.1 Problem formulation

With S̃INRk(W ) = minhk∈Hk
|hHk wk |∑

l 
=k |hHk wl|2+σ 2
k
defined in

(15), the achievable worst-case rate of user k can be
expressed as:

rk(W ) = log2
(
1 + S̃INRk(W )

)
bits/s/Hz. (30)

Let μk denote the priority weight for user k. An opti-
mization problem with the objective function of maxi-
mizing the worst-case WSR under the per-antenna power
constraints can be formulated as:

max
W

∑K
k=1 μk log2

(
1 + S̃INRk(W )

)
s. t.

∑K
k=1 wH

k Dmwk ≤ Pm,∀m.
(31)

The problem (31) is non-convex due to the heav-
ily coupled mutual-interference terms in its objective
function. However, it can be next converted to a stan-
dard MP problem over a norm set and can be solved
efficiently.
Firstly, we introduce some definitions. A set S is called

normal if z′ ≤ z and z ∈ S implies z′ ∈ S ; and a set S is
called reverse normal if z′ ≥ z and z ∈ S implies z′ ∈ S . A
box [a, b] is defined as the set of all z such that a ≤ z ≤ b.
A vector y ∈ RK+ is an upper-boundary point of set S if
αy ∈ S , for any scalar α < 1, and αy /∈ S , ∀α > 1. The set
of upper-boundary points of S is called upper-boundary
of S and it is denoted by ∂+S .
Now define the set W := {W | ∑K

k=1 wH
k Dmwk ≤

Pm,∀m}. Introducing an auxiliary vector z =[ z1, . . . , zK ]T ,
we can equivalently reformulate (31) as:

max
z∈Z 
(z) := ∑K

k=1 μk log2(zk), (32)

where the feasible set is

Z :=
{
z | 1 ≤ zk ≤ 1 + S̃INRk(W ), ∀k, ∀W ∈ W

}
. (33)

Since 
(z) is a strictly increasing function in each entry
of z, the optimal solution z∗ for (32) must satisfy: z∗k =
1 + S̃INRk(W ∗), ∀k, for a certainW ∗ ∈ W ; and such W ∗
is clearly the optimal solution to the original problem (31).
Further define the following two sets

G :=
{
z | 0 ≤ zk ≤ 1 + S̃INRk(W ), ∀k, ∀W ∈ W

}
,

H := {z | zk ≥ 1, ∀k} ,

and let a(W ) :=
[
1 + S̃INR1(W ), . . . , 1 + S̃INRK (W )

]T
for any W ∈ W . Then G = ∪W∈W [ 0,a(W )] is the union
of infinitely many normal boxes; clearly, G is normal [34].
Let b :=[ b1, . . . , bK ]T , where

bk := 1 +
∑M

m=1 Pm
(
‖ĥk‖2 + ‖εk‖2

)
σ 2
k

,∀k. (34)

It clearly holds: 1+ S̃INRk(W ) ≤ bk , ∀k. Therefore, G ⊂
[ 0, b] is a compact normal set with non-empty interior. It
is also clear that H is a reverse normal set. It then follows
that (32) is a standard MP [34]:

max
z


(z), s. t. z ∈ (G ∩ H), (35)

where we maximize an increasing function 
(z) over the
intersection of a compact normal set G and a reverse
normal set H. For the MP, the maximum is attained on
∂+(G ∩ H).

5.2 The POA algorithm
Based on the separation property3 of normal sets [34], a
polyblock outer approximation (POA) algorithm can be
employed to efficiently find the globally optimal solution
for an MP. For any finite vector set T := {vi, i = 1, . . . , I},
the union of all the boxes [ 0, vi], ∀i, is a polyblock. The
basic idea is to approximate the feasible set G ∩ H by a
polyblock. Specifically, we construct a nested sequence of
polyblocks: P1 ⊃ P2 ⊃ · · · ⊃ Pn ⊃ · · · ⊃ G ∩H in such a
way that maxz∈Pn 
(z) ↘ maxz∈(G∩H) 
(z), where Pn
denotes the polyblock generated at the nth iteration and
“↘” denotes convergence from above.
A vertex vi ∈ T is called proper if there does not

exist another vj ∈ T such that vj ≥ vi. The maximum
of an increasing function over a polyblock is attained at
one of its proper vertices. Hence, at the nth iteration, the
maximizer for 
(z) over Pn is obtained as:

zn := argmax
z∈Tn


(z), (36)

where Tn is the (finite) proper vertex set of Pn. Note
that zn can be simply obtained by searching over the
finite entries of Tn. If zn ∈ (G ∩ H), then it solves (35).
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Otherwise, we construct the next polyblock Pn+1 con-
tained in Pn\{zn} but still enclosing G ∩ H, and continue
the process.
To construct new polyblock Pn+1 from Pn, it requires

computing the projection point πG(zn), which is defined
as the unique point where the halfline from 0 through z
meets ∂+G, i.e., πG(z) = λz and λ = max{α | αz ∈ G}. Let
yn = [

yn1, ·, ynK
]T := πG(zn), and

zn,k := zn − (
znk − ynk

)
ek ,∀k, (37)

where ek is a unit vector with the only non-zero num-
ber (i.e., “1”) in the kth entry. Hence, zn,k can be obtained
through replacing znk by y

n
k , and yn ≤ zn,k ≤ zn,∀k.

Let Tn+1 be the set obtained from Tn by replacing
the vertex zn with K new vertices zn,k and then remov-
ing the improper vertices; i.e., Tn+1 = (Tn\{zn}) ∪
{zn,k | zn,k is proper}. Since z∗ ∈ H, we can further reduce
the vertex set Tn+1 = Tn+1 ∩ H. With such a vertex set
Tn+1, we have ([34] Proposition 17):

Lemma 5. The polyblock Pn+1 with vertex set Tn+1 satis-
fies (G ∩ H) ⊂ Pn+1 ⊂ Pn.
Lemma 5 provides the direction for construction of

Pn+1 from Pn to approximate (33) from outside with
increasing accuracy. To this end, we need to find yn =
πG(zn) = λnzn, which is determined by solving:

λn = max
{
α | αzn ∈ G

}
= max

{
α | α ≤ min1≤k≤K

1+˜SINRk(W )
znk

, ∀W ∈ W
}

= maxW∈W min1≤k≤K
1+˜SINRk(W )

znk
.

This leads to the following max-min SINR balancing
problem:

λn =max
W

min
1≤k≤K

1+˜SINRk(W )
znk

s. t.
∑K

k=1 wH
k Dmwk ≤ Pm,∀m,

(38)

and its “dual” min-max power problem with given λn is

α̃∗(λ) =min
W

max
1≤m≤M

∑K
k=1 w

H
k Dmwk

Pm

s. t. 1+˜SINRk(W )
znk

≥ λn,∀k.
(39)

Problem (39) can be solved either by Robust-SP in
Section 4.2 or by Robust-LPM in Section 4.3. The pro-
posed Algorithm 1 can be applied to find the optimal value
λn for (38).
The proposed POA algorithm to find an ξ-optimal solu-

tion for (31) is summarized in Algorithm 2. A key require-
ment for provable convergence is that z is lower bounded
by a strictly positive vector [34]. Since z ≥ 1 > 0 in (32),
it readily follows from ([34] Theorem 1) that:

Proposition 4. Algorithm 2 globally converges to an ξ -
optimal solution for (31) and (32).

Algorithm 2 for the worst-case WSR Maximization (31)
1: Initialize: Select a tolerance level ξ > 0;
2: Let n=0, T0={b}, and CBV (current best value) = 0.
3: Repeat: Let zn = argmaxz∈Tn 
(z);
4: For zn, use Algorithm 1 to solve (38) to obtain λn, the

correspondingW ∗, as well as yn = λnzn.
5: If yn ∈ H and 
(yn) > CBV, then CBV = 
(yn),

z̄ = yn, and W̄ = W ∗.
6: Let zn,k = zn − (

znk − ynk
)
ek , ∀k, and Tn+1 =[

(Tn\{zn}) ∪ {
zn,k | zn,k is proper}] ∩ H.

7: Further remove from Tn+1 any vi ∈ Tn+1 satisfying

(vi) ≤ CBV(1 + ξ).

8: Set n = n + 1.
9: Until Tn = φ.

10: Output: z̄ as the ξ-optimal solution for (32) and W̄
the solution for (31).

Proposition 4 establishes that Algorithm 2 can yield the
optimal beamformers for (31) with guaranteed conver-
gence and global ξ-optimality. Note that the worst-case
WSR maximization (31) is in fact NP-hard. The pro-
posed POA method (i.e., Algorithm 2) is essentially a
smart branch-and-bound approach, which does not have
a worst-case polynomial-time complexity [34]. However,
extensive numerical examples have shown that this type
of algorithm can solve general MP problems of dimen-
sions 10–15 (while the problems of such dimensions are
already very hard to solve by the standard approximation
tools) [5, 6, 35]. For those small/medium size problems,
the complexity with the algorithm may be affordable for
practical implementation. On the other hand, for prob-
lems with even larger dimensions, the algorithm may be
only suitable for benchmarking purposes.
It is worth noting that similar POA algorithms

were adopted to find the optimal beamforming designs
for the WSR maximization in other different setups
[6, 7, 18, 19, 35]. The proposed Algorithm 2 can be
also applied to the optimal robust beamforming designs
under other general criteria where the objective functions,
e.g., the sum of mean square errors or sum of bit error
rates, are monotonic functions of the SINRs; see a unified
framework [18, 35].

6 Numerical results
6.1 Simulation setting
Consider a MISO downlink system where the BS,
equipped withM antennas, servesK single-antenna users.
Each transmit antenna has an equal power budget, i.e.,
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Pm = P/M, ∀m, where P is the total power budget at
the BS. Assume a normalized channel estimation ĥk ∼
CN (0, IM). The CSI uncertainty bound εk = ε‖ĥk‖, ∀k,
for a given ε in (14). We assume that nk ∼ CN (0, σ 2), ∀k,
and σ 2 = 0.1. Define SNR = P/σ 2, and each user has an
equal SINR target, i.e., γk = SNR/K , ∀k. The tolerance
levels are set as δ = 0.01 and ξ = 0.01 in Algorithms 1
and 2, respectively.

6.2 Properties of α(λ), α̂(λ), and α̃(λ)

For one given channel realization withM = 4 and K = 3,
Fig. 2 shows the curves of the per-antenna min-max
power functions α∗(λ) in (10) with perfect CSI, α̃∗(λ) in
(23) of Robust-SP, and α̂∗(λ) in (29) of Robust-LPM with
respect to the SINR-to-target ratio requirement λ. The
input SNR is chosen as SNR = 10 dB, and the channel
uncertainty bound norm is ε = 0.2. The monotonicity of
α∗(λ), α̃∗(λ), and α̂∗(λ) is clearly shown in Fig. 2. Robust-
SP and Robust-LPM achieve almost the same value., i.e.,
α̃∗(λ) ≈ α̂∗(λ). It shows that the values of α∗(λ) are
smaller than those of the robust ones which consider the
channel uncertainty. It means that the robust beamform-
ing design requires more power than the beamforming
design with perfect CSI under the same SINR constraints
to account for the CSI uncertainty. Besides, as discussed in
Sections 3 and 4, the optimal beamforming designs can be
obtained by solving α∗(λ) = 1, α̃∗(λ) = 1, or α̂∗(λ) = 1.

6.3 Average minimum SINR
To gauge the average minimum SINR performance of dif-
ferent designs with uncertainty CSI, we realize 100 inde-
pendent simulation runs. For each simulation run, we first
generate ĥk , ∀k, randomly. Based on (13) in Section 4.1,

we obtain 1000 true channel realizations hk = ĥk + δk
(where ‖δk‖ ≤ ε‖ĥk‖), and compute the average mini-
mum SINR over the channel realizations for each input
SNR. Then, the SINR results are averaged over the 100
simulation runs. Figures 3 and 4 demonstrate the aver-
age minimum SINR performance among K = 3 users for
M = 4 and M = 6, respectively, where ε = 0.2. It is
observed that the proposed Algorithm 1 based on Robust-
LPM achieves almost the same average minimum SINR
performance as that based on Robust-SP.
We also evaluate the rank-relaxation method in [16]

under per-antenna power constraints, where the robust
beamformers are obtained using a bisection search with
the aid of SDP and rank-relaxation, and all the iterations
that return rank-one solutions are stored. In Figs. 3 and 4,
we observe that Robust-SP/Robust-LPM significantly out-
performs the method of [16] in high SNR regimes. For
example, at SNR = 10 dB in Fig. 3, the proposed designs
achieve about 4 dB greater SINR gains than the method
of [16]. It implies, in high SNR regimes, the tightness
of rank relaxation becomes invalid, and thus a random-
ization is necessary. This is also shown in Lemma 4,
when SNR (which is proportional to V (ε̄)) increases,
the CSI uncertainty set that guarantees the tightness
becomes smaller.
In addition, the performances of NonRobust design, the

minimum mean square error (MMSE) design in [4], and
the Moore-Penrose ZF design in [23] are also included in
Figs. 3 and 4. For these three designs, although the true
channel is hk , the calculation of beamformers is processed
by regarding the estimated channel ĥk as the true channel.
Note that in order to implement the Moore-Penrose ZF
beamforming design, we assume thatM ≥ K . The optimal

Fig. 2 Illustration of α∗(λ) in (8), α̃∗(λ) in (23), and α̂∗(λ) in (29),M = 4, K = 3, SNR = 10 dB
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Fig. 3 Average minimum SINR vs SNR with ε = 0.2,M = 4, and K = 3

performance under perfect CSI is also provided as an
upper bound for all designs. Figures 3 and 4 show that
the proposed Robust-SP and Robust-LPM designs out-
perform NonRobust in the whole SNR regimes. This is
expected because NonRobust regards the estimated chan-
nel ĥk as the true CSI hk in calculating the beamformers.
If the perfect CSI were available, the more “aggressive”
NonRobust would have yielded a higher averageminimum
user SINR than the robust ones (since the robust designs
are conservative in the sense that they aim to provide the
worse-case guarantees). However, in the presence of the
CSI uncertainty, the performance of NonRobust degrades
dramatically at most of times since that pretty small

perturbations of uncertainty data can make the nominal
optimal solution heavily infeasible and thus meaningless.
The proposed robust designs clearly achieve a larger

gain in the average minimum SINR performance than the
MMSE andMoore-Penrose ZF designs as shown in Figs. 3
and 4. For example, at SNR = 0 dB, the Robust-SP and
the Robust-LPM designs with M = 4 achieve about a 4
dB gain in the average minimum SINR performance when
compared to theMMSE design. Lastly, we observe that the
average minimum SINR performance improves when the
number of transmit antennas grows. This is because more
antennas lead to more accurate beamformers matched
with channel characteristics.

Fig. 4 Average minimum SINR vs SNR with ε = 0.2,M = 6, and K = 3
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Next, we evaluate the average minimum SINR perfor-
mance of various designs under different CSI uncertainty
norm bounds with SNR = 5 dB and K = 3. Figure 5
demonstrates the average minimum SINR performance
for M = 4 and M = 6. Again, it is seen that the proposed
Robust-LPM achieves almost the same performance as the
proposed Robust-SP. As expected, the average minimum
SINR decreases as the channel uncertainty norm bound ε

increases. For example, the average minimum SINR of the
proposed two designs when ε = 0.5 is about 1 dB smaller
than those when ε = 0.1.

6.4 AverageWSRmaximization
Figure 6 shows the average WSR values of different
designs with ε = 0.2, M = 4, and K = 3. The weights
are μ1 = 0.2, μ2 = 0.3, and μ3 = 0.5. The proposed
worst-caseWSRmaximization beamformers are obtained
via Algorithm 2 with ξ = 0.01. “Robust-SP” and “Robust-
LPM” in Fig. 6 denote the max-min SINR solutions in
Algorithm 2 are obtained through Algorithm 1 based on
Robust-SP and Robust-LPM, respectively. It is observed
that the WSR maximization design based on Robust-SP
slightly outperforms the one based on Robust-LPM, where
the corresponding WSR gap is smaller than 0.1 bits/s/Hz
in the SNR regimes of consideration. For comparison,
we also demonstrate the performances of the WSR max-
imization beamforming designs for which the max-min
SINR solutions are respectively obtained based on the
NonRobust design, the MMSE design [4] and the Moore-
Penrose ZF design [23]. As shown in Fig. 6, the pro-
posed robust WSR maximization designs achieve signifi-
cantly higher average WSR, compared to the NonRobust,

MMSE, and Moore-Penrose ZF ones in the medium and
high SNR regimes. For example, at an SNR of 10 dB, the
proposed Robust-SP achieves about 0.2 bits/s/Hz and 0.6
bits/s/Hz more average WSR over the NonRobust design
and the Moore-Penrose ZF design,respectively.

7 Conclusions
Under the per-antenna power constraints, we proposed
an efficient approach to find the robust max-min SINR
beamforming designs by solving a sequence of min-max
power problems. We developed Robust-SP and Robust-
LPM for the robust min-max power problems. Building
on the min-max power solutions, a bisection search algo-
rithm was developed to obtain the robust max-min SINR
beamformers. Using the max-min SINR solution as a cor-
nerstone, we further proposed an MP method to find the
robust beamformers for the worst-case WSR maximiza-
tion with guaranteed convergence and global optimality.
Numerical results demonstrated that the proposed robust
designs provide substantial performance improvement
over the existing alternatives.

8 Appendices
8.1 Appendix 1: Proof of Lemma 1
Let W̌ =[ w̌1, ·, w̌1] be the optimal solution for (17) with

λ > 0, such that α̃∗(λ) = max1≤m≤M

[∑K
k=1 w̌kw̌H

k

]
m,m

Pm and
˜SINRk(W̌ )

γk
≥ λ.

For another λ′ ∈[0, λ], let β = λ′/λ. It is clear: 0<β <1.
we can show that

√
βW̌ is in the feasible set of (17) with

λ′. This is because: ∀k,

Fig. 5 Average minimum SINR vs ε with SNR = 5 dB and K = 3
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Fig. 6 Average WSR of different beamforming designs with ε = 0.2,M = 4, and K = 3. μ1 = 0.2, μ2 = 0.3, and μ3 = 0.5

S̃INRk(
√

βW̌ )

γk
= min

h∈Hk

β|hHk w̌k |2∑K
l 
=k,l=1

(
β|hHk w̌l|2

) + σ 2
k

≥ min
hk∈Hk

β|hHk w̌k |2∑K
l 
=k,l=1

(|hHk w̌l|2
) + σ 2

k
≥ βλ = λ′.

On the other hand, we have

max
1≤m≤M

[∑K
k=1

(√
βw̌k

√
βw̌H

k

)]
m,m

Pm

= β max
1≤m≤M

[∑K
k=1

(
w̌kw̌H

k

)]
m,m

Pm
= βα̃∗(λ).

Therefore, we must have α̃∗(λ′) ≤ βα̃∗(λ). It is easy to
see that α̃∗(λ) > 0 for any λ > 0. It in turn implies that
α̃∗(λ′) ≤ βα̃∗(λ) < α̃∗(λ) for 0 < λ′ < λ.

8.2 Appendix 2: Proof of Lemma 2
Since for allm = 1, ·,M,

[∑K
k=1 w̌

∗
k(λ̌)

[
w̌∗
k(λ̌)

]H]
m,m

Pm

≤ max
1≤m≤M

[∑K
k=1w̌

∗
k(λ̌)

[
w̌∗
k(λ̌)

]H]
m,m

Pm
= α̃∗(λ̌) = 1,

(40)

then the beamforming matrix W ∗(λ̌) is in the feasible set
of (16). This implies:

λ∗ ≥ min
1≤k≤K

S̃INRk(W ∗(λ̌))

γk
≥ λ̌. (41)

Let W ∗ =[w∗
1, ·,w∗

K ] be the optimal solution of (16). We
can show that W ∗ is in the feasible set of (17) with λ∗ as
the minimum ˜SINRk(W )

γk
requirement. This is because λ∗ =

min1≤k≤K
˜SINRk(W ∗)

γk
, or equivalently, ˜SINRk(W ∗)

γk
≥ λ∗, ∀k.

On the other hand, we have
[∑K

k=1 w∗
k
[
w∗
k
]H]

m,m
≤ Pm,

∀m. Therefore, we have

α̃∗(λ∗) ≤ max
1≤m≤M

[∑K
k=1 w∗

k
[
w∗
k
]H]

m,m
Pm

≤ 1. (42)

By Lemma 1, α̃∗(λ) is a strictly increasing function of
λ > 0. The inequality λ∗ ≥ λ̌ in (41) implies:

α̃∗(λ∗) ≥ α̃∗(λ̌) = 1. (43)

We have both (42) and (43) only when all the inequalities
are satisfied with equality, i.e., λ∗ = λ̌ andW ∗ = W ∗(λ̌).

8.3 Appendix 3: Proof of Lemma 4
We first derive the dual of the downlink beamforming
problem (23) without rank-one constraints. For conve-
nience of analysis, we scale the objective function of (23)
with

∑M
m=1 Pm, so that the objective of minimization is

the total transmission power α
∑K

k=1 Pm. Therefore, the
problem of interest is expressed as:

min{Xk tk , α} α
∑M

m=1 Pm

s. t.
∑K

k=1 tr(DmXk) ≤ αPm,∀m,
�k(λ) � 0, tk ≥ 0,∀k,
Xk � 0,∀k. (Pε)

It is evident that problem (Pε) and the SDP relaxation
(23) have the same feasible region and the same optimal
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solution.We introduce the following dual variables for the
corresponding constraints as shown in Table 1.
Let Q = diag(q1, ·, qM) and � = diag(P1, ·,PM), then

the dual of this SDP is given by
max

{Q,Gk ,dk ,βk ,}
∑K

k=1 βkσ
2
k

s. t.tr(�) ≥ tr(Q�),Q � 0,

Uk :=
[
Gk dk
dH
k βk

]
� 0,∀k,

Zk := Q − 1
λγk

(
Gk + dk ĥ

H
k + ĥkdH

k + βk ĥk ĥ
H
k

)
+ ∑

l 
=k

(
Gl + dlĥ

H
l + ĥldH

l + βlĥlĥ
H
l

)
� 0,∀k,

ck := βkε
2
k − Tr(Gk) ≥ 0,∀k. (Dε)

Note that the CSI uncertainty bounds ε =[ ε1, ·, εK ]T
and λ are regarded as the given parameters for both the
primal problem (Pε) and its dual (Dε). Suppose {Xk , tk ,α}
and {Q,Gk ,dk ,βk} are the optimal solutions of (Pε) and
(Dε), respectively. Similar to the discussions in [15, 20], we
have:

• Problem (Dε) is always strictly feasible;
• Suppose the primal problem (Pε) is feasible, then

strong duality holds true for the prime (Pε) and its
dual (Dε);

• βk > 0,∀k;
• Gk + dk ĥ

H
k + ĥkdH

k + βk ĥk ĥ
H
k � 0,∀k;

• rank(Xk) ≥ 1,∀k.
For any ε =[ ε1, ·εk]T ∈ �(ε̄), there is εk ≤ ε̄k ,∀k. This

follows that any feasible point of (Pε̄) must be a feasible
point of (Pε). Hence, (Pε) is solvable. Let V (ε) denote the
optimal value of (Pε) (or its dual (Dε)). It is clear that

V (ε) ≤ V (ε̄). (44)

Now, to establish rank(Xk) = 1, we use the comple-
mentary slackness condition Tr(XkZk) = 0 and prove
rank(Zk) = M − 1. According to the aforementioned
properties, we have βk > 0 and

Gk + dk ĥ
H
k + ĥkdH

k + βk ĥk ĥ
H
k

=
(
Gk − 1

βk
dkdH

k

)
+

(
1√
βk
dk + √

βĥk
)

×
(

1√
βk

dk + √
βĥk

)H
� 0,∀k. (45)

Table 1 Dual variables and their corresponding constraints

Dual variable Constraint

qm
∑K

k=1 tr(DmXk) − αPm ≤ 0

Uk �k(λ) � 0

ck tk ≥ 0

Zk Xk � 0

Additionally,

Tr(Gk) ≤ βkε
2
k ≤ V (ε)

σ 2
k

ε2k ≤ V (ε̄)

σ 2
k

ε2k (46)

<
V (ε̄)

σ 2
k

λγk minm qm
V (ε̄)

= λγk min
m

qm.

This implies that tr( 1
λγk

Gk) < minm qm, which leads to

Q − 1
λγk

Gk � 0. (47)

Therefore, the rank(Zk) is calculated as:

rank(Zk) = rank
((

Q − 1
λγk

Gk

)
+ 1

λγkβk
dkdH

k

+
∑
l 
=k

(
Gl + dlĥ

H
l + ĥldH

l + βlĥlĥ
H
l

)

−
(

1√
βk

dk + √
βĥk)(

1√
βk

dk + √
βĥk

)H
)

≥ M − 1, (48)

where the last inequation holds true due to the fact that

rank
((

1√
βk
dk + √

βĥk)( 1√
βk
dk + √

βĥk
)H)

= 1. Recall-

ing the complementary slackness conditions tr(XkZk) = 0
and rank(Xk) ≥ 1,∀k, we obtain rank(Zk) = M − 1 and
rank(Xk) = 1,∀k.

8.4 Appendix 4: Proof of Proposition 3
Firstly, we define wk := wk1 + jwk2 (i.e., wk1 = R(wk),
and wk2 = I(wk)). Likewise, we have ĥk := ĥk1 + jĥk2
and δk := δk1+jδk2. DefineW k,1 :=[w11, ·,wk−1,1,wk+1,1, ·,
wK1]∈ RM×(K−1) and W k,2 :=[w12, ·,wk−1,2,wk+1,2, ·,
wK2]∈ RM×(K−1). Let w̃ :=[wT

11,w
T
12, ·,wT

K1,w
T
K2]

T and
define K real 2K × 2M matrices in terms of λ and w̃ as

Ck(λ, w̃) :=
[ 1√

λγk
wk1 W k,1 W k,2 0

1√
λγk

wk2 W k,2 −W k,1 0

]T

,∀k, (49)

and K real 2K-dimension vectors in terms of λ and w̃ as

ck(λ, w̃) := Ck(λ, w̃)

[
ĥk1
ĥk2

]
+

[
0
σk

]
,∀k. (50)

The robust SINR constraints (26) can be then written as

Ck(λ, w̃)

[
δk1
δk2

]
+ ck(λ, w̃) ∈ L2K+2, ∀

∥∥∥∥ δk1
δk2

∥∥∥∥ ≤ εk .

(51)

Further define K real 2K × (2M + 1) matrices as

Bk(λ, w̃) := [
ck(λ, w̃) εkCk(λ, w̃)

]
,

and δ̃k :=
[
1 δTk1 δTk2

]T ∈ R2M+1, ∀k.
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Note that Ck(λ, w̃) and ck(λ, w̃) are affine with respect
to wk , ∀k; so are Bk(λ, w̃),∀k. Then (51) becomes

Bk(λ, w̃)δ̃k ∈ L2K , ∀δ̃k ∈ L2M+1, ∀k. (52)

Let

D̃m :=
[
R(Dm) −I(Dm)

I(Dm) R(Dm)

]
∈ R2M×2M. (53)

The per-antenna power constraints (7) are recast as
SOCs:[ √

αPm
(IK ⊗ D̃m)w̃

]
∈ L2MK+1, ∀m, (54)

where we use the fact that D̃m = D̃
1
2
m.

Then (27) is transformed as the following real-valued
optimization problem:

α̂∗(λ) = min
w̃, α

α

s. t.
[ √

αPm
(IK ⊗ D̃m)w̃

]
∈ L2MK+1, ∀m,

Bk(λ, w̃)δ̃k ∈ L2K , ∀δ̃k ∈ L2M+1, ∀k.

(55)

In order to solve (55), let us first deal with the robust
SOC constraints (i.e., the second group of constraints
therein). For a given λ > 0, define set Bk as

Bk :=
{
Bk(λ, w̃)|Bk(λ, w̃)yk ∈ L2K ,∀yk ∈ L2M+1

}
,∀k.

It can be seen that Bk contains linear maps taking L2M+1

to L2K . In other words, Bk is the setM of LPMs such that
M[L2M+1]⊂ L2K .

Lemma 6. The set Bk consists of all Lorentz-positive
matrices Bk(λ, w̃), i.e.,

xTk Bk(λ, w̃)yk ≥ 0,∀xk ∈ L2K ,∀yk ∈ L2M+1. (56)

Proof. It immediately follows from the fact that a
Lorentz cone is self-dual [29].

Clearly, the set Bk is a closed convex cone, and it thus
has an LMI description [33]. With such a convex LMI
description of Bk , we are able to formulate the problem
(55) into a standard SDP problem. For that purpose, we
need to introduce some notations and facts as follows.
Let S(n) and A(n) be the spaces of real symmetric and

skew-symmetric n × nmatrices, respectively. S+(n) is the
cone of positive semidefinite matrices in S(n). Let LP,Q
denote the [PQ(P + 1)(Q + 1)/4]-dimension linear space
of biquadratic forms [36]:

LP,Q :=

⎧⎪⎨
⎪⎩

⎡
⎢⎣
M11 · M1P
...

. . .
...

MP1 · MPP

⎤
⎥⎦ | Mpq ∈ S(Q)

⎫⎪⎬
⎪⎭ . (57)

It is evident that LP,Q ⊂ S(PQ). The orthogonal
complement of LP,Q within S(PQ) is the [PQ(P − 1)
(Q − 1)/4]-dimension subspace L⊥

P,Q, where

L⊥
P,Q :=

⎧⎪⎨
⎪⎩

⎡
⎢⎣
M11 · M1P
...

. . .
...

MP1 · MPP

⎤
⎥⎦ | Mpq ∈ A(Q)

⎫⎪⎬
⎪⎭ . (58)

It is clear that S(PQ) = LP,Q ⊕ L⊥
P,Q, where ⊕ denotes

the direct sum of vector spaces. By these definitions, it can
be seen that:

S+(P) ⊗S+(Q) ⊆ LP,Q, A(P) ⊗A(Q) ⊆ L⊥
P,Q. (59)

We recall the notation for Â(·) in (28) and cite
Theorem 5.6 in [33] as a lemma (see also [32], Lemma 3.2):

Lemma 7. Letmin{P,Q} ≥ 3. Then a matrixG ∈ RP×Q is
Lorentz-positive, if and only if there exists X ∈ A(P− 1) ⊗
A(Q − 1) such that

Â(G) + X � 0. (60)

Based on (59) and Lemma 6, we can derive an equivalent
condition for the Lorentz-positive Bk(λ, w̃) in Bk as
follows.

Proposition 5. For a given λ > 0, Bk(λ, w̃) is Lorentz
positive if and only if there is Zk ∈ L⊥

2K−1,2M such that

Â(Bk(λ, w̃)) + Zk � 0, ∀k. (61)

Proof. The proof follows immediately from
([32] Proposition 3.3) and the observation in ([32]
Equation (27)), and thus we omit it here.

We note that Bk(λ, w̃) and Â(Bk(λ, w̃)) (for a given λ >

0) are affine with respect to the design variable w̃, and that
L⊥
2K−1,2M is a linear subspace of symmetric matrices with

skew-symmetric blocks. It follows that (61) is an imple-
mentable LMI description for Bk(λ, w̃). Therefore, we
obtain the following equivalent convex SDP reformulation
of (55):

α̂∗(λ) = min
{Zk},w̃,α

α

s. t.
[ √

αPm
(IK ⊗ D̃m)w̃

]
∈ L2MK+1,∀m,

Â(Bk(λ, w̃)) + Zk � 0,∀k,
Zk ∈ L⊥

2K−1,2M,∀k.

(62)

Now we complete the proof of Proposition 3.

Endnotes
1The proof can be found in our conference version [28].
2It can be ready to extend the results under the

assumption of the spherical uncertainty region to the
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ellipsoidal region case: Ek :=
{
ĥk + δk | δHk Bkδk ≤ ε2k

}
,

where Bk ,∀k, are positive definite matrices.
3Analogous to the separation property of convex set,

any point z outsides a normal set can be separated from
the normal set by a cone congruent to the nonnegative
orthant. Thus, a normal set can be approximated as
closely as desired by a nested sequence of polyblocks.
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