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Abstract

This paper considers an artificial noise (AN)-aided transmit design for multi-user MIMO systems with integrated
services. Specifically, two sorts of service messages are combined and served simultaneously: one multicast message
intended for all receivers and one confidential message intended for only one receiver and required to be perfectly
secure from other unauthorized receivers. Our interest lies in the joint design of input covariances of the multicast
message, confidential message, and artificial noise (AN), such that the achievable secrecy rate and multicast rate are
simultaneously maximized. This problem is identified as a secrecy rate region maximization (SRRM) problem in the
context of physical-layer service integration. Since this biobjective optimization problem is inherently complex to
solve, we put forward two different scalarization methods to convert it into a scalar optimization problem. First, we
propose to prefix the multicast rate as a constant, and accordingly, the primal biobjective problem is converted into a
secrecy rate maximization (SRM) problem with quality of multicast service (QoMS) constraint. By varying the constant,
we can obtain different Pareto optimal points. The resulting SRM problem can be iteratively solved via a provably
convergent difference-of-concave (DC) algorithm. In the second method, we aim to maximize the weighted sum of
the secrecy rate and the multicast rate. Through varying the weighted vector, one can also obtain different Pareto
optimal points. We show that this weighted sum rate maximization (WSRM) problem can be recast into a primal
decomposable form, which is amenable to alternating optimization (AO). Then, we compare these two scalarization
methods in terms of their overall performance and computational complexity via theoretical analysis as well as
numerical simulation, based on which new insights can be drawn.
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1 Introduction
1.1 Background
Recently, physical-layer service integration (PHY-SI), a
technique of combining multicast service and confi-
dential service into one integrated service for one-time
transmission at the physical layer, has received much
attention in wireless communications. For one thing,
PHY-SI caters to the demand for high transmission rate
and secure communication, which has been identified as
the key targets that need to be effectively addressed by
fifth generation (5G) wireless systems [1]. Besides, com-
pared to the conventional upper-layer-based approach,
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PHY-SI enables coexisting services to share the same
resources by solely exploiting the physical characteristics
of wireless channels, thereby significantly increasing the
spectral efficiency. This property makes PHY-SI a promi-
nent approach to satisfy the ever-increasing need for radio
spectrum. The technique of PHY-SI could also find a
wide range of applications in the commercial and military
areas. For example, many commercial applications, e.g.,
advertisement, digital television, and Internet telephony,
are supposed to provide personalized service customiza-
tion. As a consequence, confidential service and public
service are collectively provided to satisfy the demand
of different user groups. In battlefield scenarios, it is
essential to propagate commands with different security
levels to the frontline. The public information should be
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distributed to all soldiers, while the confidential infor-
mation can only be accessed by specific soldiers. Such
emerging applications lead to a crucial problem: how to
establish the security of confidential service while not
compromising the quality of public service?

1.2 Related works
Let us first have a very brief review on physical-layer
security, a technique that lays foundation for the research
on PHY-SI. The broadcast nature of wireless medium
makes privacy an inherent concern. Physical layer secu-
rity technique is playing an increasingly important role in
wireless communication recently. It can secure commu-
nications information-theoretically at the physical layer
without using secret keys whose distribution or man-
agement may become difficult in, e.g., ad hoc wire-
less networks. Different strategies against eavesdropping
have been developed with various levels of channel state
information (CSI) available to the transmitter (see the
comprehensive overview in [2–6]). Liu and Poor first
coined the term confidential broadcasting in [7, 8] and
established the corresponding secrecy capacity region. In
confidential broadcasting, a transmitter broadcasts mul-
tiple confidential messages to all receivers. Each confi-
dential message is intended for one specified receiver
but required to be perfectly secret from the others.
Some efforts have been made in, e.g., [9, 10] to maxi-
mize the sum secrecy rate in the scenario of confidential
broadcasting.
The study of PHY-SI can be traced back to Csiszár

and Körner’s seminal work in [11]. In the basic model of
PHY-SI, a transmitter sends a common message to two
receivers and simultaneously sends a confidential mes-
sage intended only for one receiver and kept perfectly
secure from the other one. Under discrete memoryless
broadcast channel (DMBC) setup, Csiszár and Körner
gave a closed-form expression of themaximum rate region
that can be applied reliably under the secrecy constraint
(i.e., the secrecy capacity region). In recent years, this
kind of approach has gained renewed interest, especially
that in various multi-antenna scenarios, such as Gaussian
broadcast channels [12–15] and bidirectional relay chan-
nels [16, 17]. In [12], the authors extended the results
in [11] to a general MIMO Gaussian case by adopting
the channel-enhancement argument. Further, the works
[13, 14] considered the case with two confidential mes-
sages intended for two different receivers. The resulting
secrecy capacity region is proved to be attainable by
combining the secret dirty-paper coding (S-DPC) with
Gaussian superposition coding. Furthermore, in [16] and
[17],Wyrembelski and Boche amalgamated broadcast ser-
vice, multicast service, and confidential service in bidirec-
tional relay networks, in which a relay adds an additional
multicast message for all nodes and a confidential message

for only one node besides establishing the conventional
bidirectional communication. Nonetheless, the main goal
of the aforementioned papers is just to obtain capacity
results or to characterize coding strategies that lead to
certain rate regions [18]. For implementation efficiency,
it is also important to treat physical layer service integra-
tion from a signal processing point of view. In particular,
optimal or complexity-efficient transmit strategies have
to be characterized, so that the achieved performance
could reach/approach the boundary of the secrecy capac-
ity region. Such strategies are usually given by optimiza-
tion problems, which generally turn out to be nonconvex.
Along with this comes the fact that most works on PHY-
SI end once a certain characterization of a rate region
is derived.
Recently, to fill in the gap between the previous

information-theoretic results and practical implementa-
tion, there is growing interest in analyzing PHY-SI from
a signal processing point of view. In [12], the authors
proposed a re-parameterizing method to devise trans-
mit strategies for achieving the secrecy boundary per-
formance. However, this method is only applicable to a
very simple two-user MISO scenario. Besides, it involves
solving a sequence of convex feasibility problems, which
is computationally expensive. To improve it, the work
[19] proposed a quality-of-service (QoS)-based method to
seek the boundary-achieving transmit strategies. Its basic
idea is to establish the tradeoff between the secrecy rate
and the multicast rate by maximizing the secrecy rate
while ensuring the multicast rate above a given threshold.
This method is demonstrated as effective in character-
izing the secrecy boundary and thus triggered research
endeavors on extending the result to a more general
and realistic setting. Notable results include the exten-
sion to the multi-user [20] and imperfect CSI [21, 22]
settings. Even so, relatively less work focussed on the
MIMO channel setup, due to the intractability of the
associated optimization problems. In [23], the authors
circumvented the intractability by proposing a general-
ized singular value decomposition (GSVD)-based trans-
mission scheme. Using GSVD, multicast message and
confidential message can be perfectly decoupled and the
resulting problem is easier to handle. However, this result
is not applicable to the general multi-user MIMO case.
In addition, it is also interesting to incorporate artifi-
cial noise (AN) into consideration, as such technique
has been shown to be effective in enhancing transmis-
sion security [24–28]. Specifically, the authors in [24–27],
and [28] respectively showed that AN is of paramount
importance to physical-layer security when there exist
multiple eavesdroppers in the network, when the CSI
of eavesdropper(s) is imperfectly known at the transmit-
ter, and/or when eavesdroppers are randomly located in
the network.
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1.3 Main contributions
In this paper, we delve into the AN-aided transmit precod-
ing design in PHY-SI under a general multi-user MIMO
case. Specifically, two sorts of service messages are com-
bined and promulgated at the same time: a multicast
message intended for all receivers, and a confidential
message intended for merely one authorized receiver.
The confidential message must be kept perfectly secure
from all other unauthorized receivers. Meanwhile, AN
is employed to degrade the potential eavesdropping of
the unauthorized receivers. This paper aims to jointly
optimize the input covariance matrices of the multicast
message, confidential message, and AN, to maximize the
achievable secrecy and multicast rates simultaneously,
or, equivalently, to maximize the achievable secrecy rate
region. This secrecy rate region maximization (SRRM)
problem turns out to be a biobjective optimization prob-
lem. Since the re-parameterizing method is invalid in
a general MIMO case, we develop two effective scalar-
ization methods to convert the biobjective problem into
an easier-to-handle scalar version for characterizing its
Pareto boundary.

1. In the first method, we propose to fix the multicast
rate as a constant. Through varying the value of the
constant, this method could yield different secrecy
boundary points. Since the Pareto optimal points
must reside on the boundary of the achievable rate
region, this method is bound to provide a complete
set of the Pareto optimal points. Though the resultant
secrecy rate maximization (SRM) problem is
nonconvex by nature, we show this problem actually
falls into the context of difference-of-concave (DC)
programming [29]. Hence, it can be handled by
classical DC algorithm with convergence guarantee.

2. As for the second method, a weighted sum-based
scalarization is introduced. The crux of this
scalarization method is to optimize the weighted sum
of the two objectives with different weight vectors.
By varying the weight vector, this method gives rise
to different Pareto optimal solution. To solve this
weighted sum rate maximization (WSRM) problem,
we reveal its hidden decomposability by recasting it
as an equivalent form amenable to alternating
optimization (AO). AO algorithm is naturally
employed to solve the WSRM problem. It can be
proved that this AO algorithm must converge to one
stationary point of the WSRM problem.

3. It is particularly worth mentioning that though the
DC and AO algorithms have been applied to address
the issue of physical-layer security before in, e.g.,
[24, 30, 31], none of these works considered
integrating an additional multicast message. Our
paper is an initial attempt to study the application of

DC and AO to the emerging PHY-SI system, which
turns out to be a harder task than its counterpart in
physical-layer security due to the coexisting
multicast service.

Then, we compare these two sorts of scalarization
methods in terms of their overall performance and com-
putational complexity. The comparison results reveal that
the first method is more efficacious in finding all Pareto
optimal points than the second one. The advantage of the
second method lies in its problem structure, which pro-
vides the service provider a solution to maximizing the
overall revenue. Besides, we show that the DC algorithm
is more time-efficient at low transmit power than the
AO algorithm. Interestingly, the numerical results indicate
that at high transmit power, the AO algorithm becomes
the more time-efficient one.

1.4 Organization and notations
This paper is organized as follows. Section 2 provides
the system model description and problem formulation.
The optimization aspects of our formulated problems
are addressed in Sections 3 and 4, corresponding to
the first and the second scalarization methods, respec-
tively. The comparison results are given in Section 5.
Section 6 presents simulation results to show the efficacy
of our proposed methods. Finally, conclusions are drawn
in Section 7.
The notation of this paper is as follows. Bold symbols in

capital letter and small letter denote matrices and vectors,
respectively. (·)H , rank(·), and Tr(·) represent conjugate
transpose, rank, and trace of a matrix, respectively. R+
and H

n+ denote the set of nonnegative real numbers and
of n-by-nHermitian positive semidefinite (PSD) matrices.
The n × n identity matrix is denoted by In. x ∼ CN (μ,�)

denotes that x is a complex circular Gaussian random vec-
tor with mean μ and covariance �. A � 0 (A � 0)
implies that A is a Hermitian positive semidefinite (defi-
nite) matrix. ‖·‖ represents the vector Euclidean norm. K
represents a proper cone, and K∗ represents a dual cone
associated with K.

2 Systemmodel and problem formulation
We consider the downlink of a multiuser system in which
a multi-antenna transmitter serves K receivers, and each
receiver is equipped with multiple antennas. Assume
that all receivers have ordered the multicast service and
receiver 1 further ordered the confidential service1. To
enhance the security performance, the transmitter uti-
lizes a fraction of its transmit power to send artificially
generated noise to interfere the unauthorized receivers
(eavesdroppers), i.e., receiver 2 to receiver K. We assume
in this paper that all receivers are static and that all the
communication links undergo slow frequency-flat fading.
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The received signal at receiver k is modeled as

yk = Hkx + zk , k = 1, 2, · · · ,K (1)

where Hk ∈ C
Nr,k×Nt is the channel response between

the transmitter and receiver k; Nt and Nr,k are the num-
ber of transmit antennas employed by the transmitter and
kth receiver, respectively. zk is independent identically dis-
tributed (i.i.d.) complex Gaussian noise with zero mean
and unit variance. x ∈ C

Nt is the coded transmit message,
which consists of three independent components, i.e.,

x = x0 + xc + xa, (2)

where x0 is the multicast message intended for all
receivers, xc is the confidential message intended for
receiver 1, and xa is the artificial noise. We assume x0 ∼
CN (0,Q0), xc ∼ CN (0,Qc) [12], whereQ0 andQc are the
transmit covariance matrices. The AN xa follows a distri-
bution xa ∼ CN (0,Qa), where Qa is the AN covariance.
The CSI on all links is assumed to be perfectly known
at the corresponding transmitter and receivers in that all
receivers have to register in the network for subscribing
the multicast service. In practice, the CSI at the receivers
can be obtained from the channel estimation of the down-
link pilots. CSI at the transmitter can be acquired via
uplink channel estimation in time division duplex (TDD)
systems. The design of a high-quality channel estimation
scheme is beyond the scope of this paper. Note that the
full CSI assumption is commonly adopted in the area of
physical layer security/multicasting, especially in MIMO
channels [10, 24, 30, 32–36].
For ease of exposition, let us define K �= {1, 2, . . . ,K}

and Ke
�= K/{1}, which denote the indices of all receivers

and of all unauthorized receivers, respectively. Denote R0
and Rc as the achievable rates associated with the mul-
ticast and confidential messages, respectively. Then, an
achievable secrecy rate region Rs({Hk}k∈K,P) is given as
the set of nonnegative rate pairs (R0,Rc) satisfying [12]

R0 ≤ min
k∈K

Cm,k(Q0,Qc,Qa)

Rc ≤ Cb(Qc,Qa) − max
k∈Ke

Ce,k(Qc,Qa),
(3)

where

Cm,k = log
∣
∣
∣I + (

I + Hk(Qc + Qa)HH
k

)−1HkQ0HH
k

∣
∣
∣,

Cb = log
∣
∣
∣I + (

I + H1QaHH
1

)−1H1QcHH
1

∣
∣
∣ ,

Ce,k = log
∣
∣
∣I + (

I + HkQaHH
k

)−1HkQcHH
k

∣
∣
∣ ,

and Tr(Q0 + Qc + Qa) ≤ P with P being total transmit
power budget at the transmitter.
The secrecy rate region (3) implies that all receivers first

decode their common multicast message by treating the
confidential message as noise, and then receiver 1 acquires

a clean link for the transmission of its exclusive confi-
dential message, where there is no interference from the
multicast message.
To maximize this achievable secrecy rate region, our

goal is to find the boundary-achieving Q0, Qa and Qc,
which are also known as Pareto optimal solutions to
this SRRM problem. Specifically, we must first solve the
following optimization problem, which is a biobjective
maximization problem with cone K = K∗ = R

2+,

max
Q0,Qc,Qa

(

w.r.t. R2+
)

(

min
k∈K

Cm,k ,Cb − max
k∈Ke

Ce,k

)

s.t. Tr(Q0 + Qc + Qa) ≤ P, (4a)
Q0 � 0,Qc � 0,Qa � 0, (4b)

where, with a slight abuse of notations but for notational
simplicity, the explicit dependence of Cm,k , Cb and Ce,k
on (Q0,Qc,Qa) is omitted. Since the SRRM problem is a
biobjective maximization problem, it is necessary to har-
ness some methods of scalarization to convert it into an
easier-to-handle scalar version.

Remark 1 It is also viable to consider the scenario where
all receivers order the confidential service and all confi-
dential messages are propagated concurrently by the trans-
mitter, i.e., the integration of multicasting and confidential
broadcasting. The merit of this scheme lies in its higher
spectral efficiency and low latency. However, this comes at
the expense of much higher operational complexity at the
transmitter, especially when the number of users increases.
Thus, our considered PHY-SI scheme is particularly desired
in delay-tolerant applications or when the transmitter pos-
sesses limited computational capacity for security-related
computations.

3 A DC-based approach to the SRRM problem
In this section, we develop our first scalarization method
to solve (4). The resultant scalar problem is a secrecy rate
maximization (SRM) with imposed quality of multicast
service (QoMS) constraints.

3.1 Scalarization
In particular, our method is to move the part of multicast
rate maximization to the constraint, i.e., we fix at the time
being the multicast rate as a constant τms ≥ 0. As a result,
the biobjective SRRM problem (4) will be degraded into a
scalar maximization problem, which is shown in (5).

R(τms) = max
Q0,Qc,Qa

Cb(Qc,Qa) − max
k∈Ke

Ce,k(Qc,Qa)

s.t. min
k∈K

Cm,k(Q0,Qc,Qa) = τms, (5a)

Tr(Q0 + Qc + Qa) ≤ P, (5b)
Q0 � 0,Qa � 0,Qc � 0. (5c)
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In (5), R(τms) is the optimal objective value, τms can be
interpreted as the preset requirement on the multicast
rate, and accordingly, the constraint (5a) can be inter-
preted as a QoMS constraint. To guarantee the feasibil-
ity of problem (5), τms cannot exceed a threshold τmax
given by

τmax = max
Q0�0,Tr(Q0)≤P

min
k∈K

log
∣
∣I + HkQ0HH

k
∣
∣ . (6)

The value of τmax can be numerically obtained by solving
(6) via the convex optimization solver CVX [37].
This sort of scalarization method, in fact, enables us

to find one boundary point (τms,R(τms)) of the secrecy
rate region Rs({Hk}k∈K,P) by solving (5). All bound-
ary points of Rs({Hk}k∈K,P) can be found if we tra-
verse all possible τms’s lying within [ 0, τmax] and store
the corresponding optimal objective values. Since the
Pareto optimal solution to (4) must reside on the bound-
ary of Rs({Hk}k∈K,P), i.e., the Pareto optimal set of (4)
is a subset of the boundary set of Rs({Hk}k∈K,P), all
Pareto optimal solution to (5) can also be found by
this means.
However, problem (5) is nonconvex. Especially, the

determinant equality constraint (5a) is very difficult to
handle. To circumvent this difficulty, we pay our atten-
tion to the following relaxed problem of (5), in which
the equality constraint (5a) is replaced by the inequality
constraint (7a).

R̃(τms) = max
Q0,Qc,Qa

Cb(Qc,Qa) − max
k∈Ke

Ce,k(Qc,Qa)

s.t. min
k∈K

Cm,k(Q0,Qc,Qa) ≥ τms, (7a)

Tr(Q0 + Qc + Qa) ≤ P, (7b)
Q0 � 0,Qa � 0,Qc � 0. (7c)

Apparently, any optimal solution to (5) is feasible to
(7) in the sense that replacing (5a) with (7a) yields
a larger feasible solution set. Hence, problem (7) has
R(τms) ≤ R̃(τms) in general. Interestingly, we show that
R(τms) = R̃(τms) can always be achieved without loss of
optimality to (7).

Lemma 1 Problem (7) is a tight relaxation to problem
(5). In other words, the rate pair (τms, R̃(τms)) must be a
boundary point of Rs({Hk}k∈K,P).

Proof The proof can be easily accomplished by con-
struction. Suppose that the constraint (7a) is satisfied with
strict inequality, we can always multiply Q0 by a scalar
ν (ν < 1) to make (7a) active, yet without decreasing
the objective value of (7) and violating the total power

constraint (7b). This fact implies that there always exists
an optimal solution to (7) such that the constraint (7a) is
satisfied with equality and thus accomplishes the proof.

Lemma 1 implies that problem (7) admits an optimal
(Q∗

0,Q∗
c ,Q∗

a) with min
k∈K

Cm,k(Q∗
0,Q∗

c ,Q∗
a) = τms. Hence,

(Q∗
0,Q∗

c ,Q∗
a) is also optimal to (5). The proof of Lemma 1

reveals that such an optimal (Q∗
0,Q∗

c ,Q∗
a) can always

be constructed algorithmically based on the following
procedures.

Corollary 1 Suppose that (Q∗
0,Q∗

c ,Q∗
a) is an opti-

mal solution returned by solving problem (7). If
min
k∈K

Cm,k(Q∗
0,Q∗

c ,Q∗
a) = τms, then output (Q∗

0,Q∗
c ,Q∗

a)

as an optimal solution of problem (5). Otherwise,
solve the following equation with regard to ν, i.e.,
min
k∈K

Cm,k(νQ∗
0,Q∗

c ,Q∗
a) = τms, via bisection search within

the unit interval [ 0, 1], and output (νQ∗
0,Q∗

c ,Q∗
a) as an

optimal solution of problem (5).

Next, we will point out two special cases, under which
problem (7) is equivalent to problem (5) or, equiv-
alently, any optimal solution to (7) is achieved with
constraint (7a) active. This is described in the following
proposition.

Proposition 1 Suppose that the system configurations
satisfy either one of the following conditions:
Condition 1: The number of antennas at the transmit-

ter is larger than that at the authorized receiver, i.e.,
Nt > Nr,1.
Condition 2: The number of antennas at the transmit-

ter is larger than the sum of the antenna number at the
unauthorized receivers, i.e., Nt >

∑

k∈Ke Nr,k.
Then, the rate pair (τms, R̃(τms)) must be a Pareto opti-

mal point of (4), and all Pareto optimal points of (4) can
be obtained by solving (5) with different τms’s lying within
the interval [ 0, τmax].

Proof The proof can be found in Appendix A.

Remark 2 Proposition 1 bridges the Pareto optimal
points of (4) to the boundary points of Rs({Hk}k∈K,P).
When either Condition 1 or Condition 2 is satisfied, all
Pareto optimal points of (4) are also the boundary points
of Rs({Hk}k∈K,P) and vice versa.

3.2 DC iterative algorithm
We now focus on solving the relaxed problem (7) derived
in the last subsection. Problem (7) still remains nonconvex
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due to its objective function and constraint (7a). To deal
with it, we first equivalently transform it into its epigraph
form by introducing a slack variable η, i.e.,

R(τms) = max
Q0,Qc,Qa,η

Cb(Qc,Qa) − η

s.t. Ce,k(Qc,Qa) ≤ η,∀k ∈ Ke (8a)
Cm,k(Q0,Qc,Qa) ≥ τms,∀k ∈ K (8b)
Tr(Q0 + Qc + Qa) ≤ P, (8c)
Q0 � 0,Qa � 0,Qc � 0. (8d)

Next, we will show that problem (8) constitutes a
DC-type programming problem, which can be iteratively
solved by the DC algorithm.
To begin with, we reformulate the capacity functions

Cb(Qc,Qa),Ce,k(Qc,Qa), andCm,k(Q0,Qc,Qa) into a DC-
type form, given by

Cb(Qc,Qa) = φ1(Qc,Qa) − ϕ1(Qa),
Ce,k(Qc,Qa) = φk(Qc,Qa) − ϕk(Qa), (9)

Cm,k(Q0,Qc,Qa) = ηk(Q0,Qc,Qa) − φk(Qc,Qa),

in which we define

φk(Qc,Qa) = log
∣
∣I + Hk(Qc + Qa)HH

k
∣
∣ ,

ϕk(Qa) = log
∣
∣I + HkQaHH

k
∣
∣ , (10)

ηk(Q0,Qc,Qa) = log
∣
∣I + H1(Qc + Qa + Q0)HH

1
∣
∣ .

Substituting (9) into problem (8), we obtain

R(τms) = max
Q0,Qc,Qa,η

φ1(Qc,Qa) − ϕ1(Qa) − η

s.t. ϕk(Qa) − φk(Qc,Qa) + η ≥ 0,∀k ∈ Ke (11a)
ηk(Q0,Qc,Qa) − φk(Qc,Qa) ≥ τms,∀k ∈ K (11b)
Tr(Q0 + Qc + Qa) ≤ P, (11c)
Q0 � 0,Qa � 0,Qc � 0. (11d)

Since φk(Qc,Qa), ϕk(Qa) and ηk(Q0,Qc,Qa) are all
concave w.r.t. (Q0,Qc,Qa), one can easily notice that the
objective function of (5) and constraints (11a) and (11b)
are all in a difference-of-concave form. This property
makes problem (4) fall into the context of DC program
[29], which can be iteratively solved via DC algorithm.
Our next endeavor is to show the DC approach to (11)

mathematically. Its basic idea is to locally linearize the
nonconcave parts in (11) at some feasible point via Taylor
series expansion (TSE) and then iteratively solve the lin-
earized problem. To this end, we introduce the TSE via the
following lemma.

Lemma 2 (Chu et al. [31]) An affine Taylor series
approximation of a function f (X) : RM×N → R can be
expressed at X̃ as below.

f (X) ≈ f (X̃) + vec
(

f ′ (X)
)H vec(X − X̃). (12)

The TSE above enables us to reformulate the primal
nonconcave parts of (11) into a linear form. In partic-
ular, by applying Lemma 2 and the fact ∂

(

log |X|) =
Tr

(

X−1∂X
)

, ϕ1(Qa) can be approximated as

ϕ1(Qa) = log
∣
∣I + H1QaHH

1
∣
∣

≈ ϕ1(Q̃a) + (vec (S))Hvec
(

Qa − Q̃a
)

(a)= ϕ1(Q̃a) + Tr
[

S(Qa − Q̃a)
]

�= ϕ̃1(Qa) (13)

in the objective function of (11), where Q̃a is a given
transmit covariance matrix,

S �= HH
1

(

I + H1Q̃aHH
1

)−1
H1

and the equality (a) is due to the fact that Tr(AHB) =
(vec(A))Hvec(B) for appropriate dimensions of A and B.
Likewise, φk(Qc,Qa), appearing in the constraints (11a)
and (11b), can be approximated as

φk(Qc,Qa) = log
∣
∣I + Hk(Qc + Qa)HH

k
∣
∣

≈ φk(Q̃c, Q̃a) + Tr
[

U(Qc − Q̃c)
]

+ Tr
[

U(Qa − Q̃a)
]

�= φ̃k(Qc,Qa), (14)

in which U is determined by

U = HH
k

(

I + Hk(Q̃c + Q̃a)HH
k

)−1
Hk . (15)

Based on the approximations above, the original QoMS-
constrained SRM problem (11) can be reformulated as

R̄(τms) = max
Q0,Qc,Qa,η

φ1(Qc,Qa) − ϕ̃1(Qa) − η

s.t. ϕk(Qa) − φ̃k(Qc,Qa) + η ≥ 0,∀k ∈ Ke (16a)
ηk(Q0,Qc,Qa) − φ̃k(Qc,Qa) ≥ τms,∀k ∈ K (16b)
Tr(Q0 + Qc + Qa) ≤ P, (16c)
Q0 � 0,Qa � 0,Qc � 0. (16d)

where R̄(τms) is the optimal objective value of (8), serving
as an approximation to R(τms). According to the rela-
tionship between a concave function and its Taylor series
expansion, it is immediate to get

ϕ1(Qa) ≤ ϕ̃1(Qa),∀Qa � 0,
φk(Qc,Qa) ≤ φ̃k(Qc,Qa),∀Qa � 0,Qc � 0. (17)

As a consequence, any feasible solution to (16) should
also be feasible to (11), and R̄(τms) ≤ R(τms) must hold.
This approximated problem (16) is convex with regard

to (w.r.t.) (Q0,Qc,Qa) and hence (Q0,Qc,Qa) can be
iteratively obtained by solving problem (16) via the off-
the-shelf interior-point algorithm, i.e., CVX. We summa-
rize our proposed iterative algorithm for solving (11) in
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Algorithm 1. To acquire the secrecy rate region, we need
to traverse τms lying within the interval [ 0, τmax] and store
the corresponding objective value of (16).

Algorithm 1 Iterative method for solving (11)
1: Initiate n = 0 and choose an arbitrary starting point

(Q̃c,n, Q̃a,n) feasible to (16)
2: Repeat
3: Solve (16) with Q̃c = Q̃c,n and Q̃a = Q̃a,n, and

obtain (Q∗
c ,Q∗

a), which is the optimal solution of (16);
4: Update Q̃c,n+1 = Q∗

c , Q̃a,n+1 = Q∗
a;

5: Update n = n + 1;
6: Until the convergence conditions are satisfied.
7: Output Q̃c,n and Q̃a,n.

Remark 3 In Algorithm 1, the initialization of
(Q̃c,0, Q̃a,0) plays a crucial role in influencing the total
iteration times. Let us define

(

Qi
c,Qi

a
)

as the output
solution in ith traversal of τms. The following “warmstart
operation” could be adopted to initialize (Q̃c,0, Q̃a,0) for
achieving a fast convergence rate:
Warmstart operation: We start the traversal of τms from

τms = τmax. In the first traversal, Q̃c,0 and Q̃a,0 are both
initialized as 0. In the ith (i > 1) traversal, (Q̃c,0, Q̃a,0)
is initialized as the solution output by Algorithm 1 in the
(i − 1)th traversal.

3.3 Convergence analysis
As one can see, the basic merit of DC lies in its tractabil-
ity, which caters to the numerical optimization using the
parser-solver. As an additional merit, the proposed DC
approach has a theoretically provable guarantee on its
solution convergence, which will be demonstrated in the
following proposition.

Proposition 2 Every limit point of
(

Q∗
0,Q∗

c
)

is a station-
ary point of problem (7)

Proof The proof is a direct application of ([29], Th 10)
and thus omitted here for simplicity.

4 An AO-based approach to the SRRM problem
In this section, we develop our other scalarization
method, referred to as weighted-summethod, to solve (4).
The resulting problem is essentially a WSRM problem,
which can be solved via an AO-based approach. Here, we
should point out that the application of AO to SRM prob-
lem has been observed in some existing papers, i.e., [24].
Nonetheless, the AO algorithm we used in this section is a
nontrivial extension of that in [24]. Specifically, the objec-
tive function in [24] only contains a single secrecy rate

term.While in our considered scenario, an extra multicast
rate term is incorporated, which brings some new issues,
say, the convergence proof, that should be tackled.

4.1 Scalarization
The basic idea of the weighted-sum method is to intro-
duce a so-called weight vector [38] that is positive in the
dual cone K∗ = R

2+ and then to transform the primal
vector optimization problem into a scalar optimization
problem. By varying the vector, we can obtain different
Pareto optimal solutions of (4).
To put into context, the Pareto boundary of (3) can be

characterized by the solution of

max
Q0,Qc,Qa,R0,Rc

R0 + λcRc

s.t. R0 ≤ min
k∈K

Cm,k(Q0,Qc,Qa)

Rc ≤ Cb(Qc,Qa) − max
k∈Ke

Ce,k(Qc,Qa)

(4a)–(4b) satisfied,

(18)

in which λc ∈ [ 0,+∞) and λ =[ 1, λc] are our introduced
weight vector. In general, the optimal (R0,Rc) to (5) is the
point where a straight line with slope −1/λc is tangent to
the Pareto boundary. Before proceeding, let us first point
out some special cases of problem (5).

1. When λ =[ 1, 1], the optimal (R0,Rc) turns out to be
the so-called utilitarian point, also referred to as
“sum-rate” point in communications.

2. The single-service points are the two points where
R0 = 0 and where Rc = 0, respectively. When
R0 = 0, problem (5) is degraded into a conventional
AN-aided SRM problem in MIMO wiretap channel.
When Rc = 0, the maximum R0 can be derived by
solving the same convex optimization problem as (6).

4.2 AO iterative algorithm
We are now in a position to determine the tractable
approaches to the WSRM problem (18). First, one can
notice that by discarding R0 and Rc as slack variables,
problem (18) is equivalent to the following optimization
problem.

R(λc) = max
Q0,Qc,Qa

λc(Cb − max
k∈Ke

Ce,k) + min
k∈K

Cm,k

s.t. Tr(Q0 + Qc + Qa) ≤ P, (19a)
Q0 � 0,Qc � 0,Qa � 0. (19b)

The obstacle of solving (19) mainly lies in the non-
smoothness of its objective function, which negates the
use of many derivative-related iterative algorithms. As a
result, we next develop a derivative-free AO iterative algo-
rithm to solve (19). To this end, we will first need to
transform the WSRM problem (19) into a form amenable
to AO.
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Lemma 3 (Li et al. [24]) Let E ∈ C
N×N be any matrix

satisfying E � 0. Define the function f (S) = −Tr(SE) +
log |S| + N. Then,

log
∣
∣E−1∣∣ = max

S∈CN×N ,S�0
f (S), (20)

and the optimal solution to the right-hand side (RHS) of
(33) is S∗ = E−1.

Applying Lemma 3 to Cb, Ce,k , and Cm,k , one can obtain

Cb = max
S1�0

ϕb(Qc,Qa, S1),

Ce,k = min
Sk�0

ϕe,k(Qc,Qa, Sk),∀k ∈ Ke,

Cm,k = max
Uk�0

ϕm,k(Q0,Qc,Qa,Uk),∀k ∈ K,
(21)

where we define
ϕb(Qc,Qa, S1) = −Tr(S1

(

I + H1QaHH
1

) + log |S1| + Nr,1

+ log
∣
∣I + H1(Qa + Qc)HH

1
∣
∣ ,

ϕe,k(Qc,Qa, Sk) = − log |Sk | − log
∣
∣I + HkQaHH

k
∣
∣ − Nr,k

+ Tr
(

Sk
(

I + Hk(Qa + Qc)HH
k

))

,

ϕm,k(Q0,Qc,Qa,Uk) = −Tr(Uk
(

I + Hk(Qc + Qa)HH
k

) + log |Uk |
+ log

∣
∣I + Hk(Q0 + Qc + Qa)HH

k
∣
∣ + Nr,k ,

(22)

in which {Sk}k∈K and {Uk}k∈K are slack variables satisfy-
ing Sk � 0 and Uk � 0 for ∀k ∈ K.
Following the matrix manipulations in [24], we have

max
k∈Ke

min
Sk

ϕe,k(Qc,Qa, Sk)

= min{Sk}k∈Ke
max
k∈Ke

ϕe,k(Qc,Qa, Sk),
(23)

and
min
k∈K

max
Uk

ϕm,k(Q0,Qc,Qa,Uk)

= max{Uk}k∈K
min
k∈K

ϕm,k(Q0,Qc,Qa,Uk).
(24)

Substituting (21) into (19) and making use of (23) and
(24), one can check that problem (19) is equivalent to the
following optimization problem.

R(λc) = max
Q0,Qc ,Qa ,{Sk ,Uk}k∈K

f (Q0,Qc,Qa, {Sk ,Uk}k∈K)

s.t. Tr(Q0 + Qc + Qa) ≤ P, (25a)
Q0 � 0,Qc � 0,Qa � 0, (25b)

in which we define

f (Q0,Qc,Qa, {Sk ,Uk}k∈K) =
λc[ϕb(Qc,Qa, S1) − max

k∈Ke
ϕe,k(Qc,Qa, {Sk}k∈Ke)]

+min
k∈K

ϕm,k(Q0,Qc,Qa, {Uk}k∈K).

(26)

The upshot of this reformation is that problem
(19) becomes primal decomposable. Specifically,
problem (25) is convex w.r.t. either (Q0,Qc,Qa) or

({Sk}k∈K , {Uk}k∈K). Hence, AO is naturally employed to
solve (25). With (Q0,Qc,Qa) fixed, the optimal solution
of ({Sk}k∈K , {Uk}k∈K) admits an analytical expression,
according to Lemma 3, given by

S∗
1 = (

I + H1QaHH
1

)−1, (27a)

S∗
k = (

I + Hk(Qa + Qc)HH
k

)−1,∀k ∈ Ke, (27b)

U∗
k = (

I + Hk(Qa + Qc)HH
k

)−1,∀k ∈ K, (27c)

in which we utilize the fact that {Sk}k∈K and {Uk}k∈K
are decoupled among ϕb, ϕe,k , and ϕm,k . Comparatively,
with ({Sk}k∈K , {Uk}k∈K) fixed, the optimal solution of
(Q0,Qc,Qa) can be obtained by solving a convex opti-
mization problem as below, i.e.,

(Q∗
0,Q∗

c ,Q∗
a) =

arg max
(Q0,Qc,Qa)∈F

f (Q0,Qc,Qa, {Sk ,Uk}k∈K),

(28)

where F denotes the feasible set of (19), which is convex.
The whole AO process for solving (25) is given in

Algorithm 2. In line 6 of Algorithm 2, the convex sub-
problem can be solved via CVX. Following the similar
warmstart operation introduced in Remark 3, the iteration
times of Algorithm 2 can be significantly decreased.

Algorithm 2 AO algorithm for solving (25)
1: Initiate n = 1, and (Q0

c ,Q0
a) ∈ F ;

2: Repeat
3: Sn1 = (

I + H1Qn−1
a HH

1
)−1;

4: Snk = (

I + Hk
(

Qn−1
a + Qn−1

c
)

HH
k

)−1 ,∀k ∈ Ke;
5: Un

k = (

I + Hk
(

Qn−1
a + Qn−1

c
)

HH
k

)−1 ,∀k ∈ K;
6: (Qn

0,Qn
c ,Qn

a) = arg max
(Q0,Qc,Qa)∈F

f
(

Q0,Qc,Qa,
{

Snk
}

k∈K ,
{

Un
k
}

k∈K
)

;
7: n = n + 1;
8: Until the convergence conditions are satisfied.
9: Output (Qn

0,Qn
c ,Qn

a).

4.3 Convergence analysis
It can be verified that the AO algorithm produces a non-
decreasing objective value of (25). Besides, the following
convergence result is always guaranteed.

Proposition 3 Suppose that (Qn
0,Qn

c ,Qn
a) is the solution

generated by the AO algorithm in nth iteration, then the
sequence {(Qn

0,Qn
c ,Qn

a)}n must converge to one stationary
point (i.e., Karush-Kuhn-Tucker (KKT) point) of the primal
WSRM problem (19).

Proof The proof can be found in Appendix B.
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5 Comparison of the proposedmethods
In the previous sections, we present two tractable con-
vex formulations of the SRRM problem (4). This naturally
leads to the question about the relative performance of
the two formulations. In the following subsections, we
address this question by comparing their performance and
computational complexity in solving (4).

5.1 Performance analysis
As introduced in the preceding sections, the QoMS-
based scalarization can yield a complete set of boundary
points of Rs({Hk}k∈K,P), which contains all Pareto opti-
mal points of (4). The resulting scalar problem (7) aims
to maximize the secrecy rate and meanwhile maintain
the QoMS above a given threshold. Predictably, the use
of AN should be effective merely at low QoMS region,
since AN exerts a negative effect on the multicasting per-
formance. To guarantee the high demand for QoMS, AN
has to be prohibitive at high QoMS region. This QoMS-
constrained SRM is a generalization of traditional SRM in
physical-layer security and provides the transmitter with
some insights in how to tradeoff the security performance
and the multicasting performance.
As for the weighted-sum scalarization method, the nec-

essary condition for it to find all Pareto optimal points is
that the secrecy rate region should be convex. Besides, its
performance is also dependent on the precision of λc. The
traversal of λc should span from zero to an extremely large
number with appropriate step, so that each Pareto optimal
points can be detected. Nonetheless, the weighted-sum
problem structure has an interesting pricing interpreta-
tion from the field of economics. To elaborate a little
further, let us define p0 and pc as the unit price for the
secrecy rate and the multicast rate, respectively, charged
by the service provider. To maximize its revenue, the ser-
vice provider should be concerned about how to solve the
WSRM problem in (18) with setting λc = pc/p0. The use
of AN could also be explained in this context. It is evident
to see when p0 � pc, the revenue frommulticasting trans-
mission would dominate the objective function of (18),
and thus, eliminating AN would be helpful in increasing
the overall revenue.
In all, these two scalarization methods are suitable

for different application scenarios and provide differ-
ent insights. Nonetheless, the QoMS-based scalarization
could yield all Pareto optimal points, while the weighted-
sum scalarization might only yield some of them, depen-
dent on the shape of the secrecy rate region.

Remark 4 Besides the QoMS-based and weighted-sum
scalarization methods, some other scalarization methods
have been proposed in literature to find the complete
Pareto set for biobjective optimization, e.g., the weighted
Tchebycheff method [39]. However, to implement this

method, one has to first obtain the single-service point of
the confidential message (cf. (29)) and then solve a highly
nonconvex max-min optimization problem.

Rmax
c = max

Qc�0,Tr(Qc)≤P
log

∣
∣I + H1QcHH

1
∣
∣

− max
k∈K

log
∣
∣I + HkQcHH

k
∣
∣ . (29)

Unfortunately, problem (29) is nonconvex, and so the opti-
mal solution to (29) may not be obtained, which invali-
dates the use of the weighted Tchebycheff method.

5.2 Complexity analysis
The major computational complexity of the two scalar-
ization methods comes from solving the problems (16)
and (28). While both of problems (16) and (28) are con-
vex, they are not in a standard semidefinite programming
(SDP) form, owing to the logarithm functions therein. To
solve them, a successive approximation method embed-
ded with a primal-dual interior-point method (IPM) is
employed, say by CVX. As is known, the arithmetic com-
plexity for the generic primal-dual IPM to solve a standard
SDP is O(max {m, n}4n1/2 log(1/ε)) [40], in which m, n,
and ε represent the number of linear constraints, the
dimension of the positive semidefinite cone, and the solu-
tion accuracy, respectively. Therefore, the complexity of
solving (16) or (28) isO(LSAmax {2K ,Nt}4N1/2

t log(1/ε)),
where LSA denotes the number of successive approxima-
tions used. Since we are not aware of the relation between
LSA and Nt , this complexity expression is rather rough.
However, by utilizing the following approximation [41]:

log
∣
∣I + HQHH ∣

∣ = Tr
(

HQHH) + O
(∥
∥HQHH∥

∥
)

,
(30)

all logarithm terms in problems (16) and (28) can be
approximated by a trace function at low transmit power.
This approximation further converts the convex problems
(16) and (28) into SDP ones, which makes it possible to
acquire a more accurate big-O expression of the computa-
tional complexity for low transmit power.
Specifically, consider (16), which has three linear matrix

inequality (LMI) constraints of size Nt , and 2K LMI con-
straints of size 1 after introducing the approximation (30).
Moreover, for (16), the number of decision variables is on
the order n1 = 3N2

t + 1. Then, when a generic path-
following IPM is used to solve problem (16), the total
arithmetic computation cost is on the order of [42]

T1 = √
2K + 3Ntφ(n1),

φ(n1) = n1
(

2K + 3N3
t
) + n21

(

2K + 3N2
t
) + n31

(31)

with n1 = O
(

3N2
t + 1

)

.
On the other hand, for solving (28), we need to intro-

duce two additional slack variables to move the maximum
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and minimum terms in the objective function of (28) to
the constraints. Hence, the number of decision variables
is on the order of n2 = 3N2

t + 2, and (28) also has three
LMI constraints of sizeNt , and 2K LMI constraints of size
1. The total arithmetic computation cost for solving (28)
is in the order of

T2 = √
2K + 3Ntφ(n2),

φ(n2) = n2
(

2K + 3N3
t
) + n22

(

2K + 3N2
t
) + n32

(32)

with n2 = O
(

3N2
t + 2

)

.
Comparing (31) and (32), one can note that the total

arithmetic computation cost of solving the two problems
is comparable, with T2 slightly greater than T1 due to n2 >

n1. This observation implies that the QoMS-based scalar-
ization is more time-efficient at low transmit power. This
is also consistent with our following simulation results, as
we shall see in Section 6.

6 Numerical results
In this section, we provide numerical results to illustrate
the secrecy rate region derived from the two proposed
methods, compared with two other existing strategies.
The first one is the no-AN transmission, i.e., prefixing
Qa as 0 in problem (4). Thus, its achieved secrecy rate
region can also be derived via the DC and AO algorithms.
Another one is the traditional service integration using
time division multiple address (TDMA), which assigns
the confidential message and multicast message to two
orthogonal time slots. Its maximum secrecy rate and mul-
ticast rate can be obtained by seeking the single-service
points of Rs({Hk}k∈K,P). For the fairness of compari-
son, the secrecy rate and multicast rate achieved by this
TDMA-based strategy should be halved[17].
In the first subsection, the convergence results of both

algorithms are presented. The second subsection gives
the comparison between these two algorithms in terms of
achievable performance and computational complexity.

6.1 Convergence results
In this subsection, we assume Nt = 5, Nr,k = 3 for all k ∈
K, and K = 4. The channel matrices are randomly gen-
erated from an i.i.d. complex Gaussian distribution with
zero mean and unit variance. According to Proposition 1,
since Nt > Nr,1, the optimal solution to (7) is attained
when the constraint (7a) holds with equality.
First, we evaluate the convergence of the DC algo-

rithm. Especially, we are concerned about whether the
primal constraint (7a) is violated by our approximation.
Setting τms as 2 bps/Hz, Fig. 1 shows the convergence of
the multicast rate in the iteration with different transmit
power. Q̃c,0 and Q̃a,0 are both initiated as 0. The algorithm

Fig. 1 DC algorithm: convergence of the multicast rate

stops iterating when the difference between two succes-
sive values of R̄(τms) returned by the algorithm is less
than or equal to 10−4. One can observe that the multi-
cast rates ultimately converge to our predefined multicast
rate with a limited number of iterations in all tested trans-
mit powers. This observation indicates the efficacy of TSE
in approximating the multicast rate. Then, we also plot
the achieved secrecy rates and the approximated secrecy
rates in Fig. 2. The general observation of Fig. 1 is also
applicable to Fig. 2.
The convergence results of the AO algorithm are pre-

sented in Fig. 3. In Fig. 3, we set λc = 1 to seek
the sum-rate point. Q0

c and Q0
a are both initialized as

(P/(2Nt))INt . The algorithm stops iterating when the dif-
ference between two successive values of R̄(λc) is less than

Fig. 2 DC algorithm: convergence of the secrecy rate
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Fig. 3 AO algorithm: convergence of the weighted sum rate

or equal to 10−4. As one can observe from Fig. 3, the
achieved weighted sum rate is monotonically increasing
and finally converges with a limited number of itera-
tions in all tested transmit powers. In addition, we find
out that the AN covariance matrix Qa output by AO is
no longer diagonal. This implies that the associated AN
design is spatially selective rather than isotropic, which
blocks the eavesdroppers much more effectively. One can
also note that the increase in the weighted sum rate is
particularly remarkable when the transmit power is high.
After all, higher transmit power means that the transmit-
ter can allocate more power to the confidential message
transmission, while not compromising the multicast per-
formance. The extra power allocated to the confidential
message can be used to generate more interference at the
eavesdropper and/or strengthen the signal reception at
the intended receiver, whereby more remarkable improve-
ment is observed.

6.2 Performance comparison
In this subsection, we focus on two sorts of system con-
figuration. The first one is the same as that in the last
subsection. Besides, we consider another sort of system
configuration: Nt = Nr,1 = 4, Nr,k = 5 for all k ∈ Ke, and
K = 4. Under the second system configuration, neither
Condition 1 nor Condition 2 is satisfied.
First, we will show the secrecy rate regions achieved by

the first system configuration. Overall results are shown
in Fig. 4, with P set as 10 and 20 dB, respectively.
Figure 4 reveals two general trends. First, our AN-aided
scheme achieves a secrecy rate region larger than the no-
AN one. The striking gap indicates the efficacy of AN
in expanding the secrecy rate region. However, the gap
between these two strategies dramatically reduces when

Fig. 4 Secrecy rate regions with and without AN (Config 1)

R0 increases. This phenomenon agrees with our conjec-
ture in Section 5.1. The second observation is that our
proposed strategies, though only attain a lower bound
on Rs({Hk}k∈K,P), is sufficient to achieve significantly
larger secrecy rate regions than the TDMA-based one.
This observation also implies that PHY-SI is an effective
approach to improve the spectral efficiency. Then, let us
compare the achievable performance of the two proposed
scalarization methods. One can notice that the perfor-
mance gap between these two methods is negligible in the
tested system configuration, especially when P = 10 dB.
Figure 5 plots the secrecy rate regions achieved by the

second system configuration. Still, the secrecy rate region
with AN is larger than the one without AN and the one
achieved by TDMA. Besides, we can observe two very
interesting phenomena. First, when we increase the trans-
mit power from 10 to 20 dB, the secrecy rate regions
practically expand in the horizontal direction. That is,
under the second system configuration, the increasing
transmit power mainly contributes to the multicast mes-
sage transmission, rather than the confidential message
transmission. This can be interpreted from the transmit
degree of freedom (d.o.f.). The total d.o.f. of unauthorized
receivers is

∑K−1
k=2 Nr,k = 15, much higher than the trans-

mit d.o.f. Nt = 4. The high d.o.f. at the unauthorized
receivers leads to the d.o.f. bottleneck at the transmitter
and thus compromises the overall secrecy performance.
Second, one can notice that when P = 20 dB,
1) There exist some boundary points residing on a line,

marked by the red dashed lines, that are not Pareto opti-
mal to (4). Apparently, these points cannot be detected by
the weighted-sum scalarization but can be easily detected
by the QoMS-based scalarization.
2) The QoMS-based scalarization detects more Pareto

optimal points than the weighted-sum scalarization. This



Mei et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:132 Page 12 of 16

Fig. 5 Secrecy rate regions with and without AN (Config 2)

is attributed to the insensitivity of the weighted-sum
scalarization to the points residing on an approximately
horizontal boundary. To detect these boundary points,
one has to precisely adjust the value of λc to get different
tangent points.

6.3 Complexity comparison
Finally, we tabulated the averaged running times of DC
and AO for obtaining a boundary point in Table 1 under
the same setting as Fig. 4. As seen, the DC algorithm runs
faster than the AO algorithm when the transmit power is
low. This phenomenon is consistent with our preceding
analysis in Section 5.2. However, at high transmit power,
the DC algorithm scales nearly exponentially with P and
gradually spends more time converging in each iteration
than the AO algorithm. This observation indicates that
the two proposed scalarization methods might exhibit a
performance-complexity tradeoff at high transmit power.

7 Conclusions
In this paper, we considered the AN-aided transmit design
for multiuser MIMO broadcast channel with confiden-
tial service and multicast service. The transmit covariance
matrices of confidential message, multicast message, and
AN were designed to maximize the achievable secrecy
rate and achievable multicast rate simultaneously. To deal
with this biobjective optimization problem, two different
sorts of scalarization were introduced to transform this

Table 1 Averaged running times (in seconds)

Power (dB)

Method 0 4 8 12 16 20

DC 6.07 8.89 12.91 17.35 21.18 30.84

AO 7.57 11.58 11.04 12.61 13.61 17.11

SRRM problem into a scalar optimization problem. In the
QoMS-based scalarization, the scalar problem is an SRM
problem with QoMS constraints, while in the weighted-
sum scalarization, the scalar problem is a WSRM prob-
lem. DC and AO algorithms were utilized to solve the
QoMS-constrained SRM problem and the WSRM prob-
lem, respectively. Both algorithms can converge to a sta-
tionary point of the primal problems. Further, we gave
a detailed comparison between the two proposed scalar-
ization methods. The comparison results indicated that
at low transmit power, the QoMS-based scalarization is
superior to the weighted-sum one in terms of achievable
performance and computational complexity. On the other
hand, at high transmit power, these two methods exhibit
a tradeoff between achievable performance and compu-
tational complexity. Numerical results also confirmed the
effectiveness of AN in expanding the secrecy rate region.
As a future direction, it would be interesting to ana-

lyze the robust service integration scheme to combat the
possible CSI uncertainties caused by channel aging and to
take into account some application-specific requirements
in 5G wireless communication system, e.g., the mobility of
terminals and the overhead in CSI acquisition.

Endnote
1 In this paper, we assume that only one receiver orders

the confidential service within a single time slot. In prac-
tice, this assumption is valid under the case where the
confidential service is provided to all receivers in a round-
robin manner, i.e., the time slots are assigned to each
subscriber of the confidential service in equal portions
and in circular order.

Appendix A: proof of Proposition 1
First, we claim that problem (7) has a following interest-
ing property provided that Condition 1 or Condition 2 is
satisfied.

Property 1 The maximum objective value of problem
(7), R(τms), is obtained only when the equality in (7a)
holds.

Proof The proof of Property 1 can be accomplished by
contradiction. Assume that the maximum value of prob-
lem (7) is obtained at the solution (Q̂0, Q̂c, Q̂a) and the
equality in (7a) does not hold, i.e.,

min
k∈K

log|I +
(

I + Hk(Q̂c + Q̂a)HH
k

)−1
HkQ̂0HH

k | > τms.

Our next step is to construct a new solution (Q̄0, Q̄c,
Q̄a) from (Q̂0, Q̂c, Q̂a), which achieves a larger objective
value and satisfies the constraint (7a) with equality. Let
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us first elaborate upon the construction method under
Condition 1.
1) Case for Condition 1: Specifically, we multiply Q̂0 by

a scaling factor ξ (0 < ξ < 1), add a positive semidefinite
(PSD)matrix E = ρI−ρHH

1
(

H1HH
1

)−1H1 to Q̂a, and keep
Q̂c constant, i.e., Q̄0 = ξQ̂0, Q̄a = Q̂a + E and Q̄c = Q̂c,
where the coefficient ρ controls the power of E. Note that
E is the orthogonal complement projector of HH

1 , and its
existence is guaranteed by Condition 1. To keep the total
transmit power constant, the coefficient ρ should be cho-
sen to satisfy (1 − ξ)Tr(Q̂0) = Tr(E) = ρ(Nt − Nr,1),
that is, ρ = (1−ξ)Tr(Q̂0)

Nt−Nr,1
. To proceed, we need the following

lemma.

Lemma 4 (Weingarten et al. [43]) FormatricesA,� � 0
and B � 0, the following inequality hold:

|A + B|
|B| ≥ |A + B + �|

|B + �| . (33)

Then, by applying Lemma 1, one can obtain

Cm,k(Q̂0, Q̂c, Q̂a)

= log|I +
(

I + Hk(Q̂c + Q̂a)HH
k

)−1
HkQ̂0HH

k |
> log|I + (

I + Hk(Q̄c + Q̄a)HH
k

)−1HkQ̄0HH
k |

= Cm,k(Q̄0, Q̄c, Q̄a) (34)

for any k ∈ K. Thus, by adjusting the value of ξ , the
equality in (7) could be achieved.
To proceed, we will show that a larger objective value

could always be achieved by (Q̄0, Q̄c, Q̄a). By reapplying
Lemma 1, it is easy to get

Ce,k(Q̄c, Q̄a)

= log|I + (

I + HkQ̄aHH
k

)−1HkQ̄cHH
k |

= log|I +
(

I + Hk(Q̂a + E)HH
k

)−1
HkQ̂cHH

k |

< log|I +
(

I + HkQ̂aHH
k

)−1
HkQ̂cHH

k |,
= Ce,k(Q̂c, Q̂a),∀k ∈ Ke. (35)

Meanwhile, due toH1EHH
1 = 0, it is easy to see

Cb(Q̄c, Q̄a) = Cb(Q̂c, Q̂a). (36)

Combining (35) with (36), we obtain

Cb(Q̄c, Q̄a) − max
k∈Ke

Ce,k(Q̄c, Q̄a)

> Cb(Q̂c, Q̂a) − max
k∈Ke

Ce,k(Q̂c, Q̂a), (37)

i.e., a larger objective value can be found with
(Q̄0, Q̄c, Q̄a). This fact is contrary to the primal
assumption.

2) Case for Condition 2: The only difference between
the proof for Condition 1 and Condition 2 lies in the
construction method of (Q̄0, Q̄c, Q̄a). To begin with, let
us first define a matrix Hua

�= [HH
2 ,HH

3 , · · · ,HH
K ]

H ∈
C

∑

k∈Ke Nr,k×Nt , which stacks all of the unauthorized
receivers’ channel matrices. Then, we multiply Q̂0 by a
scaling factor ξ (0 < ξ < 1), add a PSD matrix E =
ρI − ρHH

ua
(

HuaHH
ua

)−1Hua to Q̂c, and keep Q̂a constant,
i.e., Q̄0 = ξQ̂0, Q̄c = Q̂c + E and Q̄a = Q̂a, where the
coefficient ρ controls the power of E. E is the orthogo-
nal complement projector of HH

ua, the existence of which
is guaranteed by Condition 2. The coefficient ρ should
be chosen to satisfy ρ = (1−ξ)Tr(Q̂0)

Nt−∑

k∈Ke Nr,k
to keep the total

transmit power constant.
Again, by exploiting Lemma 1 and carrying out some

matrix manipulations, one can verify that (Q̄0, Q̄c, Q̄a)
can achieve a larger objective value than (Q̂0, Q̂c, Q̂a)with
the constraint (7a) active. This fact contradicts the primal
assumption.
Summarizing the conclusions drawn from the two cases

above, we have accomplished the proof of Property 1.

Property 1 makes the proof of ([19], Theorem 1) fully
applicable to the proposition here. The remaining parts of
the proof can be found in [19] and are omitted here for
simplicity.

Appendix B: proof of Proposition 3
Firstly, we introduce slack variables α and β to reexpress
(8) as

max
Q0,Qc,Qa,α,β

λc(Cb − β) + α

s.t. Ce,k ≤ β ,∀k ∈ Ke, (38a)
Cm,k ≥ α,∀k ∈ K, (38b)
(19a)–(19b) are satisfied.

Equivalently, it suffices to prove that every limit point
(Q̃0, Q̃c, Q̃a) of the iterates generated by the AO algo-
rithm, together with α̃ = min

k∈K
Cm,k(Q̃0, Q̃c, Q̃a) and β̃ =

max
k∈Ke

Ce,k(Q̃0, Q̃c, Q̃a), is a KKT point of (38).

Due to the compactness of (Q0,Qc,Qa), there must
exist a subsequence, denoted by

{(

Qnl
0 ,Q

nl
c ,Qnl

a ,
{

Snlk ,U
nl
k

}K
k=1

)}

l
,

such that
{(

Qnl
0 ,Q

nl
c ,Qnl

a ,
{

Snlk
}K
k=1 ,

{

Unl
k

}K
k=1

)}

l
con-

verges to a limit point
(

Q̃0, Q̃c, Q̃a, {S̃k}Kk=1, {Ũk}Kk=1

)

as
l → ∞. Next, our proof is composed of two steps. First,
we will show that the limit point

(

Q̃0, Q̃c, Q̃a, {S̃k , Ũk}Kk=1

)
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satisfies the following properties.

S̃1 = arg max
S1�0

ϕb(Q̃c, Q̃a, S1), (39a)

S̃k = arg min
Sk�0

ϕe,k(Q̃c, Q̃a, Sk),∀k ∈ Ke (39b)

Ũk = arg max
Uk�0

ϕm,k(Q̃0, Q̃c, Q̃a,Uk),∀k ∈ K (39c)

(Q̃0, Q̃c, Q̃a) =
arg max

(Q0,Qc,Qa)∈F
f
(

Q0,Qc,Qa, {S̃k , Ũk}Kk=1

)

. (39d)

Second, we will check the KKT conditions of problems
(39a)–(39d) to build a bridge between (39) and the KKT
conditions of problem (38).
Step 1. By noting that

Snl1 = arg max
S1�0

ϕb
(

Qnl−1
c ,Qnl−1

a , S1
)

, (40a)

Snlk = arg min
Sk�0

ϕe,k
(

Qnl−1
c ,Qnl−1

a , Sk
)

,∀k ∈ Ke (40b)

Unl
k = arg max

Uk�0
ϕm,k

(

Qnl−1
0 ,Qnl−1

c ,Qnl−1
a ,Uk

)

,

∀k ∈ K (40c)
(Qnl

0 ,Q
nl
c ,Qnl

a ) =
arg max

(Q0,Qc,Qa)∈F
f
(

Q0,Qc,Qa, {Snlk ,Unl
k }Kk=1

)

, (40d)

we have

ϕb
(

Qnl−1
c ,Qnl−1

a , Snl1
) ≥ ϕb

(

Qnl−1
c ,Qnl−1

a , S1
)

,
∀S1 � 0 (41a)
ϕe,k

(

Qnl−1
c ,Qnl−1

a , Snlk
) ≤ ϕe,k

(

Qnl−1
c ,Qnl−1

a , Sk
)

,
∀Sk � 0,∀k ∈ Ke (41b)

ϕm,k
(

Qnl−1
0 ,Qnl−1

c ,Qnl−1
a ,Unl

k

)

≥ ϕm,k
(

Qnl−1
0 ,

Qnl−1
c ,Qnl−1

a ,Uk
)

,∀Uk � 0,∀k ∈ K, (41c)

and for any (Q0,Qc,Qa) ∈ F , the following inequality
holds, i.e.,

f
(

Q0,Qc,Qa, {Snlk }Kk=1, {Unl
k }Kk=1

)

≤ f
(

Qnl
0 ,Q

nl
c ,Qnl

a , {Snlk }Kk=1, {Unl
k }Kk=1

)

≤ f
(

Q̃0, Q̃c, Q̃a, {S̃k}Kk=1

)

, {Ũk}Kk=1

)

,
(42)

where the second inequality of (42) holds for the reason
that AO algorithm yields non-descending objective val-
ues. Then, letting l → ∞ in (41) and (42) will lead to
(39a)–(39d).
Step 2. Then, it follows from (39a) to (39d) and the

positive definiteness of {S̃k}Kk=1 and {Ũk}Kk=1 that

∇S1ϕb(Q̃c, Q̃a, S̃1) = 0, S̃1 � 0, (43a)

∇Skϕe,k(Q̃c, Q̃a, S̃k) = 0, S̃k � 0,∀k ∈ Ke (43b)

∇Ukϕm,k(Q̃0, Q̃c, Q̃a, Ũk) = 0, Ũk � 0,∀k ∈ K. (43c)

By carrying out some matrix manipulations to (43), it is
easy to obtain that

S̃1 =
(

I + H1Q̃aHH
1

)−1 � 0, (44a)

S̃k =
(

I + Hk(Q̃a + Q̃c)HH
k

)−1 � 0,∀k ∈ Ke (44b)

Ũk =
(

I + Hk(Q̃a + Q̃c)HH
k

)−1 � 0,∀k ∈ K. (44c)

Meanwhile, by introducing slack variables α and β , (39d)
is shown to be equivalent to

max
Q0,Qc,Qa,α,β

λc(ϕb(Qc,Qa, S̃1) − β) + α

s.t. ϕe,k(Qc,Qa, S̃k) ≤ β ,∀k ∈ Ke, (45a)

ϕm,k(Q0,Qc,Qa, Ũk) ≥ α,∀k ∈ K, (45b)
(Q0,Qc,Qa) ∈ F . (45c)

It is easy to see that (Q̃0, Q̃c, Q̃a), together with β̃ =
max
k∈Ke

ϕe,k(Q̃c, Q̃a, S̃k) and α̃ = min
k∈K

ϕm,k(Q̃0, Q̃c, Q̃a, Ũk),

is an optimal solution of problem (11). Consequently,
(Q̃0, Q̃c, vQa, β̃ , α̃) satisfy the KKT conditions of (45),
shown in (46).

λc∇Qcϕb(Q̃c, Q̃a, S̃1) − ∑

k∈Ke

ρk∇Qcϕe,k(Q̃c, Q̃a, S̃k)

+ ∑

k∈K
μk∇Qcϕm,k(Q̃0, Q̃c, Q̃a, Ũk) − γ I + C = 0,

λc∇Qaϕb(Q̃c, Q̃a, S̃1) − ∑

k∈Ke

ρk∇Qaϕe,k(Q̃c, Q̃a, S̃k)

+ ∑

k∈K
μk∇Qaϕm,k(Q̃0, Q̃c, Q̃a, Ũk) − γ I + A = 0,

∑

k∈K
μk∇Q0ϕm,k(Q̃0, Q̃c, Q̃a, Ũk) − γ I + B = 0,

ϕe,k(Q̃c, Q̃a, S̃k) ≤ β̃ ,∀k ∈ Ke
ρk(ϕe,k(Q̃c, Q̃a, S̃k) − β̃) = 0,∀k ∈ Ke
ϕm,k(Q̃0, Q̃c, Q̃a, Ũk) ≥ α̃,∀k ∈ K
μk(ϕm,k(Q̃0, Q̃c, Q̃a, Ũk) − α̃) = 0,∀k ∈ K
∑K

k=1 ρk = 1,
∑K

k=1 μk = 1,
A � 0,B � 0,C � 0,
γ ≥ 0, ρk ≥ 0,∀k ∈ Ke,μk ≥ 0,∀k ∈ K,
Tr(Q̃0 + Q̃c + Q̃a) ≤ P, Q̃0 � 0, Q̃c � 0, Q̃a � 0,
γ (Tr(Q̃0 + Q̃c + Q̃a) − P) = 0,
Tr(BQ̃0) = 0, Tr(CQ̃c) = 0, Tr(AQ̃a) = 0.

(46)

In (46),
({ρk}k∈Ke , {μk}k∈K, γ ,A,B,C

)

are all dual vari-
ables pertaining to the constraints in (45).
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To proceed, by applying Danskin’s theorem [44], one can
verify that the following equalities must hold.

∇QcCb(Q̃c, Q̃a) = ∇Qcϕb(Q̃c, Q̃a, S̃1),

∇QaCb(Q̃c, Q̃a) = ∇Qaϕb(Q̃c, Q̃a, S̃1),

∇QcCe,k(Q̃c, Q̃a) = ∇Qcϕe,k(Q̃c, Q̃a, S̃k),

∇QaCe,k(Q̃c, Q̃a) = ∇Qaϕe,k(Q̃c, Q̃a, S̃k),

∇QcCm,k(Q̃0, Q̃c, Q̃a) = ∇Qcϕm,k(Q̃0, Q̃c, Q̃a, Ũk),

∇QaCm,k(Q̃0, Q̃c, Q̃a) = ∇Qaϕm,k(Q̃0, Q̃c, Q̃a, Ũk),

∇Q0Cm,k(Q̃0, Q̃c, Q̃a) = ∇Q0ϕm,k(Q̃0, Q̃c, Q̃a, Ũk).

(47)

Then, substituting (44b) and (44c) into ϕe,k(Q̃c, Q̃a, S̃k)
and ϕm,k(Q̃0, Q̃c, Q̃a, Ũk), one can obtain

Ce,k(Q̃c, Q̃a, p̃m) = ϕe,k(Q̃c, Q̃a, p̃m, S̃k),∀k ∈ Ke

Cm,k(Q̃0, Q̃c, Q̃a) = ϕe,k(Q̃0, Q̃c, Q̃a, Ũk),∀k ∈ K.
(48)

Finally, by plugging (47) and (48) into (46), we obtain

λc∇QcCb(Q̃c, Q̃a) − ∑

k∈Ke

ρk∇QcCe,k(Q̃c, Q̃a) − γ I

+C + ∑

k∈K
μk∇QcCm,k(Q̃0, Q̃c, Q̃a) = 0,

λc∇QaCb(Q̃c, Q̃a) − ∑

k∈Ke

ρk∇QaCe,k(Q̃c, Q̃a) − γ I

+A + ∑

k∈K
μk∇QaCm,k(Q̃0, Q̃c, Q̃a) = 0,

∑

k∈K
μk∇Q0Cm,k(Q̃0, Q̃c, Q̃a) − γ I + B = 0,

ρk(Ce,k(Q̃c, Q̃a) − β̃) = 0,∀k ∈ Ke
Cm,k(Q̃0, Q̃c, Q̃a) ≥ α̃,∀k ∈ K
μk(Cm,k(Q̃0, Q̃c, Q̃a) − α̃) = 0,∀k ∈ K.

(49)

Remarkably, (49), together with the last six lines of (46),
represents the KKT conditions of the WSRM problem
(38). This fact completes the proof.

Acknowledgements
This work was supported in part by the National Natural Science Foundation
of China under grant 61571089 and by the High-Tech Research and
Development (863) Program of China under grant 2015AA01A707.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 15 February 2017 Accepted: 7 July 2017

References
1. JG Andrews, S Buzzi, W Choi, SV Hanly, A Lozano, ACK Soong, JC Zhang,

What will 5G be? IEEE J. Sel. Areas Commun. 32(6), 1065–1082 (2014)
2. Y-S Shiu, SY Chang, H-C Wu, SC-H Huang, H-H Chen, Physical layer security

in wireless networks: a tutorial. IEEE Wirel. Commun. 18(2), 66–74 (2011)

3. B He, X Zhou, TD Abhayapala, Wireless physical layer security with
imperfect channel state information: a survey (2013). http://arxiv.org/abs/
1307.4146. Accessed June 2013

4. Y-WP Hong, P-C Lan, C-CJ Kuo, Enhancing physical-layer secrecy in
multiantenna wireless systems: an overview of signal processing
approaches. IEEE Signal Process. Mag. 30(5), 29–40 (2013)

5. A Mukherjee, SA Fakoorian, J Huang, AL Swindlehurst, et al, Principles of
physical layer security in multiuser wireless networks: a survey. IEEE
Commun. Surv. Tuts. 16(3), 1550–1573 (2014)

6. Y Liu, H-H Chen, L Wang, Physical layer security for next generation
wireless networks: theories, technologies, and challenges. IEEE Commun.
Surv. Tuts. 19(1), 347–376 (2017)

7. R Liu, HV Poor, Secrecy capacity region of a multi-antenna Gaussian
broadcast channel with confidential messages. IEEE Trans. Inf. Theory.
55(3), 1235–1249 (2009)

8. R Liu, T Liu, HV Poor, S Shamai, Multiple-input multiple-output Gaussian
broadcast channels with confidential messages. IEEE Trans. Inf. Theory.
56(9), 4215–4227 (2010)

9. SAA Fakoorian, AL Swindlehurst, On the optimality of linear precoding for
secrecy in the MIMO broadcast channel. IEEE J. Sel. Areas Commun. 31(9),
1701–1713 (2013)

10. D Park, Weighted sum rate maximization of MIMO broadcast and
interference channels with confidential messages. IEEE Trans. Wirel.
Commun. 15(3), 1742–1753 (2016)

11. I Csiszár, J Körner, Broadcast channels with confidential messages. IEEE
Trans. Inf. Theory. 24(3), 339–348 (1978)

12. HD Ly, T Liu, Y Liang, Multiple-input multiple-output Gaussian broadcast
channels with common and confidential messages. IEEE Trans. Inf.
Theory. 56(11), 5477–5487 (2010)

13. E Ekrem, S Ulukus, Capacity region of gaussian MIMO broadcast channels
with common and confidential messages. IEEE Trans. Inf. Theory. 58(9),
5669–5680 (2012)

14. R Liu, T Liu, HV Poor, S Shamai, in Proc. IEEE Int. Symp. Inf. Theory (ISIT’2010).
MIMO Gaussian broadcast channels with confidential and common
messages (IEEE, Austin, 2010), pp. 2578–2582

15. R Liu, T Liu, HV Poor, S Shamai (Shitz), New results on multiple-input
multiple-output broadcast channels with confidential messages. IEEE
Trans. Inf. Theory. 59(3), 1346–1358 (2013)

16. RF Wyrembelski, H Boche, in Proc. IEEE Global Communication Conf.
Workshops. Service integration in multiantenna bidirectional relay
networks: public and confidential messages (IEEE, Houston, 2011),
pp. 884–888

17. RF Wyrembelski, H Boche, Physical layer integration of private, common,
and confidential messages in bidirectional relay networks. IEEE Trans.
Wirel. Commun. 11(9), 3170–3179 (2012)

18. R Schaefer, H Boche, Physical layer service integration in wireless
networks: signal processing challenges. IEEE Signal Process. Mag. 31(3),
147–156 (2014)

19. W Mei, Z Chen, J Fang, Secrecy capacity region maximization in Gaussian
MISO channels with integrated services. IEEE Signal Process. Lett. 23(8),
1146–1150 (2016)

20. W Mei, L Li, Z Chen, C Huang, in Proc. IEEE Global Conf. Signal Info. Process.
(GlobalSIP). Artificial-noise aided transmit design for multi-user MISO
systems with integrated services (IEEE, Orlando, 2015), pp. 1382–1386

21. W Mei, Z Chen, C Huang, in Proc. IEEE ICASSP. Robust artificial-noise aided
transmit design for multi-user MISO systems with integrated services
(IEEE, Shanghai, 2016), pp. 3856–3860

22. W Mei, L Li, Z Chen, C Huang, in Proc. IEEE Int. Conf. Commun.
Artificial-noise aided transmit design for outage constrained service
integration, (Kuala Lumpur, 2016), pp. 1–7

23. W Mei, Z Chen, J Fang, GSVD-based precoding in MIMO systems with
integrated services. IEEE Signal Process. Lett. 23(11), 1528–1532 (2016)

24. Q Li, M Hong, H-T Wai, Y-F Liu, W-K Ma, Z-Q Luo, Transmit solutions for
MIMO wiretap channels using alternating optimization. IEEE J. Sel. Areas
Commun. 31(9), 1714–1727 (2013)

25. Q Li, W-K Ma, Spatially selective artificial-noise aided transmit
optimization for MISO multi-Eves secrecy rate maximization. IEEE Trans.
Signal Process. 61(10), 2704–2717 (2013)

26. Z Chu, K Cumanan, Z Ding, M Johnston, SY Le Goff, Robust outage
secrecy rate optimizations for a MIMO secrecy channel. IEEE Wirel.
Commun. Lett. 4(1), 86–89 (2015)

http://arxiv.org/abs/1307.4146
http://arxiv.org/abs/1307.4146


Mei et al. EURASIP Journal onWireless Communications and Networking  (2017) 2017:132 Page 16 of 16

27. Z Chu, H Xing, M Johnston, SY Le Goff, Secrecy rate optimizations for a
MISO secrecy channel with multiple multiantenna eavesdroppers. IEEE
Trans. Wirel. Commun. 15(1), 283–297 (2016)

28. T-X Zheng, H-M Wang, J Yuan, D Towsley, MH Lee, Multi-antenna
transmission with artificial noise against randomly distributed
eavesdroppers. IEEE Trans. Commun. 63(11), 4347–4362 (2015)

29. GR Lanckriet, BK Sriperumbudur, in Proc. Advances Neural Inf. Process. Syst.
On the convergence of the concave-convex procedure (NIPS Foundation,
Vancouver, 2009), pp. 1759–1767

30. B Fang, Z Qian, W Shao, W Zhong, Precoding and artificial noise design
for cognitive MIMOME wiretap channels. IEEE Trans. Veh. Technol. 65(8),
6753–6758 (2016)

31. Z Chu, K Cumanan, Z Ding, M Johnston, SY Le Goff, Secrecy rate
optimizations for a MIMO secrecy channel with a cooperative jammer.
IEEE Trans. Veh. Technol. 64(5), 1833–1847 (2015)

32. J Yang, I-M Kim, DI Kim, Optimal cooperative jamming for multiuser
broadcast channel with multiple eavesdroppers. IEEE Trans. Wirel.
Commun. 12(6), 2840–2852 (2013)

33. SX Wu, W-K Ma, AM-C So, Physical-layer multicasting by stochastic
transmit beamforming and Alamouti space-time coding. IEEE Trans.
Signal Process. 61(17), 4230–4245 (2013)

34. H Zhu, N Prasad, S Rangarajan, Precoder design for physical layer
multicasting. IEEE Trans. Signal Process. 60(11), 5932–5947 (2012)

35. W Lee, H Park, HB Kong, JS Kwak, I Lee, A new beamforming design for
multicast systems. IEEE Trans. Veh. Technol. 62(8), 4093–4097 (2013)

36. B Du, Y Jiang, X Xu, X Dai, Optimum beamforming for MIMO multicasting.
EURASIP J. Adv. Signal Process. 2013(121), 1–15 (2013)

37. M Grant, S Boyd, CVX: Matlab software for disciplined convex
programming (2011). http://cvxr.com/cvx. Accessed Apr 2011

38. S Boyd, L Vandenberghe, Convex optimization. (Cambridge university
press, Cambridge, 2009)

39. RT Marler, JS Arora, Survey of multi-objective optimization methods for
engineering. Struct. Multidiscip. Optim. 26(6), 369–395 (2004)

40. Z-Q Luo, W-K Ma, AM-C So, Y Ye, S Zhang, Semidefinite relaxation of
quadratic optimization problems. IEEE Signal Process. Mag. 27(3), 20–34
(2010)

41. K Cumanan, Z Ding, B Sharif, GY Tian, KK Leung, Secrecy rate
optimizations for a MIMO secrecy channel with a multiple-antenna
eavesdropper. IEEE Trans. Veh. Technol. 63(4), 1678–1690 (2014)

42. A Ben-Tal, A Nemirovski, Lectures onmodern convex optimization: analysis,
algorithms, and engineering applications. vol. 2. (SIAM, Philadelphia, 2001)

43. H Weingarten, Y Steinberg, S Shamai (Shitz), The capacity region of the
Gaussian multiple-input multiple-output broadcast channel. IEEE Trans.
Inf. Theory. 52(9), 3936–3964 (2006)

44. D Bertsekas, Nonlinear programming, 2nd edn. (Athena Scientific,
Belmont, 1999)

http://cvxr.com/cvx

	Abstract
	Keywords

	Introduction
	Background
	Related works
	Main contributions
	Organization and notations

	System model and problem formulation
	A DC-based approach to the SRRM problem
	Scalarization
	DC iterative algorithm
	Convergence analysis

	An AO-based approach to the SRRM problem
	Scalarization
	AO iterative algorithm
	Convergence analysis

	Comparison of the proposed methods
	Performance analysis
	Complexity analysis

	Numerical results
	Convergence results
	Performance comparison
	Complexity comparison

	Conclusions
	Acknowledgements
	Competing interests
	Publisher's Note
	References

