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Abstract

In this paper, we analyze the performance of interference alignment of device-to-device (D2D) uplink underlay
cellular networks. By fully considering the impact of imperfect precoding vectors caused by limited feedback, the
exact closed-form expressions of average throughput for cellular network and D2D network are derived in terms of
transmit power and the number of feedback bits. The accuracy of the average throughput is verified by simulation
results. Our analytic results provide great promises to practical system designs.
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1 Introduction
Interferences in radar sensor networks and wireless com-
munications have been one of the challenging problems.
In radar sensor networks, the interference around the
target degrades the detection capabilities of radars sig-
nificantly, and various methods are proposed to suppress
the sidelobe interference [1, 2] or mainlobe interference
[3, 4]. For wireless sensor networks, interference reduces
the throughput of networks and, therefore, restricts the
spectral efficiency seriously [5, 6].
As a promising precoding technology, interference

alignment is able to achieve the maximum degrees of
freedom (DoF) by aligning all the interference into a
lower-dimensional signal subspace at each receiver, which,
therefore, has been paid great attention by academe [7].
In radar sensor networks, interference alignment in radar
sensor networks such as orthogonal frequency offset
[8–10] and opportunistic sensing in space [11, 12] have
been very successful. In wireless communications net-
works, interference alignments considering parameters
in frequency, time, and space could be studied as well
[13–16].
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Device-to-device (D2D) communication is introduced
to increase the throughput of local wireless data transmis-
sion by enabling direct communications between physi-
cally proximal devices [17], which also coincide with some
scenarios of wireless sensor networks. However, the inter-
ference caused by D2D devices reduces the performance
of cellular communication significantly. Hence, how to
eliminate the interference to cellular communications has
become one of the most challenging works for D2D com-
munication networks. In this paper, we analyze the perfor-
mance of interference alignment of D2D uplink underlay
cellular networks.
To reduce or eliminate the interference of D2D net-

works, Lu Yang et al. propose two interference alignment
schemes to manage the interference between D2D com-
munications and cellular communications [18]. The first
one is proposed to align the interference signals from
D2D users (DUs) into the orthogonal space of cellular
communications at the base station and, alternatively, the
other one aims to control the peak interference. Among
the two interference alignment schemes, globally perfect
channel state information (CSI) is assumed to be available
in the base station, and precoding vectors are fed back
to users without error. In practical scenarios, however,
acquiring perfect CSI and/or feeding back perfect pre-
coding vectors is infeasible due to the low-rate feedback
links. So, the issues of limited feedback on multiple-input,
multiple-output (MIMO) networks are widely studied in
the research community [19, 20]. To the best of our knowl-
edge, however, there is no reported work on interference
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alignment with limited feedback in the emerging D2D
underlay networks.
In this work, we consider a practical system model con-

sisting of a D2D local area networks (LAN) and a cellular
uplink [18], where multiple DUs intend to communicate
with a D2D receiver (DR). Under the assumption that the
quantized precoding vectors are fed back to users through
low-rate feedback links, we analyze the average through-
put as a function of the number of feedback bits and
transmit power and derive the closed-form expressions of
throughput for cellular network andD2D network. Finally,
we validate our analytic results by simulations.
Notations: Matrices and vectors are represented by

bold uppercase and lowercase letters, respectively. Inver-
sion, conjugation, transpose, and hermitian transpose are
denoted by (·)−1, (·)∗, (·)T, (·)†, respectively. A ⊗ B is the
Kronecker product of matrices A and B. The acronym
i.i.d. means “independent and identically distributed.”

2 Systemmodel
As shown in Fig. 1, we consider a single-cell MIMO uplink
network with a base station (BS). The BS is assumed to be
equipped withMc receiving antennas and supporting data
traffic from s cellular users (CUs) simultaneously. Mean-
while, l other users are selected to communicate with a DR
which is equipped withMd receive antennas as DUs. Each
user is equipped withN transmit antennas. For simplicity,
we consider the system where each user transmits only a
single data stream.
Assume that QCU and QDU represent the sets of CUs

and DUs, respectively. Denote the large-scale fading gain
from user i ∈ QCU

⋃
QDU to BS and DR as ηci and ηdi and

the small-scale fading channel matrix from user i to BS
and DR as Hc

i and Hd
i , respectively. All fading coefficients

are assumed to be i.i.d. circularly symmetric complex

Fig. 1 System model

Gaussian random variables with zero mean and unit vari-
ance, i.e., CN (0, 1). The signal at BS can be written as
follows:

yc =
∑

i∈QCU

√
Pcηci

(
Uc)†Hc

ivixi

+
∑

k∈QDU

√
Pdηck

(
Uc)†Hc

kvkxk + (Uc)† zc, (1)

and the signal at DR is given by the following:

yd =
∑

i∈QCU

√
Pcηdi

(
Ud
)†

Hd
i vixi

+
∑

i∈QDU

√
Pdηdk

(
Ud
)†

Hd
kvkxk +

(
Ud
)†

zd,
(2)

where Uc = [
uc1,u

c
2, · · · ,ucs

] ∈ CMc×s and Ud =[
ud1 ,u

d
2 , · · · ,udl

]
∈ CMd×l denote the post-processing

matrices of BS and DR, with
∥∥uci∥∥ =

∥∥∥udj ∥∥∥ = 1. vi ∈
CN×l denotes the precoding vector of user i. Pc and Pd
denote the transmit power of CUs and DUs, respectively.
xi denotes the data symbol of user i with E[ ‖xi‖]= 1. zc
and zd are the additive white Gaussian noise (AWGN) at
BS and DR, respectively.
For convenience, it is assumed that the channels from all

users are perfectly estimated at BS and DR. With perfect
CSI, BS designs the post-precodingmatrixUc and precod-
ing vectors for all CUs and DUs using the “interference-
free” interference alignment scheme proposed in [18]. To
feed back the precoding vectors from BS to users, the pre-
coding vector vi is quantized to v̄i with Bi bits random
codebook, ∀i ∈ QCU

⋃
QDU. Following the theory of ran-

dom vector quantization [19], the relationship between
the original precoding vector vi and the quantized precod-
ing vector v̄i can be expressed as follows:

v̄i = cos(θi)vi + sin(θi)v̂i, (3)

where θi = ∠(vi, v̄i) and sin(θi) is the magnitude of the
quantization error. v̂i is an unit norm vector isotropically
distributed in the null space of vi.
Due to the quantization error, the interference that

come from CUs cannot be eliminated completely with
quantized precoding vectors. Therefore, the resulting
residual interference power will degrade the through-
put significantly. The achievable throughput of BS with
limited feedback can be written as follows:

Rc
� =

∑
i∈QCU

log2

⎛
⎜⎝1 +

Pcηci
∣∣∣(uci )†Hc

i v̄i
∣∣∣2

Ic,ci + Ic,di + 1

⎞
⎟⎠ , (4)
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where Ic,ci = ∑
n∈QCU,n�=i Pcηcn

∣∣∣(uci )†Hc
nv̄n
∣∣∣2 and Ic,di =∑

k∈QDU Pdηck
∣∣∣(uci )†Hc

k v̄k
∣∣∣2 are the residual interference

power from other CUs and DUs to the user i, respectively.
Finally, the DR designs its post processing matrix Ud

with the quantized precoding vectors to eliminate the
interference from other DUs perfectly, while treating the
interference from cellular links as noise [18], yielding the
following:(

udk
)†

Hd
i v̄i = 0,∀i, k ∈ QDU, i �= k. (5)

Hence, the throughput of D2D network is given by the
following:

Rd
� =

∑
k∈QDU

log2

⎛
⎜⎜⎜⎝1 +

Pdηdk

∣∣∣∣(udk)†Hd
k v̄k
∣∣∣∣
2

Id,ck + 1

⎞
⎟⎟⎟⎠ , (6)

where Id,ck = ∑i∈QCU
Pcηdi

∣∣∣∣(udk)†Hd
i v̄i
∣∣∣∣
2
accounts for the

interference from CUs to DR.

3 Performance analysis
In the context of the quantized precoding vectors, the per-
formance of cellular network and D2D network remains
an open issue. In this section, we concentrate on the per-
formance analysis for interference alignment with limited
feedback in D2D uplink underlaying cellular networks.
As shown in last section, we consider the average rate of

CU i as follows:

E
[
Rc
i
] =E

[
log2

(
Pcηci

∣∣∣(uci )†Hc
ivi
∣∣∣2 + Ic,ci + Ic,di + 1

)]

− E
[
log2

(
Ic,ci + Ic,di + 1

)]
.

(7)

For the interference fromCU n to CU i �= n, substituting
(3) into (7), we have the following:

Ic,ci =
∑

n∈QCU,n�=i
Pcηcn

∣∣∣(uci )†Hc
nvn
∣∣∣2

=
∑

n∈QCU,n�=i
Pcηcn sin2(θn)‖ei,n‖2

∣∣ēi,nv̂n∣∣2 , (8)

where ei,n = (
uci
)†Hc

n and ēi,n = ei,n/‖ei,n‖, the random
variables sin2(θn), ‖ei,n‖2, and |ēi,nv̂2| are all independent
[21].
For ‖ei,n‖2, we have the following:

‖ei,n‖2 =
N∑
t=1

∥∥Hc
n(:, t)

∥∥2 ∥∥∥(uci )† H̄c
n(:, t)

∥∥∥2 , (9)

where H̄c
n(:, t) = Hc

n(:, t)/
∥∥Hc

n(:, t)
∥∥. Note that

∥∥Hc
n(:, t)

∥∥2
is χ2(2Mc) distributed with variance equal to 1/2 [22].
Moreover, since uci is of unit norm and independent of

H̄c
n(:, t), then

∥∥∥(uci )† H̄c
n(; , t)

∥∥∥2 is β(1,Mc − 1) distributed.

The product of
∥∥Hc

n(:, t)
∥∥2 and

∥∥∥(uci )† H̄c
n(:, t)

∥∥∥2 is expo-
nentially (1) distributed. Based on the fact that the sum
of N i.i.d. exponential (1) distribution random variables is
�(N , 1) distributed, we can get that

∥∥ei,n∥∥2 is �(N , 1) dis-
tributed, it is equal to χ2(2N) in distribution with variance
equal to 1/2.

∀i, n ∈ QCU, n �= i, according to the theory of
quantization cell approximation [19], sin2(θn)‖ei,n‖2 is
�
(
N − 1, 2−Bn/(N−1)) distributed. Moreover, since ēi,n

and v̂n are i.i.d. within the same (N − 1) dimensional
of null space of vn, the quantity |ēi,nv̂n|2 is β(1,N − 2)
distributed. For the product of a �

(
N − 1, 2−Bn/(N−1))

distributed random variable and a β(1,N − 2) dis-
tributed random variable,

∣∣∣(uci )†Hc
nvn
∣∣∣2 is exponential(

2Bn/(n−1)) distributed. Thus, Pcηcn ∣∣∣(ucn)†Hc
nv̄n
∣∣∣2 is expo-

nential
(
2Bn/(N−1)) / (Pcηcn) distributed. Similarly, ∀i ∈

QCU, k ∈ QDU, we conclude that Pdηck
∣∣∣(uci )†Hc

k v̄k
∣∣∣2 is

exponential
(
2Bk/(N−1)/

(
Pdηck

))
distributed. Additionally,∣∣∣(uci )†Hc

i v̄i
∣∣∣2 is χ2(2) distributed because of that v̄i and uci

are independently of Hc
i , and Pcηci

∣∣∣(uci )†Hc
i v̄i
∣∣∣2 is expo-

nential
(
1/
(
Pcηci

))
distributed.

∀i ∈ QCU,Ac
i = Pcηci

∣∣∣(uci )†Hc
i v̄i
∣∣∣2+ Ic,ci + Ic,di is the sum

of s+ l independent random variables having exponential
distributions with different parameters, whose probability
density function (pdf) is given by [23] the following:

fAc
i
(x) =

(∏
t∈Q

λci,t

)∑
k∈Q

exp
(
−xλci,k

)
∏

j∈Q,j �=k

(
λci,j − λci,k

) , (10)

whereQ = QCU
⋃

QDU and

λci,k =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
Pcηci

, k = i,

2
Bk
N−1 1

Pcηck
, k �= i, k ∈ QCU,

2
Bk
N−1 1

Pdηck
, k ∈ QDU.

(11)

Thus, we have

E
[
log2

(
Ac
i + 1

)]=
∏

t∈Q λci,t
ln 2

∑
k∈Q

− exp
(
λci,k

)
ei
(
−λci,k

)
λci,k
∏

j∈Q,j �=k

(
λci,j − λci,k

) ,
(12)

where ei(x) = ∫ x
−∞ eαα−1dα is the exponential integral

function.
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Note that Gc
i = Ie,ci + Ie,di is similar to Ac

i except the

absence of the term Pcηci
∣∣∣(uci )†Hc

i v̄i
∣∣∣2. Hence, the expec-

tation of log2(G + 1) can be given by the following:

E
[
log2

(
Gc
i + 1

)] =
∏

t∈Q,t �=i λ
c
i,t

ln 2
∑

k∈Q,k �=i

− exp
(
λci,k

)
ei
(
−λci,k

)
λci,k
∏

j∈Q,j �=k,i

(
λci,j − λci,k

) .
(13)

Now, we can get the average throughput of CU i as
follow:

E
[
Rc
i
] =

∏
t∈Q λci,t
ln 2

∑
k∈Q

− exp
(
λci,k

)
ei
(
−λci,k

)
λci,k
∏

j∈Q,j �=k

(
λci,j − λci,k

) ,
(14)

and the throughput of cellular network is

E
[
Rc

�

]= ∑
i∈QCU

⎛
⎝∏t∈Q λci,t

ln 2
∑
k∈Q

− exp
(
λci,k

)
ei
(
−λci,k

)
λci,k
∏

j∈Q,j �=k

(
λci,j − λci,k

)
⎞
⎠ .

(15)

Next, we examine the performance of D2D network.
As mentioned in last section, with the precoding vectors
received from BS, DR can eliminate the interference from
DUs perfectly. Hence, the performance of each DU is only
degraded by the interference from CUs, which is treated
as noise. Therefore, we obtain the average rate of DU k as
follows:

E
[
Rd
k

]
=E

[
log2

(
Pdηdk

∣∣∣∣(udk)†Hd
k v̄k
∣∣∣∣
2
+ Id,ck + 1

)]

− E
[
log2

(
Id,ck + 1

)]
,

(16)

where

Id,ck =
∑

i∈QCU

Pcηdi

∣∣∣∣(udk)†Hd
i v̄i
∣∣∣∣
2

(17)

is the interference from CUs to DU k. Especially, for the
interference from CU i to DU k, we have the following:∣∣∣∣(udk)†Hd

i v̄i
∣∣∣∣
2

=
∣∣∣hdi Td

k,i

∣∣∣2 =
∥∥∥hdi ∥∥∥2 ∣∣∣h̄di Td

k,i

∣∣∣2 , (18)

where hdi = vec
(
Hd

i

)
, h̄di = hdi /

∥∥∥hdi ∥∥∥, Td
k,i = udk ⊗ v̄†,

and
∥∥∥Td

k,i

∥∥∥ = 1. Similar with the last subsection,
∥∥∥hdi ∥∥∥2 is

χ2(2NMd) distributed with variance equal to 1/2. More-
over,

∣∣∣h̄di Td
k,i

∣∣∣2 is β(1,NMd − 1) distributed because that
Td
k,i of unit norm is independent of h̄di . As the product of a

χ2(2NMd) distributed random variable and a β(1,NMd −
1) distributed random variable,

∣∣∣∣(udk)†Hd
i v̄i
∣∣∣∣ is exponen-

tial (1) distributed, and Pcηdi

∣∣∣∣(udk)†Hd
i v̄i
∣∣∣∣ is exponen-

tial
(
1/
(
Pcηdi

))
distributed. Similarly, the desired signal

power Pdηdk

∣∣∣∣(udk)†Hd
k v̄k
∣∣∣∣
2
is exponential

(
1/
(
Pdηdk

))
distributed.

∀k ∈ QDU, Ad
k = Pdηdk

∣∣∣∣(udk)†Hd
k v̄d
∣∣∣∣
2

+ Id,ck is the sum

of s+ l independent random variables having exponential
distributions with different parameters, whose pdf is given
by the following:

fAd
k
(x) =

⎛
⎝ ∏

t∈QCU,k

νdt

⎞
⎠ ∑

i∈QCU,k

exp
(
−xνdi

)
∏

j∈QCU,k ,j �=i

(
νdj − νdi

) ,
(19)

whereQCU,k = QCU
⋃{k ∈ QDU}, and

νdi =
⎧⎨
⎩

1
Pcηdi

, i ∈ QCU,
1

Pdηdi
, i ∈ QDU.

(20)

Therefore, we have the following:

E
[
log2

(
Ad
k + 1

)]
=
∏

t∈QCU,k
νdt

ln 2
∑

i∈QCU,k

− exp
(
νdi

)
ei
(
−νdi

)
∏

j∈QCU,k ,j �=i

(
νdj − νdi

) .
(21)

Note that Gd
k = Id,ck is similar to Ad

k except the absence

of the term Pdηdk

∣∣∣∣(udk)†Hd
k v̄k
∣∣∣∣
2
, so the expectation of

log2
(
Gd
k + 1

)
can be given by the following:

E
[
log2

(
Gd
k + 1

)]
=
∏

t∈QCU
νdt

ln 2
∑

i∈QCU

− exp
(
νdi

)
ei
(
−νdi

)
νdi
∏

j∈QCU,j �=i

(
νdj − νdi

) .
(22)
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Now, we can obtain the average throughput of DU k as
follows:

E
[
Rd
k

]
=
∏

t∈QCU,k
νdt

ln 2
∑

i∈QCU,k

− exp
(
νdi

)
ei
(
−νdi

)
νdk
∏

j∈QCU,j �=i

(
νdj − νdi

) ,
(23)

and the throughput of D2D network is as follows:

E
[
Rd

�

]
=
∑

k∈QDU

⎛
⎝∏t∈QCU,k

νdt

ln 2
∑

i∈QCU,k

− exp
(
νdi

)
ei
(
−νdi

)
νdk
∏

j∈QCU,j �=i

(
νdj − νdi

)
⎞
⎠ .

(24)

For interference alignment with limited feedback, the
performance of system degraded significantily due to the
residual interference caused by the imperfect CSI. To
optimize for the design, analysis, and deployment of the
systems, the analytic expression of the average throughput
of the D2D communication networks is a key factor and
is very important. Howerver, as far as I konw, the perfor-
mance analysis is still an open issue, so it is a basic work
for the study of D2D communications.

4 Numerical results
In this section, we evaluate the analytic results of inter-
ference alignment with limited feedback in a D2D uplink
underlay cellular network. Without losing generality, we
set N = 3, Mc = 5, Md = 4, s = 3, and l = 4.
We focus on a single cellular cell which contains an BS
near its center, and a DR which is 0.5rm away from the
BS, where r is the radius of the cellular cell. The s CUs
are distributed randomly in the cellular cell. The distance
between l DUs and DR distribute randomly between 0.05r
and 0.45r, and we configure r to be 300m. The channel
is assumed to obey a frequency flat block-fading channel
model. We take the average of sum rate as the perfor-
mance metric and evaluate the precision of our analytic
results by means of Monte Carlo simulations (averaging
over 1000 realizations) with random generated small-scale
fading, which is generated so that the entries of the matri-
ces are i.i.d. according to CN (0, 1). Moreover, we use the
path loss model recommended by ITU-R as shown by the
following:

η = 40 log10 α + 30 log10 f + 49[ dB] , (25)

where α is the distance in km and f is the operating fre-
quency in MHz which is set to be 2GHz. Moreover, the
noise power is set to be −113 dBm.
In Fig. 2, we plot both the empirical sum of average

rate of cellular network (from simulation) and the analyt-
ical results in (15), for the transmit power of DUs Pd =
5, 10, 15 dBmwith the number of feedback bits Bi = 10 for

Fig. 2 Theoretical and simulation R̄c� = E
[
Rc�
]
with different transmit

powers of DUs

each DUs and CUs. The derived analytical sum of average
rate of D2D network in (24) and the simulation results are
also plotted in Fig. 3. The numerical results show that the
derived close-form expressions are sufficiently accurate in
the sum of the average rate of CUs and DUs achieved
by interference alignment with limited feedback in D2D
uplink underlaying cellular networks. It is noted that, by
comparing the Figs. 2 and 3, we can find that the sum
rate of DUs is much larger than that of CUs. The per-
formance gap is primarily attributed to the fact that DUs
stand closer to DR than CUs on average, which leads to
stronger desired signals and weaker interferences.

Fig. 3 Theoretical and simulation R̄d� = E
[
Rd�
]
with different transmit

powers of DUs
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5 Conclusions
In this work, we comprehensively investigate the inter-
ference alignment scheme with limited feedback for D2D
underlaying cellular networks. We derive the average sum
rate of cellular network and D2D network analytically.
Thus, the exact performance can be obtained for a given
path loss, transmit SNR, and feedback bits. The analysis
results provide some basis for the design and optimization
for D2D communication networks.
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