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Abstract

In this paper, we develop an adaptive remote radio head (RRH) control scheme to maximize the network capacity of
frequency division duplexing (FDD)-based cloud radio access networks. We focus on a realistic performance metric
that considers reference signal (RS) transmission overhead. Finding the optimal subset of RRHs that maximize the
network capacity is formulated as an integer programming problem. We develop two efficient algorithms based on
greedy search and linear programming relaxation combined with gradient ascent search, respectively. Our simulation
results reveal that a larger number of antennas do not always guarantee capacity increase in real communication
environments due to RS transmission overhead. The proposed scheme adaptively determines the subset of RRHs
considering RS transmission overhead and provides significant capacity gain over previous approaches.
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1 Introduction
The cloud radio access network (C-RAN) is recognized
as one of the key enabling technologies for beyond 4G
(B4G) or 5G wireless communications systems because of
its ability to mitigate inter-cell interference and enhance
the link quality [1–4]. Evolution to the C-RAN has
already started in advanced commercial long-term evolu-
tion (LTE) networks [5–7]. The principal difference of a C-
RAN over a conventional cellular system is that individual
management of cell operation becomes meaningless. In a
C-RAN, a large number of remote radio heads (RRHs),
i.e., groups of co-located antennas, are scattered over the
network, and they are connected to and controlled by a
central processor (CP) through fronthaul. Multiple RRHs
are then involved in user service by transmitting coopera-
tive signals. Figure 1 depicts the concept of a C-RAN as a
single virtual network.
In a theoretical view, the network capacity increases as

more RRHs and users are involved in cooperative trans-
mission. However, realistic C-RANs have some practical
constraints that limit RRH cooperation. Firstly, imper-
fect fronthaul imposes limitations on RRH coopera-
tion. Cooperative transmission requires baseband signal
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exchange between the CP and RRHs, which is enabled
by fronthaul links. Therefore, when fronthaul links have
finite capacity, RRH cooperation is inevitably limited. In
[8–13], RRHs are modeled as relays between the users and
CP, and compression/decompression strategies are devel-
oped considering the finite capacity of fronthaul links. In
[14, 15], RRH clustering schemes are developed consider-
ing the capacity limit of fronthaul.
Considering frequency division duplexing (FDD)-based

C-RANs, acquiring channel state information (CSI) at the
CP requires downlink antenna training and uplink CSI
feedback from users. Antenna training and CSI feedback
consume precious time and frequency resources which
increase with the number of RRHs involved in user ser-
vice. Considering that the available time and frequency
resources are limited, those overheads might be a bot-
tleneck for RRH cooperation in an FDD-based C-RAN
where a large number of RRHs are deployed for user ser-
vice. In [16, 17], RRH cooperation strategies are developed
to reduce the overhead required for acquiring CSI at the
CP.
Here, we introduce a completely new approach to max-

imize the network capacity of an FDD-based C-RAN. We
focus on the trade-off between the antenna processing
gain and reference signal (RS) overhead. In a practical
FDD-based C-RAN, antennas transmit RSs for acquiring
CSI at the CP. Upon receipt of the RSs, users estimate their
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Fig. 1 Cloud radio access network

channels and feed back the CSI to the CP. In [18, 19], it is
shown that RSs of different antennas should be conveyed
on mutually orthogonal time and frequency resources for
accurate channel estimation, which leads to RS overhead
linearly increasing with the number of antennas. This has
been a principal design guideline for recent OFDM-based
wireless systems. For example, in commercial LTE net-
works [20], the CSI-RS overhead in a subframe grows from
1.19 to 4.76 % as the number of antennas increases from 2
to 8.
As more antennas participate in cooperative transmis-

sion, the antenna processing gain increases while RS
transmission consumes a larger fraction of time and fre-
quency resources, which otherwise would be dedicated
for data transmission. Considering the trade-off relation-
ship, we need to investigate the impact of RS transmission
overhead on the network capacity of an FDD-based C-
RAN in which a large number of antennas are scattered
for user service. We then also need to find the best subset
of RRHs that maximize the network capacity consider-
ing both the antenna processing gain and RS transmission
overhead.
In this paper, we investigate the impact of RSs on the

network capacity of an FDD-based C-RAN with compre-
hensive consideration of the antenna processing gain and
RS transmission overhead. To this end, we consider a real-
istic performance metric that takes into account both the
antenna processing gain and RS transmission overhead.
Using the metric, we formulate an integer programming

(IP) problem that determines the best RRH subset lead-
ing to maximum network capacity. To the best of our
knowledge, the trade-off between the antenna processing
gain and RS overhead has never been comprehensively
considered for network capacity maximization in the lit-
erature of C-RAN control.
Solving an IP problem normally requires a computation-

ally demanding task. To reduce the computational burden,
we also develop two efficient algorithms based on greedy
search and linear programming (LP) relaxation combined
with gradient ascent search, respectively. With the greedy
search-based algorithm, the computational complexity
increases with the square of the network size. The LP
relaxation-based algorithm leads to further reduction of
the computational burden for an extremely large-scale
network, i.e., linear increase of computational complexity
with the network size at the expense of performance loss
compared to the greedy search-based one.
The rest of this article is organized as follows. Section 2

describes the system model. In Section 3, we formulate
the RRH subset selection problem and develop an effi-
cient algorithm to reduce the computational burden. We
present simulation results in Section 4, and concluding
remarks are given in Section 5.
Notations: Lowercase and uppercase boldface letters

denote vectors and matrices, respectively. IN represents
the N × N identity matrix. The superscripts “T” and
“∗” denote transpose and conjugate transpose operators,
respectively. Lastly, we will use E[·] for expectation.
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2 Systemmodel
We consider an FDD-based C-RAN in which there are L
RRHs and K users. We assume ideal fronthaul links with
zero latency. The lth RRH is equipped with ml antennas
such thatM =∑L

l=1ml, and the kth user is equipped with
nk antennas such that N = ∑K

k=1 nk . The channel from
the lth RRH to the kth user is denoted as Hk,l ∈ C

nk×ml .
Therefore, the aggregate channel for the kth user, Hk ∈
C
nk×M, is presented byHk = [Hk,1Hk,2 · · · Hk,L

]
, and the

aggregate channel for all the users,H ∈ C
N×M, is given by

H =
[
HT

1 HT
2 · · · HT

K

]T
. (1)

The path loss from the lth RRH to the kth user is
denoted as βk,l, and hence, if we assume rich scattering, it
holds that

E
[
Hk,lH∗

k,l
] = mlβk,lInk , (2)

Let us denote the total amount of time and frequency
resources available for both data and RSs of antennas dur-
ing the coherence interval as U. Let us also assume that
RSs of different antennas are transmitted using mutually
orthogonal time and frequency resources and denote the
amount of resources dedicated for RS transmission of an
antenna as α. The total amount of resources dedicated for
RSs then linearly increases with the number of antennas
involved in cooperative transmission, which ends up with
the fraction of the remaining resources available for data
transmission presented by U−αM

U . Accordingly, consider-
ing RS transmission overhead, perfect CSI at the CP leads
to the effective network capacity described by

C =
(
U − αM

U

)
log2 det

(
IN + P

σ 2HH∗
)
, (3)

where P is the transmission power per spatial stream
and σ 2 is the noise power. Note that (3) comprehensively
considers both the RS overhead and antenna processing
gains including spatial multiplexing and diversity gains.
We use (3) as the performance metric for the FDD-based
C-RAN.

3 Adaptive RRH control
3.1 Problem formulation
We introduce a diagonal RRH selection matrix S ∈ C

M×M

which is given by

S =

⎡
⎢⎢⎢⎣
S1 0 . . . 0
0 S2 . . . 0
...

...
. . .

...
0 0 . . . SL

⎤
⎥⎥⎥⎦ , (4)

where Sl ∈ C
ml×ml is also a diagonal matrix which

is given by Sl = diag (sl, sl, . . . , sl), where sl is a binary
integer variable whose value is either 1 if the lth RRH is
selected or 0 otherwise. Then, with the selected subset of

RRHs, the number of antennas that transmit RSs is given
by
∑L

l=1 slml, and hence, the fraction of time and fre-
quency resources available for data transmission becomes
U−α

∑L
l=1 slml
U . Therefore, the network capacity is given by

C =
(

U−α
∑L

l=1 slml
U

)
log2 det

(
IN + P

σ 2HS (HS)∗
)

=
(

U−α
∑L

l=1 slml
U

)
log2 det

(
IN + P

σ 2HSH∗
)
,

(5)

where the second equality is derived from SS∗ = S.
Note that the CP obtains instantaneous CSI only after RS
transmission of all antennas and CSI feedback from users,
which means that the CP does not have instantaneous
CSI of all antennas at the stage of RRH subset selection.
Instead, we assume that the CP has second-order statistics
information of CSI based on the long-term observation of
channels, i.e., long-term path loss from the lth RRH to the
kth user, where l = 1, 2, . . . , L and k = 1, 2, . . . ,K .
We take the expectation of (5) over the short-term

small-scale fading, and then, the long-term ergodic net-
work capacity is given by

E[C]=
(
U − α

∑L
l=1 slml

U

)
E

[
log2 det

(
IN + P

σ 2HSH∗
)]

. (6)

Applying Jensen’s inequality,1 the ergodic network
capacity is approximately given by

C̄ ≈
(
U − α

∑L
l=1 slml

U

)
log2 det

(
IN + P

σ 2 E
[
HSH∗]) . (7)

In addition, E

[
Hk1,lH∗

k2,l

]
= 0 for k1 �= k2,

l = 1, 2, . . . , L due to independent fading. Therefore,
E [HSH∗] becomes an N × N diagonal matrix which is
given by

E
[
HSH∗] =

⎡
⎢⎢⎢⎢⎢⎣

E
[
H1SH∗

1
]

0 . . . 0
0 E

[
H2SH∗

2
]

. . . 0
...

...
. . .

...
0 0 . . . E

[
HKSH∗

K
]

⎤
⎥⎥⎥⎥⎥⎦ ,

(8)

where E
[
HkSH∗

k
] =

(∑L
l=1 slmlβk,l

)
Ink from (2) for k =

1, 2, . . . , L. Accordingly, IN+ P
σ 2E [HSH∗] is also a diagonal

matrix, and its determinant is the product of its diagonal
elements. From the above analysis, it holds that
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det
(
IN + P

σ 2 E
[
HSH∗]) =

K∏
k=1

(
1 + P

σ 2

L∑
l=1

slmlβk,l

)nk

.

(9)

Substituting (9) for the determinant term in (7) gives

C̄ =
(
U − α

∑L
l=1mlsl

U

) K∑
k=1

nk log2

⎛
⎝1 + P

σ 2

L∑
l=1

slmlβk,l

⎞
⎠ .

(10)

Accordingly, we finally formulate the RRH subset selec-
tion problem as

maximize C̄
subject to sl ∈ {0, 1} , l = 1, 2, . . . , L. (11)

3.2 Analysis on the optimal RRH subset
In this subsection, we discuss the existence of the opti-
mal RRH subset as the solution of (11) and the impact of
the network environment on the optimal RRH subset. Let
us assume that a very small number of RRHs are involved
in cooperative transmission, i.e., the capacity reduction
from RS overhead is negligible. Then, α

U
∑L

l=1mlsl ≈
0, and C̄ ≈ ∑K

k=1 nk log2
(
1 + P

σ 2
∑L

l=1 slmlβk,l
)
, which

increases with the antenna processing gain as more RRHs
are involved in cooperative transmission. On the other
hand, let us assume that a very large number of RRHs are
involved in cooperative transmission, i.e., the log terms in
C̄ reach the saturation region. Then, involving more RRHs
in cooperative transmission leads to negligible increase

of those log terms while the
(

U−α
∑L

l=1 mlsl
U

)
term leads

to linear capacity reduction with the number of antennas
involved in cooperative transmission.
The above reasoning implies that C̄ is maximized with

the best subset of RRHs balancing the antenna process-
ing gain and RS overhead, i.e., finding the optimal solu-
tion of (11) leads to network capacity maximization in
consideration of the antenna processing gain and RS over-
head. If we increase the transmission power per spatial
stream, P in (10), the log terms in (10) reaches the satu-
ration region more quickly with selection of more RRHs.
Therefore, as the network allocates more power for user
services, the optimal RRH subset of (11) consists of a
smaller number of RRHs, which leads to RS transmis-
sion consuming a smaller potion of time and frequency
resources.

3.3 Proposed algorithm
The binary integer variables s1, s2, . . . , sL lead to the RRH
subset selection problem in (11) belonging to integer pro-
gramming (IP). There exists no general solution for IP,
and the computational complexity for finding the optimal
solution exponentially increases in the order of 2L, which

Algorithm 1: Greedy RRH subset selection algorithm
Initialization process
s1 = 0, s2 = 0, . . . , sL = 0
� = ∅
C̄− = 0
C̄+ = 0
l+ = 0
Greedy searching process
while C̄+ − C̄− ≥ 0 do

C̄− ← C̄ (s1, s2, . . . , sL)
C̄+ ← 0
for l ∈ {1, 2, . . . , L} do

if l /∈ � then
sl ← 1
if C̄ (s1, s2, . . . , sL) > C̄+ then

C̄+ ← C̄ (s1, s2, . . . , sL)
l+ ← l

end if
sl ← 0

end if
end for
sl+ ← 1
� ← � ∪ {l+}

end while
sl+ ← 0
Return s1, s2, . . . , sL

would be a substantial burden as the network size grows.
Hence, we develop practical algorithms that efficiently
find approximate solutions of the RRH subset selection
problem in (11). The first algorithm is a greedy search-
based algorithm described in Algorithm 1. In the first
searching process, the set of selected RRHs, i.e, � is set
to ∅. The greedy search algorithm then compares the
value of C̄ with sequentially selecting RRHs not in � and
augments � by selecting the RRH leading to maximum
capacity increase. Greedy searching processes continue
until capacity loss from RS overhead dominates capacity
increase from the antenna processing gain, i.e., additional
augment of � results in decrease of C̄. The greedy search
algorithm then returns the final result s1, s2, . . . , sL.
In the jth searching process, the greedy search algorithm

goes through L − j + 1 cases to find the next member
of �, which leads to computational complexity increas-
ing on the order of O

(
L2
)
. Considering that the proposed

algorithm is periodically performed with long-term inter-
vals, the computational complexity of O

(
L2
)
is assessed

to be affordable for the CP. However, in an extremely
large-scale network, it might be a severe burden, and we
develop another efficient algorithm that finds an approxi-
mate solution of (11) with further reduced computational
complexity.
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The second algorithm makes use of the linear program-
ming relaxation [21] and gradient ascent search [22] as
described in Algorithm 2. We firstly relax the binary inte-
ger constraints on variables s1, s2, . . . , sL to real number
constraints with

0 ≤ sl ≤ 1, l = 1, 2, . . . , L. (12)

Then, we initialize the aggregated vector of the variables
x = [s1, s2, . . . , sL] to be x0. After initialization, x is itera-
tively updated as xt from xt−1 for t = 1, 2, 3 . . . according
to the update rule shown below.

xt = f
(
xt−1 + δ∇C̄ (xt−1)

)
, t = 1, 2, 3, . . . , (13)

where ∇C̄ (xt−1) is the gradient vector of C̄ with respect
to x at xt−1, δ is the step size, and f (x) is the projection
of vector x to the nearest vector x̃ which satisfies the con-
straints 0 ≤ sl ≤ 1 for l = 1, 2, . . . , L, i.e., the projection is
described by

sl ←
⎧⎨
⎩
1, sl > 1,
0, sl < 0,
sl, otherwise,

l = 1, 2, . . . , L. (14)

The iterative update continues until the difference
‖xt − xt−1‖ becomes smaller than a threshold η, where
‖x‖ is the norm of of vector x. Once the update process
terminates, we denote the index set for the r

(∑L
l=1 sl

)
largest elements of xt as �, where r(g) is the function
which returns the nearest integer from scalar g. Then,

Algorithm2: LP relaxation and gradient ascent search-
based RRH subset selection algorithm
Initialization process
t = 1
x0 = [0, 0, · · · , 0]
x1 = f

(
x0 + δ∇C̄ (x0)

)
Update process
while ‖xt − xt−1‖ > η do

t ← t + 1
xt ← f

(
xt−1 + δ∇C̄ (xt−1)

)
end while
� = index set for r

(∑L
l=1 sl

)
largest elements of xt

for l = 1, 2, . . . , L do
if l ∈ � then

sl ← 1
else

sl ← 0
end if

end for
Return s1, s2, . . . , sL

variables s1, s2, . . . , sL are rounded up to satisfy the origi-
nal binary integer constraint as

sl ←
{
1, l ∈ �

0, otherwise, l = 1, 2, . . . , L. (15)

Lastly, the algorithm returns the final result s1, s2, . . . , sL.
Extensive simulations reveal that the choice of initial point
x0 has negligible impact on the final results, and hence, we
simply set x0 = [0, 0, · · · , 0] in the algorithm.
At each iteration of the proposed algorithm, the com-

putational complexity for gradient calculation is propor-
tional to the number of RRHs L. However, the number of
total iterations does not increase with growth of L, and
it rather reaches saturation once L becomes large enough
as we will validate later in Section 4. Therefore, the over-
all computational complexity is approximated as O(L),
which would be affordable for the CP even in an extremely
large-scale network.

4 Simulation results
We set a C-RAN, where users and RRHs are distributed
within a service area of 1000 × 1000 m, where the path
loss from an RRH to a user is determined by the dis-
tance with path loss exponent 4, and the noise power σ 2

is −100 dBm. The number of antennas at an RRH is ran-
domly selected in the range of [10, 20], and each user is
equipped with one antenna. We set the fraction of time
and frequency resources dedicated for RS transmission
per antenna to be 0.12 %, i.e., α

U = 0.0012.2 When we
apply the proposed RRH control algorithms developed in
Section 3.3, the step size δ and the threshold η are set to
0.01 and 0.1, respectively. Simulation parameters are sum-
marized in Table 1, and other unspecified parameters will
be specified at each simulation scenario.
We compare the performance of the proposed RRH

control with other approaches: (1) the Lnear nearest RRH
selection approach introduced in [23], where each user
selects the Lnear nearest RRHs considering the received
signal strength and all the selected RRHs cooperatively
serve the users; (2) the nearest and SNRnear range RRH
selection approach introduced in [24], where each user

Table 1 Simulation parameters

Service area 1000 × 1000 m

Path loss exponent 4

Noise power σ 2 −100 dBm

Number of antennas at an RRH Randomly chosen
from 10 to 20

Fraction of resources for RS 0.12 %
transmission per antenna

Gradient ascent step size δ 0.01

Gradient ascent threshold η 0.1
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selects the nearest RRH by default and also selects other
RRHs from which the received signal strength is within
the SNRnear range from the maximum received signal
strength; and (3) no RRH control, where all RRHs are
involved in cooperative transmission.
Figure 2 shows the number of selected RRHs versus

the number of RRHs, L when the number of users K =
40 and the transmission power per spatial stream P =
1 mW (0 dBm). Without RRH control, the number of
selected RRHs inherently increases proportionally to L.
Under both the nearest and SNRnear range RRH selection
and Lnear nearest RRH selection, the number of selected
RRHs also increases with growth of L because increase
of L makes it more probable that different users select
different sets of RRHs. On the other hand, the proposed
RRH control selects a subset of RRHs to maximize net-
work capacity in consideration of RS overhead according
to (11). Therefore, the proposed RRH control with both
the greedy search-based and LP relaxation-based algo-
rithms (Algorithms 1 and 2 developed in Section 3.3)
selects far smaller number of RRHs than the compared
RRH control approaches, which leads to considerable
performance improvement as will be discussed in the
following.
Figure 3 shows network capacity versus the number of

RRHs, L in the previous simulation scenario. If RS over-
head is neglected as done in the previous studies, network
capacity would increase as more RRHs serve users. How-
ever, in reality, RS overhead severely degrades the network
capacity without RRH control considering RS overhead.
As shown in Fig. 3, network capacity begins to decrease
with growth of L after a point under all the compared RRH

control approaches which do not consider RS overhead.
On the other hand, the proposed RRH control leads to
constant increase of network capacity with growth of
L. Although one nearest RRH selection shows the least
capacity degradation compared to the other compared
approaches, it still wastes a larger fraction of resources for
RS transmission than the proposed RRH control. The pro-
posed RRH control with the greedy search-based and LP
relaxation-based algorithms improves network capacity
by 30 and 14 %, respectively, over one nearest RRH selec-
tion when L = 50. As will be validated in the following,
the LP relaxation-based algorithm reduces computational
complexity compared to the greedy search-based algo-
rithm. Although the LP relaxation-based algorithm shows
performance degradation compared to the greedy search-
based algorithm, it still achieves better performance than
the RRH control approaches which do not consider RS
overhead.
Figure 4 shows the average number of required iter-

ations for the LP relaxation-based RRH control algo-
rithm in the above simulation scenario.When the number
of RRHs L is small, the average number of iterations
increases with growth of L. However, it reaches saturation
after L = 40. As per our discussion in Section 3.3, gra-
dient calculation in each iteration requires computational
complexity of O(L), and hence, the overall computational
complexity could be also approximated as O(L), which
is far lighter than that of the greedy search-based RRH
control algorithm, i.e., O

(
L2
)
. Considering that RRH con-

trol is periodically performed with long-term intervals,
this is assessed to be affordable for practical CPs even in
extremely large-scale networks.

Fig. 2 The number of selected RRHs versus the number of RRHs
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Fig. 3 Network capacity versus the number of RRHs

Figure 5 shows the comparison of the actual long-term
ergodic capacity in the above simulation scenario with the
approximation given by (7). As is well known, Jensen’s
inequality provides an upper bound for the expectation
of the log function. Generally, the gap between the real
value and the approximated value using Jensen’s inequality
becomes larger in the concave region of the function while
it becomes smaller in the flat region of the function. In a
C-RAN, users receive cooperate signals from RRHs near
them, i.e., the network operates with a high received SNR.

It results in the network operating in the linear-like region
of the log function, and the upper bound (7) provides
very tight approximation for the actual ergodic network
capacity as shown in the figure. The average normalized
estimation error with both the greedy search-based and
LP relaxation-based algorithms is less than 1 %.
Figure 6 shows network capacity versus the number of

users, K when the number of RRHs L = 40 and trans-
mission power per spatial stream P = 1 mW (0 dBm).
Network capacity increases with growth of K due to the

Fig. 4 The average number of iterations in Algorithm 1
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Fig. 5 Tightness of ergodic capacity approximation in the proposed scheme

increased spatial multiplexing gain. However, the RRH
selection mechanisms of both the nearest and SNRnear
range RRH selection and Lnearest nearest RRH selection
inherently increase the number of selected RRHs with
growth of K. It results in a larger fraction of resources
wasted by RS transmission with increase of K. On the
other hand, the proposed RRH control selects a sub-
set of RRHs in consideration of RS overhead, achieving
considerable performance improvement over the exist-
ing schemes. When K = 60, the proposed RRH control
with the greedy search-based and LP relaxation-based

algorithms achieves the capacity gains of 38 and 21 %,
respectively, over one nearest RRH selection.
Figure 7 shows the number of selected RRHs ver-

sus transmission power per spatial stream, P when the
number of RRHs L = 40 and the number of users
K = 40. Without RRH control, the number of selected
RRHs remains the same as 40. Likewise, the selection
mechanism in the comparing schemes is not affected
by transmission power, which also results in the num-
ber of selected RRHs being constant regardless of trans-
mission power. On the other hand, the proposed RRH

Fig. 6 Network capacity versus the number of users



Choi et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:173 Page 9 of 10

Fig. 7 The number of selected RRHs versus transmission power per spatial stream

control finds an RRH subset which balances between
the antenna processing gain and RS overhead according
to (11). When the received SNR is small, more antennas
improve network capacity because the antenna process-
ing gain is larger than the capacity loss from increased
RS overhead. On the other hand, when the received
SNR is sufficiently large, more antennas rather result in
capacity loss from increased RS overhead due to the sat-
uration characteristic of the log function. Therefore, the
number of selected RRHs constantly reduces according
to the increase of transmission power. For example,

it reduces to about 8 and 4, respectively, under the
greedy search-based and LP relaxation-based algorithms
when transmission power per spatial stream becomes
30 dBm.
Figure 8 shows network capacity versus transmission

power per spatial stream, P in the previous simulation sce-
nario. Under all the comparing schemes, network capac-
ity increases according to the growth of P. However,
they do not consider RS overhead in RRH selection and
waste a large fraction of time and frequency resources,
which results in considerable performance degradation

Fig. 8 Network capacity versus transmission power per spatial stream



Choi et al. EURASIP Journal onWireless Communications and Networking  (2016) 2016:173 Page 10 of 10

compared to the proposed RRH control. As per our
discussion in the previous paragraph, the proposed RRH
control involves a smaller number of RRHs in cooper-
ative transmission with increase of P due to the sat-
uration characteristic of the log function. Accordingly,
the proposed RRH control further reduces RS over-
head according to the increase of P, achieving remark-
able network capacity improvement. For example, the
proposed RRH control with greedy search-based and
LP relaxation-based algorithms improves network capac-
ity by 33 and 20 % over one nearest RRH selection
when transmission power per spatial stream becomes
30 dBm.

5 Conclusions
In this paper, we have developed an RRH control scheme
for FDD-based C-RANs which maximizes the network
capacity by adaptively determining a cooperating RRH
subset in consideration of both the antenna processing
gain and RS overhead. Our main contribution is introduc-
ing a realistic performance metric that takes into account
both antenna processing gain and RS transmission over-
head, which then leads to formulation of a network capac-
ity maximization problem. This has never been studied
in the literature. Simulation results have revealed that
larger number of antennas do not always guarantee net-
work capacity increase in FDD-based C-RANs. The pro-
posed algorithm adaptively finds the best RRH subset
for cooperation and offers a significant improvement on
the network capacity. For future research directions, the
proposed RRH control may be extended to incorporate
transmit power control and uplink CSI overhead.

Endnotes
1Later in Section 4, we will validate that Jensen’s

inequality provides close approximation for the long-term
ergodic network capacity in a C-RAN.

2We consider CSI-RS transmission overhead in com-
mercial LTE systems. CSI-RS configurations with 5-ms
period result in 0.12 % of time and frequency resource
consumption per antenna [25].

Competing interests
The authors declare that they have no competing interests.

Acknowledgments
This work was supported by supported by the National Research Foundation
of Korea (NRF) grant funded by the Korea government (MSIP) (No.
2014R1A2A2A01003637), and Basic Science Research Program through the
National Research Foundation of Korea (NRF) funded by the Ministry of
Education (No. NRF-2015R1D1A1A01057100).

Author details
1Department of Electrical and Computer Engineering, INMC, Seoul National
University, Gwanak-ro, 08826 Seoul, South Korea. 2Department of Electronics
Engineering, Gachon University, Seongnamdae-ro, 13120, Seongnam, South
Korea.

Received: 2 December 2015 Accepted: 9 June 2016

References
1. P Demestichas, A Georgakopoulos, D Karvounas, K Tsagkaris, V

Stavroulaki, J Lu, C Xiong, J Yao, 5G on the horizon: key challenges for the
radio-access network. IEEE Veh. Technol. Mag. 8(3), 47–53 (2013)

2. P Rost, CJ Bernardos, AD Domenico, MD Girolamo, M Lalam, A Maeder, D
Sabella, D Wubben, Cloud technologies for flexible 5G radio access
networks. IEEE Commun. Mag. 52(5), 68–76 (2014)

3. J Wu, Z Zhang, Y Hong, Y Wen, Cloud radio access network (C-RAN): a
primer. IEEE Netw. 29(1), 35–41 (2015)

4. M Peng, Y Li, Z Zhao, C Wang, System architecture and key technologies
for 5G heterogeneous cloud radio access networks. IEEE Network. 29(2),
6–14 (2015)

5. China Mobile. C-RAN: the road towards green RAN, (2011). White Paper
6. Ericsson. Heterogeneous Networks: meeting mobile broadband

expectations with maximum efficiency, (2012). White Paper
7. SK Telecom. SK Telecom’s view on 5G vision, architecture, technology,

and spectrum, (2014). White Paper
8. S Park, O Simeone, O Sahin, S Shamai, Robust and efficient distributed

compression for cloud radio access networks. IEEE Trans. Veh. Technol.
62(2), 692–703 (2013)

9. S Park, O Simeone, O Sahin, S Shamai, Joint precoding and multivariate
backhaul compression for the downlink of cloud radio access networks.
IEEE Trans. Signal Process. 61(22), 5646–5658 (2013)

10. S Park, O Simeone, O Sahin, S Shamai, Joint decompression and decoding
for cloud radio access networks. IEEE Signal Process. Lett. 20(5), 503–506
(2013)

11. L Zhou, W Yu, Uplink multicell processing with limited backhaul via
per-base-station successive interference cancellation. IEEE J. Sel. Areas
Commun. 30(10), 1981–1993 (2013)

12. Y Zhou, W Yu, Optimized backhaul compression for uplink cloud radio
access network. IEEE J. Sel. Areas Commun. 32(6), 1295–1307 (2014)

13. J Kang, O Simeone, J Kang, S Shamai, Joint signal and channel state
information compression for the backhaul of uplink network MIMO
systems. IEEE Trans. Wireless Commun. 13(3), 1555–1567 (2014)

14. B Dai, W Yu, Sparse beamforming and user centric clustering for downlink
cloud radio access network. IEEE Access. 2, 1326–1339 (2014)

15. H Zhang, H Liu, C Jiang, X Chu, A Nallanathan, X Wen, A practical
semi-dynamic clustering scheme using affinity propagation in
cooperative picocells. IEEE Trans. Veh. Technol. 99, 1–6 (2014)

16. A Liu, VKN Lau, Joint power and antenna selection optimization in large
cloud radio access networks. IEEE Trans. Signal Process. 62(5), 1319–1328
(2014)

17. Y Shi, J Zhang, KB Letaief, in IEEE International Conference on
Communications. CSI overhead reduction with stochastic beamforming
for cloud radio access networks, (Sydney, 2014)

18. B Hassibi, BM Hochwald, How much training is needed in
multiple-antenna wireless links? IEEE Trans. Inform. Theory. 49(4),
951–963 (2003)

19. X Ma, L Yang, GB Giannakis, Optimal training for MIMO frequency-selective
fading channels. IEEE Trans. Wireless Commun. 4(2), 453–466 (2005)

20. 3rd Generation Partnership Project, LTE, Evolved Universal Terrestrial
Radio Access (EUTRA); Physical Channels and Modulation. 3GPP TS 36.211
version 10.7.0 Release 10 (2013)

21. A Dua, K Medepalli, AJ Paulraj, Receive antenna selection in MIMO
systems using convex optimization. IEEE Trans. Wireless Commun. 5(9),
2353–2357 (2006)

22. A Snyman, Practical Mathematical Optimization: an Introduction to Basic
Optimization Theory and Classical and New Gradient-Based Algorithms.
(Springer, Spring Street, New York, NY 10013, USA, 2005)

23. M Peng, S Yan, HV Poor, Ergodic capacity analysis of remote radio head
associations in cloud radio access networks. IEEE Wireless Commun. Lett.
3(4), 365–368 (2014)

24. LG Electronics, R1-111628, Phase 1 CoMP simulation evaluation results
and analysis for full buffer. 3GPP TSG RAN WG1 (2011)

25. S Ahmadi, A Practical Systems Approach to Understanding 3GPP LTE Release
10 and 11 Radio Access Technologies. (Academic Press, 225 Wyman Street,
Waltham, MA 02451, USA, 2013)


	Abstract
	Keywords

	Introduction
	System model
	Adaptive RRH control
	Problem formulation
	Analysis on the optimal RRH subset
	Proposed algorithm

	Simulation results
	Conclusions
	Endnotes
	Competing interests
	Acknowledgments
	Author details
	References

