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Abstract

In this paper, we propose a low-complexity lattice reduction (LR) algorithm for multiple-input multiple-output
(MIMO) detectors with tree searching. Whereas conventional approaches are based exclusively on channel
characteristics, we focus on joint optimisation by employing an early termination criterion in the context of MIMO
detection. In this regard, incremental LR (ILR) was previously proposed. However, the ILR is limited to LR-aided
successive interference cancellation (SIC) detectors which have considerable bit-error-rate (BER) performance
degradation compared to optimal detectors. Hence, in this paper, we extend the conventional ILR to be applicable to
the LR-aided detectors with near-optimal performance. Furthermore, we perform the hypothetical analysis and
several novel modifications to handle the obstacles for the application of the ILR to LR-aided detectors other than the
LR-aided SIC detectors. The simulation results demonstrate that the computational complexity is considerably
reduced, with BER performance degradation of 10−5.

Keywords: Lattice reduction, Multiple-input multiple-output, Early termination, Incremental lattice reduction

1 Introduction
In an effort to satisfy the demand for high-capacity wire-
less communication systems, ample research is currently
dedicated to multiple-input multiple-output (MIMO)
techniques, owing to their ability to provide diversity and
multiplexing gain within limited bandwidth and power
resources. However, a major obstacle to the realization
of an enhanced MIMO system is the high computational
complexity of its receiver. The optimal MIMO receiver is
the maximum-likelihood (ML) detector (MLD). However,
its complexity increases exponentially with the number of
transmit antennas, making it infeasible for actual systems.
Hence, a low-complexity design for MIMO receivers is a
challenging research topic.
The sphere detector (SD) was introduced to achieve an

optimal performance with low complexity, by employing
a tree-searching algorithm [1, 2]. However, the variable
complexity of the SD is a major drawback for practical
systems that require data to be processed at a constant
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rate. To overcome this drawback, the fixed-complexity SD
(FSD) [3, 4] and the K-best detector [5] have been devel-
oped. These detectors have the advantage of constant
throughput, because there is no feedback in the data flow.
In particular, the FSD approaches optimal performance in
a fixed number of operations. Nevertheless, the complex-
ity of these algorithms remains high in MIMO systems
with a large number of transmit antennas and higher order
modulation.
Recently, lattice reduction (LR)-aided detection meth-

ods have emerged as an efficient solution to the MIMO
symbol-detection problem [6]. LR-aided linear and suc-
cessive interference cancellation (SIC) detectors [7] pro-
vide the same diversity order as the ML detector, by
transforming the system model with near-orthogonal
channel matrices [8, 9]. Furthermore, the LR-aided K-
best detector employs the Schnorr–Euchner enumer-
ation to find the next child during tree searching
[10–12]. However, a considerable gap remains between
the performance of the optimal detector and those of
conventional LR-aided detectors as the number of trans-
mit antennas increases. In this regard, an LR-aided FSD
has been developed to achieve near-ML performance,
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despite a large number of antennas and higher order
modulation [13–15].
Given these desirable features, research into LR-aided

detection has remained active. The majority of research
on LR-aided detection has been directed at a low-
complexity LR algorithm. In [16], the complex-valued
extension of the Lenstra–Lenstra–Lovász (LLL) [17] algo-
rithm was proposed to reduce by half the size of the
real-valued channel matrix. In [18], an effective LLL was
proposed to reduce the complexity of the size reduction by
processing only pairs of consecutive basis vectors. More-
over, some researchers focused on relaxing the Lovász
condition to reduce complexity [19, 20]. Some effort in
this field is devoted to fixing the complexity of the LLL
algorithm. After the fixed-complexity LLL (fcLLL) algo-
rithm was first proposed in [21], its complexity was fur-
ther reduced by modifying the column traverse strategy
[22–24].
Whereas these approaches focus exclusively on chan-

nel characteristics, another approach is to jointly optimise
LR processing and the detection process. The approach
is referred to as incremental LR (ILR) [25]. ILR performs
partial SIC detection at each iteration and employs an
early termination (ET) criterion based on the reliability
assessment (RA) [26] computed with the partial detec-
tion result. However, ILR cannot be applied to LR-aided
detectors other than the LR-aided SIC detector.
In this paper, we propose a low-complexity LR algorithm

with ET that can be employed to high-performance LR-
aided FSDs. In order to obtain the partial detection result
in a simple manner, the proposed algorithm modifies the
index of the column vectors for the channel matrix. Fur-
thermore, in order to ensure that the characteristics of
the lattice-reduced channel matrix remain the same, LR
processing is performed only on the column vectors that
involve LR-aided detection, and a modified QR decompo-
sition (QRD) is proposed to generate the partially upper
triangular matrix. The experimental results demonstrate
that the proposedmethod achieves a significant reduction
in complexity while maintaining a performance degrada-
tion of less than 0.5 dB at a bit error rate (BER) of 10−5 for
a 8 × 8 MIMO system with 256 QAM.
Notations: Uppercase and lowercase boldface letters are

used for matrices and vectors, respectively. The super-
scripts (·)T and (·)H denote the transpose and the Her-
mitage of a matrix, respectively. |a| denotes the absolute
value of a scalar a, or the cardinality of a if a is a set. ‖ · ‖
and �·� represent the 2-norm of a vector and the round-
ing operation, respectively. IN denotes the N ×N identity
matrix, and 0M×N denotes anM × N matrix of all zeros.

2 Preliminaries
In the following subsections, we briefly explain theMIMO
system model and introduce the lattice-reduced MIMO

systemmodel, whereby the channel matrix is transformed
so that it has a favorable characteristic for MIMO detec-
tion. Moreover, we introduce the FSD—and the LR-aided
FSD—which achieves near-optimal performance with low
complexity.

2.1 MIMO systemmodel
Consider a flat fading MIMO system with NT trans-
mit and NR receive antennas, where NT ≤ NR. When
s =[ s1, s2, . . . , sNT ]T denotes the transmitted symbol vec-
tor. TheNR×1 received symbol vector at one sample time
can be expressed as follows:

y = Hs + n, (1)

where n denotes the NR × 1 additive white Gaussian noise
(AWGN) vector with zero mean, the covariance matrix
E[nnH ]= σ 2

n INR , and H represents an NR × NT channel
matrix whose elements are independent and identically
distributed (i.i.d.) complex Gaussian coefficients with zero
mean and unit variance. We assume that the total power
of every antenna is normalized to one, i.e., E[ sHs]= 1.We
further assume that the channel matrix H varies at each
sample time and is known by the receiver. Here, ŝML, the
MLD solution for (1), is given by

ŝML = arg
s ∈ �NT

min ‖y − Hs‖2, (2)

where � denotes the constellation points. Whereas this
MLD is optimal, its search space is proportional to |�|NT .
This exponential complexity renders the MLD infeasible
for practical systems.
On the other hand, the zero-forcing (ZF) detector is

the simplest linear detector, whose complexity is far lower
than that of theMLD. The ZF detection can be formulated
as follows:

s̃ZF = H†y = s + H†n = s + ñ, (3)

ŝZF = Q(s̃ZF) = arg
s ∈ �NT

min |s̃ZF − s|, (4)

where Q(·) denotes the slicing (quantisation to a con-
stellation point) operation, ñ := H†n denotes the noise
amplified after linear equalisation, and H† is the Moore–
Penrose pseudo-inverse of the channel matrix, which can
be written as follows:

H† = (HHH)−1HH . (5)

However, the noise amplification in (3) is the major
cause of the degraded BER performance in linear
detectors.

2.2 Lattice-reduced MIMO systemmodel
To employ the lattice-reduced MIMO system model, the
received signal is first scaled and shifted to map the
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received symbol to the consecutive complex integer lattice
as follows:

x = 1
α
s + 1c, (6)

where 1c =[ 1 + j, . . . , 1 + j]T , α is the minimum distance
between quadrature-amplitude-modulation (QAM) con-
stellation points. The scaled and shifted received symbol
vector can now be written as follows:

ẏ � 1
α
y + H1c = H

(
1
α
s + 1c

)
+ 1

α
n = Hx + ṅ, (7)

where ṅ = 1
α
n.

Let H̃ = HT be the lattice-reduced channel matrix,
where H̃ spans the same lattice as H and T is a complex
integer unimodular matrix. The lattice-reduced channel
matrix H̃ can be obtained from the complex LLL (CLLL)
algorithm, which is summarised in Table 1.

Table 1 CLLL algorithm [16]

Input: H

Output: Q̃, R̃, T

Initialise: [Q,R]= QRD(H),

Q̃ = Q, R̃ = R, T = INT , k = 2

1 : while k ≤ NT

2 : for n = k − 1 : −1 : 1

3 : μ = �R̃(n, k)/R̃(n.n)�
4 : if μ �= 0

5 : R̃(1 : n, k) = R̃(1 : n, k) − μR̃(1 : n, n)

6 : T(:, k) = T(:, k) − μT(:, n)

7 : end

8 : end

9 : if δ R̃(k − 1, k − 1)2 > R̃(k, k)2 + R̃(k − 1, k)2

10 : Swap columns k − 1 and k in R̃ and T

11 : � =
⎡
⎣ a∗ b

−b a

⎤
⎦ with

a = R̃(k−1,k−1)
‖R̃(k−1:k,k−1)‖

b = R̃(k−1,k−1)
‖R̃(k−1:k,k−1)‖

12 : R̃(k − 1 : k, k − 1 : NT ) = �R̃(k − 1 : k, k − 1 : NT )

13 : Q̃(:, k − 1 : k) = Q̃(:, k − 1 : k)�H

14 : k = max(k − 1, 2)

15 : else

16 : k = k + 1

17 : end

18 : end

Line 2 − 8 : size reduction

Line 9 : Lovász condition

Line 10 − 13 : column swapping

If z = T−1x, the lattice-reduced system model can be
represented as follows:

ẏ = HTT−1x + ṅ = H̃z + ṅ. (8)

Then, the LR-aided ZF detector can be formulated as
follows:

zLR-ZF = H̃†ẏ = z + H̃†ṅ = z + w, (9)

ŝLR-ZF = α (T�zLR-ZF� − 1c) . (10)

Note that w := H̃†ṅ in (9) is the noise amplified by
the lattice-reduced channel matrix H̃†. With the aid of the
near-orthogonal nature of the lattice-reduced matrix, the
noise amplification in (9) is much less than (3) so that
the BER performance of LR-aided linear detectors has the
same diversity order as the MLD.

2.3 FSD
Through the QRD on the channel matrix H, H can be
decomposed as H = QR, where Q is an NR × NT unitary
matrix, and R is an NT × NT upper-triangular matrix. By
multiplying both sides of (1) byQH , the system model can
be rewritten as follows:

q = Rs + v, (11)

where q = QHy and v = QHn. Figure 1 shows that the
FSD performs constrained tree searching on (11), which
consists of the full expansion (FE) and single expansion
(SE) stages. For the first Np levels, FE is performed, where
all possible |�| branches are expanded. Then, for the
remainingNT−Np levels, SE is performed, where only one
branch is expanded on each node in the manner of SIC. In
other words, the FSD solution is given by

ŝFSD = arg
s ∈ L

min ‖q − Rs‖2, (12)

whereL is the candidate list, which is generated as follows:

L =
[
s̃1, s̃2, · · · , s̃|�|Np

]
, (13)

where s̃l =[ s̃l,1, · · · , s̃l,NT ]T and

s̃l,i =
{ ∈ � , i = NT , · · · ,NT − Np + 1
Q

((
qi − ∑NT

j=i+1 ri,js̃l,j
)

/ri,i
)
, else,

}
(14)

where qi and ri,j are the ith element in q and the (i, j)th
element inR, respectively. In order to achieve optimal per-
formance, the channel matrix should be ordered prior to
tree searching so that the signals with maximum andmin-
imum post-processing noise amplifications are detected
at the FE and SE stages, respectively [3]. Throughout this
paper, to simplify the notation, we consider the channel
matrices and transmit signals as corresponding variables
with permutations.
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Fig. 1 Tree structure of the FSD on an 8 × 8 MIMO system with |�|-QAM and Np = 2. The gray-colored tree node contains the FSD solution

2.4 LR-aided FSD [15]
In order to reduce the complexity, the LR-aided FSD algo-
rithm lowers the number of tree levels in the FE stage,
in order to reduce the parent nodes generated at the
FE stage. Nevertheless, the proposed algorithm maintains
near-optimal BER performance by adopting LR-aided SIC
at the SE stage. However, the application of the LR algo-
rithm to the FSD is not straightforward. The bases of the
channel matrix are modified in the lattice-reduced system
model so that the child nodes cannot be expanded [10].
Hence, the LR-aided FSD generates the candidate signal in
the FE stage, and cancel the FE signals in the original con-
stellation domain before transforming the system model
into a lattice-reduced one.
In other words, the FE candidate signals are cancelled

and nulled as follows:

y′
(k) = y −

NT∑
l=NT−Np+1

hl ŝl(k), (15)

where y′
(k) denotes theNR×1 received signal in the revised

system model, hl is the lth column vector of the channel
matrixH, and ŝl(k) is the kth FE candidate signal transmit-
ted from the lth transmit antenna. Then, the systemmodel
is transformed to a nulled system model as follows:

y′
(k) � H′s′(k) + n, (16)

whereH′ and s′
(k) respectively denote theNR×(

NT − Np
)

channel matrix and the
(
NT − Np

) × 1 transmitted sig-
nal whose lth

(
l = NT − Np + 1, · · · ,NT

)
column vectors

and elements are nulled. Then, LR-aided SIC is performed

on (16) to complete the candidate list, and the detection is
completed by the ML test, where the symbol vector with
the minimum Euclidean distance (ED) is detected as the
solution.

3 Proposed algorithm
3.1 Motivation
Motivated by the previous analysis in [25], we conducted
a hypothetical experiment to determine whether it is fun-
damentally possible to apply the ET scheme to LR-aided
detectors other than the LR-aided SIC detector, as illus-
trated in Fig. 2. First, the LR-aided FSD solution ŝLR-FSD
was obtained using the channel matrix that passed the
basis-reduction process with the original CLLL. Then,
at the end of each CLLL iteration, the temporary LR-
aided FSD solution ŝtmp was obtained with the inter-
mediate lattice-reduced channel condition. We compared
ŝLR-FSD and ŝtmp at each CLLL iteration, and terminated
the reduction process when the two solutions were the
same—referred to as the ideal ET.
We performed this simulation on an 8×8MIMO system

with 256-QAM and Np = 1. As shown in Fig. 3, a consid-
erable portion of the CLLL process is unnecessary in the
context of MIMO detection with the LR-aided FSD, espe-
cially at high Eb/No values. Hence, it can be concluded
that it is indeed fundamentally possible to employ the ET
in the LR-aided FSD.
Given this inference, ILR can be rendered a practical ET

scheme by adopting the RA in [26], which is formulated as
follows:



Kim et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:17 Page 5 of 11

Fig. 2 Flow chart for CLLL with ideal ET. Here, ŝLR-FSD is the LR-aided
FSD solution with the original CLLL, and ŝtmp is the LR-aided FSD
solution obtained at each iteration

‖y − Hŝtmp‖2 ≤ Aσ 2
n , (17)

where A is the positive parameter that determines the
tradeoff between performance and computational com-
plexity. However, there is a critical issue in the application
of the ET to the LR-aided FSD. Whereas ILR obtained
the practical ET criterion with RA by performing partial
SIC detection during the intermediate LR process, all par-
ent nodes should be considered as the candidate signal in
the LR-aided FSD, making the overhead incurred by the
partial detection too large. A novel way of handling this
obstacle is proposed in the next subsection.

3.2 CLLL with ET for the LR-aided FSD
A problem arises when applying conventional ILR directly
to the LR-aided FSD [15]: all the parent nodes in the FE
stage should be considered for partial detection, making

the overhead incurred by the partial detection too large.
In order to solve this problem, the proposed algorithm
exchanges the column vectors of the channel matrix cor-
responding to the FE stage and SE stage. LR is performed
on column vectors during the SE stage exclusively, and
not during the FE stage. In this way, as the LR-aided FSD
performs LR-aided detection during the SE stage, the col-
umn vectors that actually involve LR-aided detection are
lattice-reduced. Furthermore, because the signals of the
SE stage are switched to the upper level of the tree struc-
ture, partial detection with SIC can be performed on the
corresponding signals.
Let us explain in more detail the proposed algorithm

with in a 4 × 4 MIMO system. The system model in (1)
can be written in a 4 × 4 MIMO system as

y = Hs + n = h1s1 + h2s2 + h3s3 + h4s4 + n. (18)

Then, the LR-aided FSD with Np = 1 transforms the
system model to a nulled system model as

y′
(k) � H′s′ + n � h1s1 + h2s2 + h3s3 + n. (19)

In order to perform the LR-aided SIC detection on the
SE stage, (19) is transformed to a lattice-reduced system
model as

y′
(k) � H′s′ + n = H′T′T′−1s′ + n � H̃′z′ + n, (20)

where H̃′ � H′T′ and z′ � T′−1s′. Also, T′ is the
transformation matrix to assure the lattice-reduced char-
acteristics ofH′, which is obtained by performing the LLL
to H′. Here, T′ needs to assure the lattice-reduced char-
acteristics between the column vectors {h1,h2,h3}, not
h4. Hence, the proposed algorithm obtains T′ based on a
different system model as

y = H̄s̄ + n,
(
H̄ =[h4,H′] , s̄ =[ s4, s′]

)
(21)

where, the channel column vector and the transmit sig-
nal corresponding to the FE signal are moved to the front
column and row, respectively. Then, whereas the con-
ventional LLL starts from the first column, the proposed
algorithm skips the first column and performs the LLL
processing only on H′. In other words, the initial value of
the column index k is changed from 2 to 3. The output of
the proposed algorithm is a 4 × 4 transformation matrix
T̄ whose right-lower submatrix is the same as T′, which

means that T̄ =
[

1 01×3
03×1 T′

]
.

Here, we perform the partial SIC during the LLL pro-
cessing to obtain the signal s′ which is used to compute the
RA in (17). There might exist some false ETs, because
the RA is computed with a signal which is obtained by not
the original FSD but the SIC on the SE stage. This leads
to a trade-off between the BER performance and the com-
putational complexity as a function of the parameter A in
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Fig. 3 Fraction of the average number of column swaps, compared to the original CLLL. The simulation was conducted using the LR-aided FSD on
an 8 × 8 MIMO system with 256-QAM and Np = 1

(17). However, the proposed algorithm reduces the com-
plexity considerably with little performance degradation,
which is shown in the next Section.
The proposed algorithm is summarised in Table 2 and

has the following main features.

3.2.1 Input channel matrix conversion (line 1 in Table 2)
First, the column vectors of H corresponding to the FE
stage and SE stage are exchanged, resulting in a converted
channel matrix H̄. In this way, signals corresponding to
the SE stage are displaced to the upper level in the tree
structure so that partial SIC detection can be applied to
the corresponding signals without considering the parent
nodes during the FE stage.

3.2.2 Modification of the index for LR processing
The LR-aided FSD priorly eliminates FE signals and per-
forms LR-aided SIC detection during the SE stage. This
means that column vectors corresponding to the SE stage
are those that actually require the basis-reduction process.
Hence, as detailed in the initialization step and line 21 in
Table 2, the column search index for LR processing, k, is
modified from [2, · · · ,NT ] to

[
2 + Np, · · · ,NT

]
.

3.2.3 ET check (lines 4–17 in Table 2)
Prior to each LR iteration, an ET check is performed
by adopting the RA criterion, which is computed by the
symbol partially detected with the intermediate lattice-
reduced channel. If the detected symbol is within the
predetermined boundary, LR processing is terminated.

Note that this operation is performed only when col-
umn swapping occurs so that the channel condition is
modified. Furthermore, the symbol index where partial
detection is performed is determined according to the
column-swapping index, as shown in line 23 in Table 2.

3.2.4 Modified QRD (line 2 in Table 2)
The LR-aided FSD uses the nulled channel matrix, H′ in
(16), which consists of the column vectors of the chan-
nel matrix corresponding to the SE stage, as the input
of the CLLL process. Meanwhile, the proposed algorithm
uses the full channel matrix H after converting to H̄. Let
H′ = Q′R′ and H̄ = Q̄R̄, which are the results of the
QRD. Then, the output matrices (Q′,R′) and (Q̄, R̄) differ
from each other. This means that the proposed algorithm
performs LR in an undesired manner, as LR processing is
dependent on the QRD result.
To overcome this problem, we modified the QRD algo-

rithm in the proposed algorithm, which is based on the
QRD with the Gram–Schmidt (GS) process. The pro-
posed modification to the QRD algorithm is summarised
in Table 3. Unlike the original QRD, the modified QRD
performs the GS process for the column vectors of the
channel matrix corresponding to the SE stage, generat-
ing an orthonormalized basis. This orthonormal matrix
results in a unitary matrix Q̄, which is equivalent to Q′.
Then, the Q̄H is multiplied by H̄, resulting in a par-
tially upper-triangular matrix R̄, whose right-side column
vectors are identical to R′—i.e. R̄

(
:,Np + 1 : NT

) = R′.
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Table 2 Proposed CLLL algorithm with ET for the LR-aided FSD

Input: H, y

Output: T̄

Initialise: k = 2 + Np , update = 1, l = NT − Np

T̄ = INT−Np , p = 0(NT−Np)×1

1 : H̄ = [
H

(
:,NT − Np + 1 : NT

)
,H

(
:, 1 : NT − Np

)]
2 :

[
Q̄, R̄

] = Modified_QRD
(
H̄,Np

)
, Q̃ = Q̄, R̃ = R̄

3 : while(k ≤ NT )

4 : if(update)

5 : q = QHy

6 : for n = l : −1 : 1 + Np

7 : if n < (NT − Np)

8 : p(n) =
⌈

q(n)−R̃(n,n+Np+1:NT )

R̃(n,n+Np)

⌋

9 : else

10 : p(n) =
⌈

q(n)
R̃(n,n+Np)

⌋

11 : end

12 : end

13 : ED = sum
(
‖q − R̃(:, 1 + Np : NT )p‖2

)
14 : if

(
ED < Aσ 2

n

)
15 : break

16 : end

17 : end

18 : Size_Reduction
(
for n = k − 1 : −1 : Np

)
19 : if δ R̃

(
k − 1 − Np , k − 1

)2
>

R̃
(
k − Np , k

)2 + R̃
(
k − 1 − Np , k

)2
20 : Column_Swapping (of k − 1 and k)

21 : k = max
(
k − 1, 2 + Np

)
22 : update = 1

23 : l = k

24 : else

25 : k = k + 1

26 : update = 0

27 : end

28 : end

Modified_QRD : in Table 3

Size_Reduction : Line 2–8 in Table 1

Column_Swapping : Line 10–13 in Table 1

Although the leftmost column vector of R̄ affects the par-
tial SIC detection in the ET check as the interference, each
element in the vector is statistically smaller than the diag-
onal terms of R′. This is because the power of the leftmost
terms of R̄ are distributed normally, whereas the power
of R′ are converged to the diagonal terms due to the FSD

Table 3 Modified QRD algorithm

Input: H̄, Np

Output: Q̄, R̄

Initialise: B = 0NR×(NT−Np) , Q̄ = 0NR×(NT−Np)

1 : for k = 1 : NT − Np

2 : B(:, k) = H̄
(
:, k + Np

)
3 : for l = 1 : k − 1

4 : B(:, k) − B(:,l)HH̄(:,k+Np)
‖B(:,l)‖2

5 : end

6 : Q̄(:, k) = B(:,k)
‖B(:,k)‖

7 : end

8 : R̄ = Q̄HH̄

ordering. Table 4 presents the average power of the diag-
onal terms of R′, the leftmost terms of R̄, and the fraction
of the leftmost terms normalized by the diagonal terms
on each tree level. Consequently, the interference of the
leftmost column vector is nominal.

4 Simulation results
In this section, the BER performance and the computa-
tional complexity of the conventional CLLL is compared
to that of the proposed CLLL with ET for LR-aided FSD
through computer simulations. The simulation was con-
ducted on an uncoded 8 × 8 MIMO system with 256-
QAM, with Np = 1 for LR-aided FSD. Here, Eb denotes
the average energy per information bit arriving at the
receiver. Thus, the signal-to-noise-ratio (SNR) is given by
Eb/No = NR/

(
log2(|�|)σ 2

n
)
.

Figure 4 shows the uncoded BER performance of the
SD, FSD, and LR-aided FSD with different LR algorithms,
as a function of Eb/No. Because the time consumption of

Table 4 The average power of the diagonal terms of R′ , the
leftmost terms of R̄, and the fraction of the leftmost terms
normalized by the diagonal terms on each tree level. The channel
condition is given by the Rayleigh fading channel ordered by the
FSD channel ordering

Tree level Diagonal terms Leftmost terms Fraction

1 4.1858 0.0879 0.0210

2 3.7763 0.1615 0.0428

3 4.0852 0.2603 0.0367

4 4.5849 0.3727 0.0813

5 5.0649 0.5306 0.1048

6 5.6178 0.7442 0.1325

7 6.3230 1.4036 0.2220

Average 4.8054 0.5087 0.1059
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Fig. 4 Comparison of the uncoded BER performance of MIMO detectors. The simulation was conducted on an uncoded 8 × 8 MIMO system with
256-QAM, with Np = 1 for the LR-aided FSD

the optimal ML simulation is too high, the optimal per-
formance was obtained by performing the simulation with
the SD. In order to achieve near-optimal performance, the
FSD must satisfy Np ≥ √

NT − 1, if NT = NR holds. This
means that NP ≥ 2 must hold when NT = NR = 8 [27].

Therefore, there was considerable performance degrada-
tion for the FSD with Np = 1, whereas the FSD with
Np = 2 achieved near-optimal performance.
By contrast, the LR-aided FSD with CLLL achieved

near-optimal performance despite an insufficient number

Fig. 5 Average number of column swaps in the LR algorithms as a function of Eb/No
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Fig. 6 Fraction of the average number of FLOPs from the proposed LR algorithm normalized by the conventional CLLL as a function of Eb/No

of FE stage. Moreover, when the proposed LR algorithm
was applied, the performance degradation with the LR-
aided FSD was less than 0.5 dB for A ≤ 700 at a BER
of 10−5. Note that the performance of the conventional
CLLL and the proposed algorithm for A = 0 was the
same because no ET occurred. Meanwhile, Fig. 5 shows
the reduction in the average number of column swaps

in the LR algorithms, which is the celebrated indicator
of the computational complexity of the LR algorithm.
Contrary to the result with the ideal ET which is shown
in Fig. 3, the average number of column swaps increases
for higher SNR. This is because the threshold of the RA
gets tighter as the noise variance decreases. As the per-
formance degradation is more sensitive to the channel

Fig. 7 Fraction of the average number of FLOPs from the LR-aided FSD with the proposed LR algorithm normalized by the one with the
conventional CLLL as a function of Eb/No
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condition for higher SNR, it is inevitable to get the thresh-
old tighter. Nevertheless, the average number of column
swaps in the proposed algorithm with A = 700 was
reduced to approximately 30 % of that of the CLLL at
Eb/No ≈ 28 dB where the BER is approximately 10−5.
For a more generalized comparison, the computational

complexity was analysed in terms of the number of float-
ing point operations (FLOPs), which we obtained accord-
ing to the following rules [28]:

• The multiplication of l ×m andm× n real (complex)
matrices requires 2 lmn (8 lmn) FLOPs.

• The Moore–Penrose pseudo-inverse of anm × n real
matrix requires 2m3 − 2m2 + m + 16mn FLOPs.

Figure 6 illustrates the average number of FLOPs from
the proposed LR algorithm normalized by the conven-
tional CLLL. Although there was overhead owing to the
ET check, the complexity of the proposed LR algorithm
with A = 700 was reduced by approximately 40 % at
Eb/No = 28 dB where the BER is approximately 10−5.
In Fig. 7, the average number of FLOPs from the LR-

aided FSD with the proposed LR algorithm normalized
by the one with the conventional CLLL is illustrated. As
the complexity of the FSD is not negligible, the reduc-
tion rate of the FLOPs is decreased, compared to the
results in Fig. 6. However, there still exists the decrease
in the computational complexity which is approximately
18 % at Eb/No = 28 dB where the BER is approximately
10−5. Note that this reduction rate can be increased, if the
proposed algorithm adopts the low-complexity FSD algo-
rithms such as simplified FSD [29] or FSD with pruning
[30].

5 Conclusions
In this paper, we proposed a low-complexity LR algorithm
with ET for detectors with tree searching. Whereas the
ILR [25] is limited to LR-aided SIC detectors, the pro-
posed algorithm is an extension of the conventional
approach to LR for detectors with tree searching. We
performed an additional hypothetical analysis and sev-
eral novel modifications to the conventional algorithm in
order to overcome its limitations.
We verified the performance of the proposed algorithm

with a computer simulation, demonstrating that the aver-
age number of column swaps was reduced, with negligible
BER performance degradation. Furthermore, for a fair
comparison, the computational complexity was analysed
in terms of the number of FLOPs, indicating a significant
reduction in computational complexity.
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