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Abstract

The recent increase in the use of wireless networks for video transmission has led to the increase in the use of
rate-adaptive protocols to maximize the resource utilization and increase the efficiency in the transmission. However,
a number of these protocols lead to interactions among the users that are subjective in nature and affect the overall
performance. In this paper, we present an in-depth analysis of interplay between the wireless network dynamics and
video transmission dynamics in the light of subjective perceptions of the end users in their interactions. We
investigate video exchange applications in which two users interact repeatedly over a wireless relay channel. Each
user is driven by three conflicting objectives: maximizing the Quality of Service (QoS) and Quality of Experience (QoE)
of the received video, while minimizing the transmission cost. Non-cooperative repeated games model precisely
interactions among users with independent agendas. We show that adaptive video exchange is impossible if the
duration of the interaction is determined. However, if the users interact indefinitely, they achieve cooperation via
exchange of video streams. Our simulations evidence the tradeoff between users’ QoS and QoE of their received
video. The expected duration of the interaction plays a role and draws the region of solution trade-offs. We propose
further means of shaping this region using Pareto optimality and user-fairness arguments. This work proposes a
concrete game theoretical framework that allows the optimal use of traditional protocols by taking into account the
subjective interactions that occur in practical scenarios.

Keywords: Rate adaptation, QoS vs. QoE tradeoff, Video exchange, Non-cooperative repeated games

1 Introduction
The past decade has seen an enormous growth in users
of wireless networks. With the increasing variety of video
applications via wireless channels, it is imperative that
this number will grow. Given the limited resources at
their disposal, competition emerges among the users to
access these video services effectively. This competition
affects the experienced video quality and plays a role in
optimizing the resource allocation.
An important demand of the users of the video appli-

cations is high quality of experience of the perceived
video. The QUALITY of Experience (QoE) at the end
user depends on the temporal and spatial structure of
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the video, and its optimization involves the minimization
of video distortion and of disruptions in video playback.
The temporal structure may relate to many features, for
example, to the continuity in the video observed at the
end user without freezing or disruptions, ideally imply-
ing timely playback of the video. Similarly, the spatial
structure may relate to features, for example, to the avoid-
ance of formation of artifacts due to packet losses at the
end user [1]. Furthermore, the wireless nodes involved in
the video transmission are distributed and autonomous
devices. In a video exchange scenario between two selfish
autonomous users, the ability of a user to obtain a desired
quality video depends on the action chosen by the other
user, i.e. howmuch information it sends. In turn, the other
user will incur a transmission cost. This leads to a natural
conflict between minimizing their own transmission cost
while maximizing the Quality of Service (QoS) andQoE of
their video. This paper addresses such competitive video
exchange between two users.
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A relevant framework to model this type of competi-
tive interactions is provided by game theory. Tools from
game theory have already been used to study various
aspects of transmission over wireless networks [2, 3].
To be more precise, the game theoretical framework
has been applied at the physical layer to design power
allocation policies [4, 5] and at the application layer to
design rate allocation policies [6, 7]. Furthermore, other
types of strategic interactions such as network topol-
ogy selection games [8], pricing games between service
providers and users for network congestion control [9].
The aforementioned works consider a one-shot inter-
action model; however, repeated interactions that take
place over multiple stages seems more realistic. Repeated
games have been used in [10] to study a distributed
state estimation problem for the inter-connected electri-
cal power grid; also, in [11], the authors study a distributed
power control problem in a wireless communication sce-
nario. Therefore, the repeated games’ framework seems
to be very promising for many other interactive multi-
user applications such as distributed rate adaptation
problems.
The game theoretical analysis of different transmission

protocols has been considered in the literature [7, 12]. In
[7], the authors have modeled the players as the Transmis-
sion Control Protocol (TCP) flows and the actions as the
rate adaptation parameters to optimize their own average
throughputs. The user actions, which are the rate adap-
tation parameters, control the number of buffer packets
that are stored to be transmitted at a later stage. In [12],
the competition in TCP has been modeled by allowing
the users to choose the gradient of rate adaptation. In
these works, the players have discrete (often binary) sets
of actions. It is important to build models that allow the
users to choose smoother actions, e.g. from continuous
sets.
The main contributions of this work are as follows:

• We present a video exchange interaction among two
users by a non-cooperative repeated game
framework. The overall game-theoretical framework
that has been built is particularly suited for wireless
networking analysis. The reason is that both the
wireless channel dynamics (network resource) and
the video rate dynamics can be jointly treated
analytically to analyze the performance of interactive
protocols. Moreover, the type of analysis based on
selection of (conflicting) objectives allows to account
for a wide range of pure technological issues to be
studied against different subjective considerations.

• We show the application of the game theoretical
framework to the analysis of the concrete problem of
QoE-driven rate adaptation over underlying
Markovian channel dynamics taking into account

subjective factors. The use of this framework has
revealed the existence of a trade-off between QoE
and QoS in such systems. This trade-off arises due to
conflicting paradigms that are desired by the users:
increase in the quality of the video, or QoS, received
leading to higher rate of adaptation to channel
conditions and increase in quality of video playback,
or QoE that is inversely affected by faster rate
adaptation due to higher probabilities of exceeding
channel capacity. This trade-off captures the
three-fold impact of dynamics among the network
resources, video transmission and subjective
interactions, all three of which are modeled in our
framework.

• We illustrate that this trade-off has been found to be
controlled by not only the expected channel
conditions but other factors like the expected
duration of the interaction among the users and the
tolerance of the users and Pareto optimality
arguments. As the expected duration of interaction
increases, the speed of rate adaptation to the channel
conditions increases providing better QoS but
leading to increase in outages inversely affecting the
QoE. Likewise, it is also shown and quantized that the
achievable QoS and QoE of the user depends on the
level of tolerance towards the performance gains of
the other user exceeding its own. Further, we argue
that rational users are more likely to agree upon
Pareto optimal trade-offs. Pareto optimality of an
outcome means that no other tradeoff exists that
offers a strictly better utility to one user without
decreasing the other’s. Hence, a number of factors are
shown to directly or indirectly determine the
achievable rates and consequently the QoS and QoE
obtained by the users.

• Overall, our results indicate that competing protocols
over underlying wireless networks can be more
accurately understood by considering also subjective
metrics. Robust protocols for wireless channels
should then be able to take into account underlying
trade-offs for optimal and stable behavior, etc.

This work extends and improves the conference version
[13] in four aspects. (i) The results regarding the solu-
tion of the repeated game were only announced in [13].
Here, we provide the complete proofs of all our claims. (ii)
We extend the systemmodel to include both satellite- and
terrestrial-based bent-pipe topology. (iii)We add a discus-
sion on the means to shape the optimal trade-off region of
the game using user-fairness and Pareto optimality argu-
ments. (iv) At last, our simulation section is wider and
offers a more complete view on how the system parame-
ters impact the outcome of the game with an emphasis on
the QoS vs. QoE trade-offs.
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This paper is organized as follows. In Section 2, we
describe the system model and the QoE-driven rate adap-
tation performance metrics which are used in the paper.
We present the game theoretical framework for video
transmission in Section 3. The numerical results are
presented in Section 4 followed by the conclusions in
Section 5.

2 System and rate adaptationmodels
In this section, we describe the system model and the rate
adaptation scheme. We also define the users performance
metrics.

2.1 Systemmodel
2.1.1 Topology
The system under study is composed of two nodes or
users that may exchange their videos via a relay node. This
model relates to video streaming situations between two
parties across geographically separated areas. User A (or
B) transmits the video packets to the relay, and the relay
forwards these packets the other user B (or A) as shown in
Fig. 1.

2.1.2 Channel model
The wireless channel between any two nodes has vari-
able capacity to transmit packets depending on factors like
environmental conditions (rain, cloud, etc.), and conges-
tion due to other users. We model channel links between
the nodes to have a certain throughput capacity which
varies with time. The throughput capacity is the maxi-
mum number of packets that can be transmitted between
any node k and node l at time t and is denoted by Rkl(t).
It is measured in packets per time slot (pps). As shown
in Fig. 1, RAB = 0 for all t. All links are assumed to
have equal throughput capacities Rc(t), that is, Rkl(t) =
Rc(t), ∀kl ∈ {AR,BR,RA,RB} at any time instant t. Each
time instant is described by t = n�, where n ∈ Z

+ and
� is the interval size, i.e. a precision parameter. We will

Fig. 1 Network topology. The nodes A and B exchange information
via R. The arrows indicate the links with a positive channel capacity

refer to instantaneous quantities using the integer value
n henceforth. We assume that the relay node (e.g. satel-
lite) simply forwards the packet without any processing.
Therefore,Rc(n) is the instantaneous end-to-end through-
put capacity of the channel between A and B and vice
versa.
This assumption (of the symmetric channel links) is

taken for the sake of simplicity of analysis and illustra-
tion. The main results of this work can be generalized
to the case of asymmetric links. However, the underlying
mathematical analysis becomes more tedious and hinges
the reader into the understanding of the major ideas and
intuition behind the repeated user interactions.
We consider a bent-pipe topology that belongs to a big-

ger and denser network. Our aim is to study the dynamics
of transmission within this subset of a denser network
such that the results can be modularized and extrapolated
to more general cases.
The underlying wireless channel is modeled by a two-

state Markov random process as described in [14] and
shown in Fig. 2. The “good” state corresponds to the chan-
nel being in favorable conditions (e.g., line of sight and
clear weather). The “bad” state refers to the channel being
in unfavorable conditions (e.g. obstructive conditions like
clouds and raining). The probability of the channel to
move from a good to a bad state and vice versa is pGB and
pBG, respectively. Consequently, the probability to remain
in good and bad state are pGG = 1 − pGB and pBB =
1 − pBG. From this model, we can infer the probability of
the channel to be in bad and good states (i.e., pB and pG):

pB = pGB
pGB + pBG

(1)

pG = pBG
pGB + pBG

. (2)

When in a good state, the channel has a throughput
capacity of R1, whereas, in a bad state, the capacity is lower
R2 < R1. Therefore, at any time instant t = n�,

Rc(n) =
{
RG good state
RB bad state (3)

Fig. 2 A two-state Markov model for wireless channel
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The channel coherence time is given by Tc = c�, c ∈
Z

+. We assume that c >> 1 which means that the chan-
nel coherence time is very large which is reasonable in
a number of wireless transmission scenarios (e.g. satel-
lite conditions). We also assume that each video stream
exchange lasts for T = N� slots, and we focus on the
cases where N � c. This is also a reasonable assumption
as the video exchanges often last a long period of time in
many wireless transmission scenarios.
We point here that this scenario is general and is appli-

cable to any bent-pipe topology. The model captures the
scenarios in which the relay node may be a terrestrial
node or a satellite node and can be adapted to differ-
ent wireless scenarios by adjusting the parameters (e.g.
delay in transmission depending on satellite or terrestrial
scenario).

2.1.3 Cross-layer designmodel
The video content is transmitted using User Datagram
Protocol over Real-Time Transport Protocol (RTP). The
source node is equipped with a codec responsible for com-
pression of the video content. The output rate of the codec
can be reconfigured to deliver a target bit-rate. Therefore,
at the source node, the output rate can be adjusted as
desired. This output rate from any node k ∈ {A,B} at time
t = n� is denoted by rk(n), and it is measured in packets
per time slot. The packets are further passed down to the
network layer maintaining coherence with standard pro-
tocol stack. The rate of transmission of video payload is
adapted to the network conditions by optimization of the
QoE perceived at the end user. With the use of Real Time
Control Protocol (RTCP) signaling, the source node col-
lects the feedback information about the round-trip time
from the destination. The RTCP feedback signaling pro-
vides the source node with information to re-configure the
codec rate to suit the target needs.

2.1.4 Buffer and delaymodel
Each of the users maintains a transmission buffer of size
Bc packets. The number of packets stored in transmis-
sion buffer at time t = n� is given by B(n). The buffer is
maintained using a first in, first out (FIFO) queue. Let the
source node k transmit the packets at time t = n� at the
rate rk(n). The source node is unaware of the channel link
capacity Rc(n). Assume that the buffer is initially empty. If
rk(n) < Rc(n), all the packets are transmitted through the
channel with rate rk(n). If rk(n) ≥ Rc(n), then packets are
transmitted with a rate of Rc(n) through the channel link.
From the remaining rk(n)−Rc(n) packets,B(n) ≤ Bc pack-
ets are stored in the transmission buffer. The remaining
packets are lost. In the next time slot, the packets stored
in the buffer are transmitted through the channel. These
packets face a delay in reaching the destination. The same
process as above is applied to the rest of the new packets

to be transmitted, but now the effective channel capacity
is Rc(n) − B(n − 1).
Using the above model, we will now describe a smooth

adaptation method that depends on the QoE, QoS and
transmission cost derived in [15] that will enable us to
study the game theoretical interaction among the nodes in
subsequent sections.

2.2 Generic rate adaptation
The cross layer rate adaptation model provides a frame-
work to optimize the output codec rate of a source node
with feedback from the network in the form of RTCP sig-
nals [16, 17].Wewill focus on the rate adaptation based on
optimizing QoE of the video obtained by the end user. The
QoE can be quantified using different metrics in a spatial
domain like structural symmetry (SSIM) and in temporal
domain like flow continuity. For simplicity, we choose the
flow continuity of the video as the measure of the QoE.
The flow continuity is defined as the probability that the
delay in the network falls below a threshold thereby pro-
viding a characterization of the ability of the end user to
view the video without any freezing. The rate is adapted to
the channel conditions as follows. The source begins the
transmission at a certain initial rate. The rate is increased
with time, as long as the source observes no delay. As soon
as the source observes a delay, it reduces the rate to the ini-
tial value. The process is again repeated. This adaptation
is shown in Fig. 3. Mathematically, any source k begins the
transmission at rate rk(1) = β < Rc(1), where β ∈ R

+ .
With each RTCP received, the rate is updated by

rk(n,αk) =
{

β + δrk(n,αk) if no delay observed
β if delay observed (4)

where the increment in rate is

δrk(n,αk) =[αk(nmod p(n))�]2

such that � is the time interval size, αk ∈ (0, tan(π/2)) is
the slope of the rate adaptation curve and p(n) is the time
period of the waveform in Fig. 3 given by

p(n) =
⌈√

Rc(n) − β

αk�

⌉
+ 1

Note that this rate adaptation is done at the source node
k, and it depends on the delay statistics observed at node
l �= k. Henceforth, we denote the player other than k as
−k. Note that the increment in rate can be modeled using
different functions like logarithmic, linear or exponential
functions.We chose here a squared function having a slow
start followed by a rapid growth which makes our model
resemblant to TCP to some extent [16, 17].
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Fig. 3 Illustration of rate adaptation curve. The red and blue curves indicate the rate rk(n) and channel capacity, respectively. The angle α remains
constant for all n, whereas the period p(n) depends on the channel capacity

We now describe the performance metrics which will be
used in this work.

2.2.1 Quality of servicemetric
The network utility to a node is defined as the ratio of the
network capacity used to transmit packets to that node
and the total network capacity. The number of packets
received at node k depends on the rate of transmission at
the other node r−k(n,α−k). However, these packets can-
not exceed the instantaneous channel capacity. Therefore,
the instantaneous network utility at time t = n� is given
by

μ(Rc, r−k , n,α−k) = min(Rc(n), r−k(n,α−k))

Rc(n)

where Rc(n) is given by (3) and r−k(n,α−k) is given by (4).
We define theQuality of Service at node k by the averaged
network utility to node k over time:

f QoS
k (α−k) = 1

N

{ N∑
n=0

μ(Rc(n), r−k(n,α−k))

}
(5)

It can be seen that the QoS of node k depends on the rate
adaptation at the other node via α−k .

2.2.2 Quality of experiencemetric
The flow continuity is defined as the probability that the
delay in the network falls below a threshold. The delay in
the network leads to video packets arriving late at the end
user leading to a visible freezing of the displayed video and
degrading the quality of experience. For simplicity, flow
continuity is chosen as the sole QoE indicator. Based on
our model in Section 2.1, the delay is observed at node k

if the rate r−k exceeds the channel capacity (assuming the
threshold admissible delay is 0). We define a delay counter
function ϕ(.) which determines if there is an instanta-
neous delay in the network or not. This function takes
the instantaneous rate and the channel capacity as the
input and is reset if there is no delay or gives value one
otherwise:

ϕ(r(n,α),R) = max(0, sgn(r(n,α) − R))

where

sgn(r(n,α) − R) =
⎧⎨⎩

−1, if r(n,α) < R
0, if r(n,α) = R
1, if r(n,α) > R

Therefore, we can write the total number of delays as

N∑
n=0

ϕ((r−k(n,α−k),Rc(n))

We can now define theQuality of Experiencemetric as the
average flow continuity of the network:

f QoE
k (α−k) = 1 −

{∑N
n=0 ϕ(Rc(n), r−k(n,α−k))

N

}
(6)

We note that the flow continuity at k is a function of the
rate adaptation gradient at the other node α−k .

2.2.3 Transmission cost
In order to transmit packets, the sender node k incurs a
cost of transmission due to the power usage, hardware
requirements, etc. This cost is dependent on not only the
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magnitude of resources used for transmission but also
the gradient of increment in the rate. This is because the
higher the gradient in rate increment, the more is the dif-
ference between the two consecutive instantaneous rates.
This asserts a higher energy demand on the resources to
make a sharper change in the rate leading to higher cost.
In order to model this cost of transmission, for simplicity,
we use a logarithmic function of the rate adaptation slope
or α given by

f COST
k (αk) = log2(1 + arctan(αk)) (7)

The cost of transmission at the node k is determined by
his own rate adaptation gradient.
Combining QoE and QoS vs. transmission cost, we will

define the player’s k payoff or benefit obtained from the
video exchange as the weighted sum of the three aspects

w1f QoS
k (α−k) + w2f QoE

k (α−k) − w3f COST
k (αk)

where wi ∈ Z are the respective weights and their role will
be investigated via numerical simulations. Optimizing the
weighted sum of objectives is a scalarization technique to
solvemulti-criteria optimization problems. This approach
leads to good or even optimal (e.g. in convex optimization
problems) trade-offs among the multiple objectives that
are often opposing ones [18].

3 Game theoretical framework for QoE-driven
adaptive video transmission

From the previous discussion in Section 2.1, the quality
of the video obtained by a player, say A, depends on the
rate of transmission of player B and vice versa. Addition-
ally, in order to transmit the video packets to player A,
player B incurs a cost and vice versa. Therefore, if the play-
ers are selfish, there is a conflict of interest as both players
want to incur minimum cost (affecting the video quality
of other player) and also obtain a good quality of video
themselves (affected by the rate of transmission by other
players). Therefore, there is an interaction arising natu-
rally among such two nodes which is modeled using game
theory.

3.1 One-shot non-cooperative game
The relevant one-shot non-cooperative game is defined by
the tuple:

GO ={P , {Ak}k∈P , {uk}k∈P} (8)

in which P is the set of players that selfishly maxi-
mize their own payoffs, given by uk , by choosing the
best actions in their action set Ak . With the QoE-driven
rate adaptation model to exchange video, we define the
following component sets of the game tuple GO :

Players Set P : The set of players or users is given by
P = {A,B} which are the two nodes A and B that
exchange the video packets.
Action SetAk : The set of actions that can be taken
by the player k, where k ∈ {A,B}, is given by
Ak = [

0, λπ
2
]
and λ ∈ (0, 1). The action chosen by

the kth player fromAk is denoted by αk . Hence, the
player can choose the gradient of rate adaptation as
its action in order to maximize its own benefits. The
factor λ ensures that the gradient is always α < π

2 to
prevent infinite increase in rate.
Payoff function uk : The payoff function of the kth
player is defined as follows:

uk(αk ,α−k) = w1f QoS
k (α−k)+w2f QoE

k (α−k)−w3f COST
k (αk)

(9)

The payoff function of the kth player depends not
only on his own action αk but also on the other
player’s α−k . This function combines jointly the
video quality experienced by player k and the cost of
transmitting video to the other player. The
throughput and the flow continuity (given by
f QoS
k (α−k) and f QoE

k (α−k) in (3) and (4)) affect the
quality of the video experienced by player k and are
both determined by the action of the other player
α−k . The weights wi ∈ (0, 1) are positive parameters
that assign dimensions to the three factors such that∑3

i=1 wi = 1.

A solution concept of this game is the Nash equilibrium.
The Nash equilibrium (NE) of a non-cooperative game G
is defined as a set of actions of the players (α∗

k ,α
∗
−k), from

which no player has an incentive to deviate unilaterally.
Hence, the selfish rational players can be foreseen to play
the action at NE.

Proposition 1. The unique Nash equilibrium of
one-shot QoE-driven adaptive video exchange game
GO ={P , {Ak}k∈P , {uk}k∈P } is given by (α∗

1 ,α∗
2) = (0, 0).

Proof. See Appendix A.

The NE in the one-shot game shows that the two selfish
players will not exchange any data if their interaction takes
place a single time. No selfish player would be willing to
incur a cost to send the video when there is no guaran-
tee of receiving anything in return. Moreover, even if the
other player were to send data, rational behavior leads to
the choice which minimizes the cost.
In the following, we study repeated games as a mech-

anism to motivate rational players to share data in the
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absence of a central authority which may use other mech-
anisms such as pricing techniques to manipulate the Nash
equilibrium [19].

3.2 Repeated games framework
We consider that the players interact repeatedly under the
same conditions, i.e. the same game GO is played repeat-
edly. The repeated game can lead to a change in the
outcome because the players can now observe the past
interactions and decide accordingly upon their present
action. We will first formulate the game tuple, in coher-
ence with the definition of Section 3.1. We will consider
two cases: (i) finite-horizon repeated game: the players
know in advance how many times they will interact or
when the game ends and (ii) infinite horizon repeated
game: the players are unaware of howmany times they will
interact. We analyze the outcomes or game equilibria in
these two cases.
Before proceeding, we remark that the assumption

N >> c is required for the same game GO to be played
repeatedly (see Section 2.1). The QoS and QoE terms in
the players’ payoff functions are empirical averages (over
an N time horizon) of random quantities depending on
the varying channel state. This state changes at every c
temporal instances and if N >> c, we can consider that
these functions are approximately equal to their statistical
counterparts and, thus, are good estimates as determinis-
tic functions of α−k . Otherwise, since the payoff functions
would change randomly at every stage, more advanced
tools such as Bayesian games would have to be used
instead of repeated games.
A repeated game, in which the game GO defined in (8) is

played repeatedly, is defined using the following tuple:

GR = {P , {Sk}k∈P , {vk}k∈P ,T}
whose components are defined below.

Players set P : refers to the set of players {A,B}.
Strategy set Sk : The strategy set of player k is
different from the action set in (8) because it
describes a strategic plan on how to choose an action
inAk at every stage of the game and for any history
of play. More precisely, let the actions taken by the
players in the τ th stage be a(τ ) = (a(τ )

1 , a(τ )
2 ). Then

the history of the game at the end of stage t ≥ 1 is
given by h(t+1) = (a(1)a(2) . . . a(t)). The set of all
possible histories up to t is given by
H(t) = {Ak × A−k}t whereAk is the action set in (8)
given by [ 0, λπ

2 ]. The strategy of a player k for T
interactions is a sequence of functions
sk = (s(1)k , s(2)k . . . , s(T)

k ) ∈ Sk that map each possible
history to an action: s(t)k : H(t) → Ak such that
s(t)k (h(t)) = a(t)

k .

Overall payoff function vk : The payoff function is an
overall average of the payoffs obtained by player k in
every stage of the game. We consider a discounted
average payoff such that the player discounts the
future payoffs by a factor δ ∈ (0, 1):

vk(s) = (1 − δ)

(1 − δT )

T∑
t=1

δt−1uk(a(t)) (10)

where a(t) is the action profile at stage t induced by
strategy s (i.e. s(t)k (h(t)) = a(t)

k ∀ k), uk is the
one-stage payoff function defined in (9), and T is
defined as the number of times the interaction takes
place. It is assumed that T > 1.

One interesting solution in repeated games is the sub-
game perfect equilibrium [10] which is a refined NE.
In coherence with the NE of one-shot games, the NE
of repeated games is a strategy profile from which no
player gains by deviating unilaterally. However, there are
some strategy profiles, which are not expected to occur
because of player rationality although they are NE of the
overall interaction. Hence, the sub-game perfect equilib-
rium region is a subset of NE. A sub-game is a repeated
game starting from stage t onwards and which depends
on the starting history h(t), and is denoted by GR(h(t)).
The final history for this sub-game is given by h(T+1) =
(h(t), a(t), . . . a(T)). The strategies and payoffs used for the
sub-game are the functions of possible histories that are
consistent with h(t). Any strategy profile s of the whole
game induces a strategy s | h(t) on any sub-game GR(h(t))
such that for all k, sk | h(t) denotes the restriction of sk
to the histories consistent with h(t). A sub-game perfect
equilibrium (SPE) is defined as a strategy profile s∗ =
(s1, s2) such that for any stage t and any history h(t) ∈ H(t),
the strategy s∗ | h(t) is a NE for the relevant sub-game
GR(h(t)).

3.3 Finite horizon repeated game
We investigate the expected outcomes or SPEs for the
repeated video exchange game GR assuming T is fixed and
known by the two players. The only SPE of this game is
given in the following proposition.

Proposition 2. The unique sub-game perfect equilib-
rium of the video exchange game between two players,
defined by GR = {P , {Sk}k∈P , {vk}k∈P ,T}, where T < ∞
and is known to both players is given by

s(t),∗k = 0, ∀k ∈ P , ∀t ∈ {1, 2 . . .T}

The details of the proof are provided in Appendix 2.
The players are aware of the number of times the video
exchange will occur; hence, the players act selfishly at
each stage of the game in order to maximize their payoffs.
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There is no incentive in building long-term trust in this
game for any player, because it is known that the game
will be played only T times. This result is similar to the
repeated prisoners’ dilemma [19] and is due to the fact
that the players have a strictly dominant action (and action
that offers strictly higher payoff than any other action irre-
spective of what the other player does) at every stage of
the game which is αk = 0, for all k.

3.4 Infinite horizon repeated game
If the players’ interaction is only temporary and occurs
in a determined number of stages, the only rational out-
come results in no video exchange at all because the player
knows exactly when the interaction ends. Here, we inves-
tigate the possibility of achieving different outcomes in the
case of uncertain duration or long-term interaction.
We will now study the SPE for infinite horizon repeated

game.The players do not know precisely when the game
will end, or equivalently, it is assumed that T → +∞.
We will now identify some strategies that are SPE for such
games. Note that the overall achievable SPE region for the
infinite horizon repeated games is an open problem and
not known in general [19].

Proposition 3. A sub-game perfect equilibrium of the
video exchange game between two players in an infinite
horizon repeated game described by
GR = {P , {Sk}k∈P , {vk}k∈P ,+∞} is given by

s(t),∗k = 0, ∀k ∈ P , ∀t ∈ {1, 2 . . . ∞} (11)

The proof is given in Appendix 3. This pessimistic SPE
given by (11) is independent of the choice of the dis-
count factor δ ∈ (0, 1). However, there are other possible
SPEs. We will show that, depending upon the discount
factor and other system parameters, an SPE that allows
non-trivial video exchange is sustainable in the long term
interaction. The intuition is similar to the infinite time
horizon prisoner’s dilemma [19]. In a long term, the play-
ers can build trust with one another to exchange their
video (in spite of the incurred transmission cost) non-
trivially and improve their received videos QoS and QoE
(thats depends on the opposite player’s strategy) which
results in overall payoff functions which are higher than
the no cooperation state (0,0) for both players.
Consider the action profile (α∗

1 ,α∗
2) such that

u1(α∗
1 ,α∗

2) > u1(0, 0)
u2(α∗

1 ,α∗
2) > u2(0, 0)

(12)

We focus on action profiles that provide higher payoffs
than the one-shot NE for both players. Each player is will-
ing to take the risk of paying a transmission cost in the
hope that the other player will do the same and which will
lead them both to higher average payoffs.

In the next proposition, we describe such SPE of the
game GR which is conditional to the value of the discount
factor δ.

Proposition 4. In an infinite-horizon repeated game
GR = {P , {Sk}k∈P , {vk}k∈P ,+∞}, for any agreement pro-
file (α∗

1 ,α∗
2) satisfying (12), if the discount factor is bounded

by

1 > δ > δmin
asym(α∗

1 ,α∗
2) (13)

where δmin
asym(α∗

1 ,α∗
2) is given by

δmin
asym(α∗

1 ,α∗
2 ) =

max
k∈P

w3[ f COST
k (α∗

k ) − f COST
k (0)]

w1[ f QoS
k (0) − f QoS

k (α∗
−k)]+w2[ f QoE

k (0) − f QoE
k (α∗

−k)]

(14)

then the following strategy is an SPE: “A player k trans-
mits with gradient α∗

k at the first stage and continues to
adapt the rate with this gradient as long as the other player
adapts its rate at least by α∗

−k. If a defection is detected,
both players stop transmitting (i.e. α = 0) for the rest of the
interaction.”

We detail this proof in Appendix 4.
We remark that the inequality 0 < δmin

asym(α∗
1 ,α∗

2) <

1 holds for any (α∗
1 ,α∗

2) satisfying (12) as explained in
Appendix 4; therefore, (13) does not imply any additional
condition on the system parameters. If an agreement
point satisfies (12), then there is an admissible discount
factor range within (δmin

asym(α∗
1 ,α∗

2), 1) such that the agree-
ment point (α∗

1 ,α∗
2) is sustainable. Intuitively, if an agree-

ment point provides a higher utility than the one-shot NE
to both players, such agreement point can be sustained.
From the above Proposition 4, we have identified the

set of discount factors leading to a long-term sustainable
SPE different than (0, 0). The discount factor can be inter-
preted as the players’ belief on the game to go on at every
stage of the game. If the probability of the game to con-
tinue is large enough, the players develop trust and obtain
better overall payoffs thanminimizing their instantaneous
costs.

3.5 Selection of sustainable agreement profiles
We have shown that, when the video exchange is per-
formed repeatedly, the players can transmit the video at
an agreement profile defined in (12). A natural question
arises: out of all these agreement profiles, which specific
profile is more likely to be selected by the players? In gen-
eral, this is an open and difficult question. Also, a unified
framework to tackle this problem [19] is still missing.
In this section, we present a qualitative analysis of this

problem specific to our video exchange scenario. We
illustrate numerically which of the achievable agreement
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profiles are more likely to occur over a period of time. We
consider two factors that play a role in choosing a partic-
ular agreement profiles: the tolerance index of the players
and the Pareto optimality of the agreement points.

3.5.1 Tolerance index
It can be easily observed that the achievable agreement
profiles do not provide equal payoffs to both the players.
Some of these agreement profiles are advantageous to one
of the players, and only a subset provides equal payoffs to
both players.
Until now, we have assumed that every player k agrees to

the action profile (α∗
k ,α

∗
−k)without considering the payoff

obtained by the other player, u−k(α
∗
k ,α

∗
−k), as long as its

own payoff uk(α∗
k ,α

∗
−k) is better than the NE. This means

that the players are selfish but not malicious. However, in
realistic scenarios, if the two selfish players have similar
negotiation stand points, it is unlikely that they agree to a
profile (α∗

k ,α
∗
−k) that provides a huge advantage to one of

the players.
In addition, there may also be cases when a player agrees

to an action profile that offers a large advantage to the
other player and leads to asymmetric payoffs in situations
when the player wishes to obtain the video at any cost.
Such a behavior is critical from the point of view of service
provider providing the transmission to both the players:
the provider prefers to provide just enough rate (from
the other player) as desired by the player and not more,
since the player is ready to settle for lower rates due to its
extreme needs.
To model such behavior, we introduce the concept of

tolerance index as follows:

Corollary 1. Assuming the players (in the infinite hori-
zon repeated game) observe both utilities at the agreement
point, then an action profile (α∗

1 ,α∗
2 ) is likely to be chosen

if, in addition to (12), the following condition is met

| u∗
k − u∗

−k |< ξmin(u∗
k ,u

∗
−k) (15)

where u∗
k = uk(α∗

k ,α
∗
−k) , u

∗
−k = u−k(α

∗
k ,α

∗
−k) and ξ > 0

represents the tolerance index .

The agreement points in (12) do not imply that the play-
ers’ utilities must be equal. If the players have infinite
tolerance index, then the players may agree to any action
profile as long as they obtain a higher payoff than the NE.
If the players have a limited tolerance index ξ , then the
condition (15) restricts the previous region of agreement
points as follows: the player obtaining a lower payoff will
only agree to (α∗

1 ,α∗
2 ) if the difference in payoffs is lower

than ξ times its own payoff. In other words, when the play-
ers exchange the video, they can tolerate a difference in
their video qualities or costs which is bounded. Rational

players that have similar negotiating stand points will only
agree to fair contracts.
Note that apart from this tolerance index, there exist

other parameters that could be used to quantify the fair-
ness among the different users. For example, Jain’s fairness
index [20] and max-min fairness index capture the fair-
ness among all the users at the holistic level and from a
centralized (system-wise) point of view. In this work, we
use the tolerance index for a different reason. Indeed, our
tolerance index is a user-centric one in which the individ-
ual tolerance of each user is quantized independently from
the overall system.

3.5.2 Pareto optimality
Aside from the fairness criterion, Pareto optimality also
plays a role in determining the profiles most likely to be
chosen by rational players [19]. Pareto optimal profiles are
those profiles starting from which no player can improve
its own payoff without making another’s payoff worse.
These profiles lie on boundary of the whole achievable
region. Intuitively, players will tend to agree upon the pro-
files which are Pareto optimal: assume that the players
choose an agreement profile which is not Pareto optimal.
This means that either or both players can improve their
payoffs without worsening anyone’s payoff. Therefore, the
players will tend to agree upon the agreement profiles
which are Pareto optimal such that both players can obtain
the maximum possible payoff at a given discount factor
and tolerance index.

4 Numerical results
We now present our simulation results to illustrate how
the channel conditions modify the outcome when two
players exchange video repeatedly over an undefined hori-
zon of time. We consider the following scenario: R1 =
350 kbps (a good state channel), R2 = 200 kbps (a bad
state channel), Tc = 20 s (coherence time), T = 20000 s
(duration of each video exchange), β = 150 kbps, � = 1,
w1 = w2 = 0.45, and w3 = 0.1.

4.1 Achievable agreement region
In this subsection, we present the variation in the achiev-
able agreement points at which the players exchange
videos. Given our varying channel model, the probability
of a channel to be in a good state (pG) implicitly affects
these agreement points. Figure 4 illustrates the achiev-
able agreement region of Proposition 4 as function of the
varying channel conditions. We assume δ → 1 which
implies a probability of the game to go on that approaches
1. When pG tends to 1, the channel is in good conditions
with high probability. This leads to a larger agreement
region of payoffs exceeding the NE for both players (12).
When the channel conditions worsen and pG tends to
0, this region diminishes. This implies that the players
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Fig. 4 Achievable region increases as channel conditions improve and there is a higher probability of channel to be in good conditions

will adapt to the channel conditions faster, with a higher
gradient, when the conditions are good (thereby utiliz-
ing the available resources more efficiently). However, in
bad channel conditions, the players will be more cautious
and will not agree to fast adaptation rates (the available
resources remain under-utilized).
We remark that the boundary curve has periodical

pikes that can be explained by the shape of the utility
uk(αk ,α−k) as function of (αk ,α−k). For a fixed α−k , this
function decreases with αk . However, this utility function
is not a monotonous function of α−k . This is because the
utility function is composed of QoE and QoS terms aside
from the transmission cost. Although, the QoE decreases
with α−k (due to abrupt breaks in flow continuity with a
rate exceeding the channel capacity), the QoS may either
increase or decrease as a function of {α−k}, depending on
magnitude of α−k . Therefore, due to a joint effect of varia-
tion of QoS and QoE with α−k , the overall utility function

does not vary monotonously as a function of α−k . In fact,
the derivative of the utility function as a function of {α−k}
is a complex trigonometric function which is periodic in
nature leading to the shape of the curve.

4.2 Minimal discount factor
Figure 5 illustrates the minimum discount factor
necessary to achieve any agreement point depending on
different channel conditions. As the achievable region
decreases when passing from good to bad channel condi-
tions (as in Fig. 5a, c), the minimum discount factor also
varies proportionally. This can be observed also in Fig. 6
in which we assume that the players agree on the sym-
metric action profiles (or equal gradients). As the channel
conditions improve (and pG varies from 0 to 1), a lower
probability of the game to continue is required. This
implies that even when the probability of game to con-
tinue is low, the players have incentives in transmitting
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Fig. 5 Variation in minimal discount factor within an achievable region for various channel conditions
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at a higher gradient than the NE to achieve a high utility
if the channel condition is good. We observe that the
players transmit at gradient higher than α = 0.7 only in
good channel conditions. In bad channel conditions, the
players agree on lower gradients only. Therefore, both
the channel conditions and the probability of the game
to continue determine the rate of adaptation to channel
conditions agreed upon by the players.

4.3 QoS vs. QoE trade-off
Assuming that the players agree only to those symmetric
action profiles that are Pareto optimal, Figs. 7 and 8 show
the QoS and QoE as functions of the channel conditions

and minimal discount factor. The overall QoS improves
as the channel conditions improve (Fig. 7). This is due to
a higher number of packets transmitted when the chan-
nel has higher average throughput capacity. The channel
conditions are not very crucial in obtaining the flow con-
tinuity or QoE (Fig. 8). This is because QoE as modeled in
this paper depends on the probability of rate to exceed the
channel capacity leading to delays. It is independent of the
magnitude of the channel capacity.
Figure 7 also shows that as the discount factor increases,

the QoS increases. On the contrary, in Fig. 8, as the dis-
count factor increases, the QoE decreases. As the discount
factor increases, the probability of the game to continue
also increases which allows the players to agree on higher
rate adaptation gradients. This causes a higher number of
packets to be transmitted per unit time which improves
the overall QoS. However, higher gradients cause a higher
chance of the rate to exceed the channel capacity result-
ing in delays and freezing of video: lower QoE. Therefore,
a trade-off arises between QoS and QoE depending on the
discount factor.

4.4 Tolerance index and Pareto optimality
In all previous results, we have assumed the tolerance
index ξ to be infinite . In Fig. 9, we show the region of
sustainable agreement points as function of the tolerance
index ξ . We assume that the channel is always in a good
state. When the tolerance index is low (close to 1 %),
the only sustainable action profiles are symmetric. The
players do not agree with unfair contracts. As the tol-
erance index increases, the asymmetric action profiles
become sustainable and the sustainable agreement region
increases. The players agree to unfair contracts, as long

0
0.2

0.4
0.6

0.8
1 0

0.1
0.2

0.3
0.4

0.5

0.52

0.54

0.56

0.58

0.6

0.62

0.64

Minimal discount factor

Quality of Service variation

Probability of channel in good state, p
g

Q
u

al
it

y 
o

f 
S

er
vi

ce

Fig. 7 QoS variation with the discount factor and channel conditions
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as their own payoff is better than the NE. This behavior
is favorable from service provider point of view because,
even if the agreement is not fair overall, the agreement
is made thereby providing just enough gradients to the
players that meets their demands.
We investigate now the efficiency of any agreement

point chosen by the players for a given tolerance index.
Figure 10 illustrates the payoffs achieved at the sustainable
agreement points. As the tolerance index increases, more
asymmetric payoffs become sustainable. When ξ = 0%,
there is only one sustainable payoff that is Pareto optimal
which plotted by the red-squared point. As the tolerance
index increases, there are more sustainable payoffs that
are Pareto optimal (but asymmetric).
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Fig. 9 Variation of sustainable agreement region for varying tolerance
index. As the tolerance index increases, the non-symmetric points
become achievable. With the least tolerance, the players agree to the
same adaptation rates where both of them get same quality video

Another interesting observation from Fig. 10 is that
when the players have a higher tolerance index, the Pareto
optimal asymmetric payoffs lie on both sides of the first
bisector. If the players have different leverage over each
other, the player that has higher leverage (or is more pow-
erful) can influence the payoff in its favor. For example, if
player 1 has a higher leverage/power, for a tolerance index
of ξ > 0%, it would prefer to have a higher utility, and an
agreement point below the first bisector is more likely to
be chosen.

4.5 Influence of weights of QoS, QoE, and cost
We now show the dependence of the sustainable agree-
ments’ region on the different weights wi assigned to the
different factors affecting the utility in (9) : QoS, QoE, and
cost.
First, we focus on the scenario: w1 = w2 = 0.4 (equal

weights of QoS and QoE), pG = 1 (fixed channel condi-
tions). In Figs. 11 and 4, the weight assigned to the cost
is w3 = 0.2 and w3 = 0.1, respectively. The region of
sustainable agreements is smaller in Fig. 11 than Fig. 4.
This is because as the impact of cost increases, the utility
uk decreases as a function of αk with a higher gradi-
ent. This reduces the number of points satisfying (12)
and fewer agreement points offer higher payoffs than the
NE. In general, the sustainable agreement region reduces
when increasing the cost weight. This also implies that
the players will adapt to channel capacity much slowly (at
the agreement point), when the data transmission cost is
high.
Second, in Fig. 12, we fix the cost weight w3 = 0.1 and

consider a higher weight of QoS than QoE: w1 = 0.6,
w2 = 0.3. The region of sustainable agreements increases
compared to Fig. 4. In Fig. 13, we assign a higher weight
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Fig. 10 Comparison of the achievable payoffs with varying tolerance index. As the tolerance index increases, more payoffs are sustainable. The
number of Pareto optimal payoffs reduce as the tolerance index decreases

to QoE than QoS: w1 = 0.3, w2 = 0.6. We observe that
the region for sustainable agreement points reduces when
compared to Fig. 4.When theQoS has a higher weight, the
players can agree to a faster rate adaptation which in turn
provides a larger sustainable agreement region in Fig. 12.
When the QoE has a higher weight, the faster rate adapta-
tion points are not preferred by the players because they
lead to a higher number of instances when the rate exceeds

channel capacity reducing the QoE. Hence, the slower rate
adaptation points are sustainable in this case.

5 Conclusions
It is clear that the rapid increase in the multimedia trans-
mission over wireless networks imposes the evolution
of existing transmission protocol. As there is higher
agression among the players to compete for the existing
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Fig. 11 The region of all agreement points (α∗
1 ,α

∗
2 ) with weights assigned as w1 = w2 = 0.4 and w3 = 0.2. The sustainable agreement region is

reduced with a higher weightage to the cost. Due to the high cost for faster adaptation to transmit the video, the players agree to slow adaptation
points
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resources, it is important to account for the competi-
tion within the existing protocols from the end players’
point of view for stable communication systems to evolve.
This paper contributes towards this aim by presenting a
novel approach to model such competitions and analyzing
the outcomes of these competition in a generic frame-
work applicable to different rate adaptation protocols. It
has been proved using concrete theoretical analysis and
simulations that the video exchange over the wireless net-
works is quite sensitive to subjective considerations like

player rationality, tolerance towards other players, and the
period of time for which the interaction takes place. The
QoS, QoE, and cost tradeoff that we present in this work is
critical towards the design of communication models for
realistic setting in the presence of selfish players.
This work provides one of the primary analysis to

pave the way for future research in development of
robust protocols for transmission over the wireless chan-
nels. Furthermore, it is required to fine-tune this generic
analysis for implementation within the scope of existent

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Sustainable agreement regions

action taken by player 1 α
1

ac
ti

o
n

 t
ak

en
 b

y 
p

la
ye

r 
2 

α 2

Non−Sustainable Agreements

Sustainable
Agreements
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protocols in order to accommodate and react to underly-
ing trade-offs. Future lines of work also include extension
of the channel models to accommodate dense networks.
Another consideration for future work is the asymmet-
ric channel conditions case, in which the throughputs
of the links are different and reflective of more complex
real-world scenarios. Under this perspective, future inves-
tigations could also include physical layer aspects such as
modulation, and channel coding.

Appendix 1: proof of proposition 1
Consider the utility function defined in (9). Node k can
maximize its utility by minimizing the cost given by (7).
The cost is a logarithmic function which is an increasing
function of αk , and therefore, is minimized at αk = 0. The
node k has no control over the action taken by the other
player; therefore, the part of its utility affected by the other
player’s action, i.e. its QoS and QoE, cannot be controlled.
In the one-shot game, when the players cannot build trust
with each other, they selfishly choose the action to max-
imize their utility. Hence, the NE for video exchange is
given by (0,0).

Appendix 2: proof of proposition 2
This proof follows by the backward induction principle
[10, 19]. We consider the last stage of the game. When the
game is played at the Tth stage, the players are aware that
they interact for the last time. They have no incentive to
transmit the video for the other player while incurring a
cost themselves, when there is no guarantee that the other
player will transmit the video or not. Hence, their opti-
mal strategy is s(T),∗

k = 0. Now, when the players play the
game at time T − 1, given that in stage T they will not
transmit, there is no incentive to transmit for any history
h(T−1). Therefore, s(T−1),∗

k = 0. Following the backward
induction principle, the players have no incentive to trans-
mit at any stage in the repeated game, therefore, the SPNE
is given by s(t),∗k = 0 ∀ t ∈ {1, . . . ,T}. The discounted pay-
off is then vk(s∗) = 0. Note that this result is based on the
principle that a rational player will never choose an action
that is strictly dominated [19]. At each stage of the game,
the strategy (0, 0) is strictly dominating.

Appendix 3: proof of proposition 3
In order to prove the above proof, we cannot use back-
ward induction as for Proposition 2, because the players
are not aware of the last stage of the game.We use the one-
step deviation principle to prove this SPE [10, 19]. The
one-step deviation principle states that a strategy profile
s∗ = (s∗1, s∗2) is an SPE if for every player k, there exists no
strategy ŝk �= s∗k such that at any stage τ and history h(τ ),
the strategy ŝk | h(τ ) is a better response than s∗k | h(τ ) in
a sub-game GR(h(τ )). This principle is based on the fact

that if there is a strategy which offers the incentive to a
player to deviate at a single stage in the game then the ini-
tial strategy is not a SPE. However, if the player has no
incentive for any deviation from its current strategy at any
stage, such a strategy is an SPE.
To use the one-step deviation principle, firstly, we prove

that the stage payoffs in (9) are uniformly bounded. Con-
sider the expression in (9): uk(αk ,α−k) = w1f QoS

k (α−k) +
w2f QoE

k (α−k) − w3f COST
k (αk). The first term can be easily

written as (using (3))

β

2

(
1
R1

+ 1
R2

)
≤ f QoS

k (α−k) ≤ 1

This is due to the fact that β ≤ min(R, rk(n)) because β <

R1,R2 by assumption. Similarly, the second term can be
written as (using (4))

0 ≤ f QoE
k (α−k) ≤ 1

This follows the fact that 0 ≤ max(0, sgn(x)) ≤ 1. The
third term can be written as (using (7))

0 < f COST
k (αk) < log

(
1 + π

2

)
This is due to the limit on αk ∈ [

0, tan
(

π
2
))

. Using the
above limits, we can write loose bounds of stage payoffs as

w1
β

2

(
1
R1

+ 1
R2

)
− w3 log

(
1 + π

2

)
< uk(αk ,α−k) ≤ w1 + w2

Since wi ∈[ 0, 1], hence, the stage payoffs are uniformly
bounded.
Secondly, we will evaluate if any deviation from the pro-

file in (11) offers a profit to one of the players. Let us
assume that the player k deviates from the strategy s∗k at
stage τ and history h(τ ) with the strategy ŝ(τ )

k (h(τ )) = αk ∈
(0, λπ

2 ] and from then on conforms again to the strategy
s∗k such that ŝ(t)k = s(t),∗k for all t > τ . This implies that the
player k transmits video with the rate adaptation gradient
αk > 0, at an intermediate game played at the τ th stage
and then conforms to αk = 0 for the rest of the game. The
player k therefore incurs some extra cost of transmission
at the τ th stage given by (7) which leads to uk(αk , 0) <

uk(0, 0). Therefore, the payoff vk(ŝk | h(τ ), s∗−k | h(τ )) <

vk(s∗k | h(τ ), s∗−k | h(τ )). Hence, the player k has no incen-
tive in sending any video packets at any stage of the game,
thereby making (11) an SPE.

Appendix 4: proof of proposition 4
We will once again use the one-step deviation principle to
prove the SPE. Consider the players following the agree-
ment profile (α∗

1 ,α∗
2) satisfying (12). Let us consider two

cases: (i) case 1: there has been no deviation from (α∗
1 ,α∗

2)
and (ii) case 2: there has been a deviation from (α∗

1 ,α∗
2)

and now both players are using the threat point (0, 0).
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Case 1. Let no player deviate from the agreement till
the stage τ . Let, at stage τ + 1, the player k deviate from
the strategy and transmits at s̃(τ+1)

k = αk �= α∗
k . There are

two sub-cases. (1) First, we consider the case when αk <

α∗
k . In this case, from stageτ + 2 onwards, the node A

conforms to the initial strategy again. Since there has been
a deviation, conforming to the strategy implies s̃(t)k = 0 for
all t ≥ τ + 2. We calculate the discounted payoffs in two
cases. Firstly, in case there is no deviation, the discounted
payoff is given by

vk(s∗) = (1 − δ)

(1 − δT )

T∑
t=1

δt−1uk(α∗
k ,α

∗
−k) = uk(α∗

k ,α
∗
−k)

(16)

Secondly, in case there is a deviation by player k at stage
τ + 1, the discounted payoff is given by vk (̃s) =

(1 − δ)

(1 − δT )

(
τ∑

t=1
δt−1uk(α∗

k ,α
∗
−k)

+δτuk(αk ,α∗
−k) +

T∑
t=τ+2

δt−1uk(0, 0)
)

where αk < α∗
k . We simplify the above expression as

vk (̃s) = (1 − δ)

(1 − δT )

(
uk(α∗

k ,α
∗
−k)

[
1 − δτ

1 − δ

]

+δτuk(αk ,α∗
−k) + uk(0, 0)

[ T∑
t=1

δt−1 −
τ+1∑
t=1

δt−1
])

× vk (̃s) = (1 − δ)

(1 − δT )

(
uk(α∗

k ,α
∗
−k)

[
1 − δτ

1 − δ

]
+δτuk(αk ,α∗

−k) +
(
uk(0, 0)

[
1 − δT

1 − δ
− 1 − δτ+1

1 − δ

]))

Applying the limit T → ∞, δT → 0. Further, taking the
fractional term into the brackets, we get vk (̃s) =(

uk(α∗
k ,α

∗
−k)(1 − δτ ) + (1 − δ)δτuk(αk ,α∗

−k)

+ uk(0, 0)δτ+1) (17)

The discounted payoff of the strategy with one-step
deviation should be lesser than the strategy with no devi-
ation, for the latter to be SPE. Therefore, we identify the δ

such that

vk(s∗) > v−k (̃s)

Inserting the values from (16) and (17), we get
uk(α∗

k ,α
∗
−k) >

(
uk(α∗

k ,α
∗
−k) − uk(α∗

k ,α
∗
−k)δ

τ + δτuk(αk ,α∗
−k)

−δτ+1uk(αk ,α∗
−k) + δτ+1uk(0, 0)

)
By (12), uk(α∗

k ,α
∗
−k) > 0 because uk(0, 0) > 0 for

sustainable points1, we get

0 > δτ (−uk(α∗
k ,α

∗
−k) + uk(αk ,α∗

−k) − δuk(αk ,α∗
−k) + δuk(0, 0))

Since δ > 0, therefore,

(uk(α∗
k ,α

∗
−k)−uk(αk ,α∗

−k)+δuk(αk ,α∗
−k)−δuk(0, 0)) > 0

Consequently,

[uk(α∗
k ,α

∗
−k)−uk(αk ,α∗

−k)]+δ[uk(αk ,α∗
−k)−uk(0, 0)]> 0

Collecting the terms and rewriting, we get

δ >
[uk(αk ,α∗

−k) − uk(α∗
k ,α

∗
−k)]

[uk(αk ,α∗
−k) − uk(0, 0)]

Therefore, the player k has no incentive to deviate to
any αk < α∗

k with the above discount factor condition in
order to decrease its cost. Under the following sufficient
condition on the discount factor

1 > δ > max
k∈P ,αk<α∗

k ,αk∈Ak

[uk(αk ,α∗
−k) − uk(α∗

k ,α
∗
−k)]

[uk(αk ,α∗
−k) − uk(0, 0)]

(18)

we can see that the discounted payoff vk (̃s) is less
than vk(s∗). Additionally, it can be seen from (12), that
[uk(αk ,α∗

−k) − uk(α∗
k ,α

∗
−k)]<[uk(αk ,α∗

−k) − uk(0, 0)].
Therefore, [ uk(αk ,α∗

−k) − uk(α∗
k ,α

∗
−k)] /[uk(αk ,α∗

−k) −
uk(0, 0)]< 1. So, condition (18) does not imply any sup-
plementary condition on system parameters. To further
simplify the expression, we find the value of αk which
maximizes the expression in (18). Using (9) and (7), we
know that duk(αk ,α−k)

dαk
< 0. In other words, the utility of

player k monotonically decreases with increasing αk for
a fixed α−k . We will prove that the condition in (18) is
strictly decreasing with increasing αk , and reaches a max-
imum at αk = 0. Taking the derivative of right hand side
in (18), we get

d
dαk

{
[uk(αk ,α∗

−k) − uk(α∗
k ,α

∗
−k)]

[uk(αk ,α∗
−k) − uk(0, 0)]

}
=

(duk(αk ,α∗
−k)

dαk

)

× [uk(αk ,α∗
−k) − uk(0, 0)]−[uk(αk ,α∗

−k) − uk(α∗
k ,α

∗
−k)]

[uk(αk ,α∗
−k) − uk(0, 0)]2

With duk(αk ,α∗
−k)

dαk
< 0, and the condition (12), the above

expression is strictly negative. Hence, the lower limit of δ

in (18) is strictly decreasing with increasing αk . Therefore,
it maximizes at minimum value of αk which is 0. Thus,

max
k∈P ,α<α∗,α∈Ak

{
[uk(αk ,α∗

−k) − uk(α∗
k ,α

∗
−k)]

[uk(αk ,α∗
−k) − uk(0, 0)]

}
=

max
k∈P

{
[uk(0,α∗

−k) − uk(α∗
k ,α

∗
−k)]

[uk(0,α∗
−k) − uk(0, 0)]

}

Inserting the values of uk from (9) we get,
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δ >
−[w3f COST

k (0) − w3f COST
k (α∗

k )]

[w1f QoS
k (α∗

−k) + w2f QoE
k (α∗

−k) − w1f QoS
k (0) − w2f QoE

k (0)]

We have the limits of δ as

1 > δ > δmin
asym(α∗

k ,α
∗
−k)

where δmin
asym(α∗

k ,α
∗
−k) is given by

max
k∈P

w3[ f COST
k (α∗) − f COST

k (0)]

w1[ f QoS
k (0) − f QoS

k (α∗
−k)]+w2[ f QoE

k (0) − f QoE
k (α∗

−k)]

Now we consider the the second sub-case.
(2) Let us assume that αk > α∗

k . This is a trivial case
because transmitting at one stage at αk is not a deviation
from the strategy as the player still transmits at least α∗

k .
However, for completeness, we provide the analysis. Now,
the player k conforms to the agreement point until the
stage τ . At τ + 1, it deviates from agreement point and
transmits at an αk greater than α∗

k . From τ+2, it again con-
forms to the strategy. Conforming to the strategy implies
sending at α∗

k . In this case, the discounted payoff with-
out deviation, given by uk(α∗

k ,α
∗
−k), is strictly greater than

the discounted payoff with deviation. This is because, at
stage τ + 1, the payoff uk(αk ,α∗

−k) < u1(α∗
k ,α

∗
−k) for any

αk > α∗
k . Further, from stage τ + 2 onwards, the payoff

at each stage after deviation is equal to the payoff at each
stage without deviation, i.e. uk(α∗

1 ,α∗
2). Therefore, overall,

the discounted payoff without deviation is strictly greater
than discounted payoff with deviation. We now consider
case 2.

Case 2. We now consider the case when there has been
a deviation from the agreement point (α∗

k ,α
∗
−k) and now

both players are using the threat point (0, 0). We would
now examine if it is possible for any player to devi-
ate from this strategy and play αk > 0. We note that
uk(αk , 0) < uk(0, 0). Hence, if any player deviates at any
intermediate stage from (0, 0) and then conforms to the
strategy by playing (0, 0), the stage payoff at the devia-
tion will be lesser than the stage payoff if there was no
deviation. Therefore, the overall payoff without deviation
would be higher than the payoff with deviation. Therefore,
the player has no incentive to deviate from (0, 0).
In addition, to prove that 0 < δmin

asym(α∗
1 ,α∗

2) < 1, we
write δmin

asym(α∗
1 ,α∗

2) as

max
k∈P

{
[uk(0,α∗

−k) − uk(α∗
k ,α

∗
−k)]

[uk(0,α∗
−k) − uk(0, 0)]

}

From (12), we have uk(α∗
k ,α

∗
−k) > uk(0, 0). It follows

that −uk(α∗
k ,α

∗
−k) < −uk(0, 0). Adding uk(0,α∗

−k) on
both sides we get uk(0,α∗

−k)−uk(α∗
k ,α

∗
−k) < uk(0,α∗

−k)−

uk(0, 0). Thus, the inequality [uk(0,α∗
−k)−uk(α∗

k ,α
∗
−k)]

[uk(0,α∗
−k)−uk(0,0)]

< 1
holds. Both, the numerator and denominator, are posi-
tive because uk(0,α∗

−k) > uk(α∗
k ,α−k∗) and uk(0,α∗

−k) >

uk(0, 0). Consequently, we obtain 0 < δmin
asym(α∗

1 ,α∗
2) < 1.

This completes the proof.
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