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1 Introduction
As practical engineering systems become increasingly massive and complex, abrupt var-
iations in parameters or structures often occur in the systems due to the factors such as 
component failures, network constraints and changes of the external environment [1]. 
Traditional linear systems are not applicable to describe such systems accurately. Fortu-
nately, Markov jump systems (MJSs), as a class of important stochastic hybrid systems, 
have emerged. Due to the powerful modeling capability, MJSs have been concerned by 
more and more scholars [2, 3] and widely applied in many areas. For example, MJSs were 
applied to the highway traffic system [4]. The transient faults on power line were mod-
eled as Markov chain, and the power systems were described as MJSs [5]. Furthermore, 
MJSs have also been widely used in economic, communication, aerospace and other 
fields [6–8].
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With the combination of computer technology, communication technology and con-
trol theory, networked control systems (NCSs) are developing rapidly due to the advan-
tages of less wiring, high reliability and information sharing. However, the introduction 
of network also produces some new issues, e.g., time delay and packet dropouts. To solv-
ing these problems, a variety of approaches have been proposed [9–17]. In the case of 
packet dropouts, the works [9–11] investigated the fuzzy control of nonlinear MJSs, the 
H
∞

 filtering of networked nonlinear discrete-time systems and the output feedback con-
trol of NCSs, respectively. As for the study of networked MJSs with time delay [12–16], 
the issue of state estimation based on sliding mode observer was addressed [13]. The 
stability of delayed MJSs with infinite states was analyzed, and a sufficient condition for 
the mean square stability of the system was given in the form of linear matrix inequali-
ties (LMIs) [15].

On the other hand, issues like time delay and packet dropouts will lead to inadequate 
information transmission between different nodes. In MJSs, inadequate information 
transmission will inevitably cause asynchronous phenomenon. However, in most of the 
available works [18–22], it is assumed that the controller is mode-independent or per-
fectly synchronous with the physical plant. The former ignores mode information, which 
is simple in structure and easy to implement, but causes a great deal of conservatism. The 
latter needs the controller to obtain the mode information accurately and timely, which 
is difficult to achieve in practical systems. Recently, the asynchronous problem of MJSs 
has attracted more and more attention. The main asynchronous modeling approaches 
include time-delay model [23], piecewise homogeneous Markov chain model [24] and 
hidden Markov model (HMM) [25–29]. Based on HMM, an asynchronous state feed-
back H

∞
 controller for time-delay MJSs was designed [26], and the asynchronous output 

tracking control with incomplete premise matching for T-S fuzzy MJSs was investigated 
[29]. In addition, dissipative theory has been studied for a long time, which means that 
the storage of energy is less than the supply of energy; that is, there is energy dissipation 
in the system. In recent years, scholars have conducted a lot of research on dissipative 
control [12, 30–32]. Based on dissipative theory, the stability of sampled-data MJSs was 
studied [30], and the problem of sliding mode control for nonlinear MJSs with external 
disturbances was investigated [31]. For incremental dissipative control for nonlinear sto-
chastic MJSs, by using incremental Hamilton–Jacobi inequalities, the sufficient condi-
tions for the random incremental dissipative property of nonlinear stochastic MJSs were 
given [32]. However, the current research on asynchronous dissipative control of MJSs is 
still insufficient, which is one of the motives of this work.

It is noted that the data transmission in the above works is based on periodic-
triggered scheme, and the sampling and transmission of system signals are in a fixed 
period, which can easily lead to network congestion, packet dropouts and other 
problems. However, the event-triggered scheme has been considered as an efficient 
method to overcome these obstacles [33–35]. The event-triggered scheme indicates 
that the system signals determine whether to transmit or not depending on the event-
triggered criterion, which can reduce the communication consumption effectively. 
The event-triggered risk-sensitive state estimation problem for HMMs was studied; 
by using the reference probability measure method, the estimation problem is trans-
formed into an equivalent estimation problem and solved [36]. In order to solve the 
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issue of the event-triggered self-adaptive control for random nonlinear MJSs, two 
self-adaptive controllers with fixed threshold scheme and relative threshold scheme 
were proposed [37]. Moreover, an event-triggered output feedback control strategy 
was proposed for networked MJSs with partially unknown transition probabilities 
[38], and an event-triggered sliding mode control strategy was considered for dis-
crete-time MJSs [39]. Nevertheless, there are few works about dissipative asynchro-
nous control of time-delay MJSs with event-triggered scheme and packet dropouts, 
which is another motive of this work.

This paper focuses on the design of asynchronous dissipative controller for net-
worked time-delay MJSs with event-triggered scheme and packet dropouts. The main 
contributions of this paper are as follows:

1. Compared with the literature [26], this paper considers not only the varying delay 
of the physical plant, but also the network-induced communication constraints such 
as limited bandwidth and packet dropouts, which is more practical.

2. The asynchronous dissipative control scheme proposed in this paper provides a 
unified framework, in which the asynchronous strategy based on HMM contains two 
special cases: mode independence and synchronization, which are studied most in the 
existing literature; at the same time, the dissipative control problem also includes H

∞
 

control and passive control.
The remaining structure of this paper is as follows: Sect.  2.1 gives the problem 

description and system modeling. In Sect. 2.2, a sufficient condition for the closed-
loop control system to be stochastically stable and strictly dissipative is obtained. A 
controller design method is given in Sect. 2.3. A simulation example and results and 
discussion are provided in Sect. 3. Section 4 draws the conclusion.

2  Methods
2.1  Problem description

This work focuses on the design of the asynchronous dissipative controller for net-
worked time-delay MJSs with packet dropouts under the event-triggered scheme, as 
shown in Fig. 1. Consider the networked time-delay MJSs as follows:

Fig. 1 Event-triggered asynchronous control with packet dropouts
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where xk ∈ R
nx , χk0 , yk ∈ R

ny , uk ∈ R
nu , wk ∈ R

nw(wk ∈ l[0,∞) ) denote the system state, 
the system initial state, the controlled output, the control input and the disturbance 
input, respectively. There exists time delay dk ∈ N

+ in the system (1) with the upper 
bound d1 and the lower bound d2 , d1 < d2 . ( A∂k , Ad∂k , B1∂k , B2∂k , C∂k , Cd∂k , D1∂k , D2∂k ) 
are the given real matrices with appropriate dimensions. The Markov jump process of 
system (1) is controlled by the mode parameter ∂k ( ∂k ∈ S , S = {1, 2, · · · , s} ) and com-
plies with the transition probability matrix (TPM) ϒ = [πpq] , in which the transition 
probability(TP) πpq is defined as follows:

obviously, πpq ∈ [0, 1] and 
∑s

q=1 πpq = 1 for ∀p, q ∈ S.
Considering the limited bandwidth and energy in the system, we will introduce an 

event-trigger to reduce the transmission rate of sampling signals and relieve the commu-
nication pressure. The event-triggered mechanism is as follows:

where δi ∈ [0, 1] is error threshold. Denote Hk = diag{�1k ,�2k , · · · ,�nxk} , 
�ik ∈ [−δi, δi], i = 1, 2, · · · , nx . The sampling signal is transmitted to the controller only 
when the event-triggered condition is satisfied. Then according to (3), we can obtain

Remark 1 Owing to the introduction of the event-triggered transmission scheme, 
the sampling signal does not need to be transmitted periodically, thus gaining the aim 
of reducing the data transmission frequency. In addition, we introduce a performance 
index of data transmission performance DTP = tS/tT × 100% to represent the commu-
nication performance [40], in which tS and tT indicate the transmission times of sampled 
data with and without the event-triggered mechanism, respectively.

Based on the output of the trigger (4), we will adopt the following asynchronous 
controller:

where Kσk represents the controller gain, and σk is the mode of the controller. The mode 
∂k of system (1) affects the mode σk of the controller through the conditional transition 
matrix(CPM) � = [θpj] , and its conditional transition (CP) θpj is described as follows 
[41]:

(1)
xk+1 = A∂k xk + Ad∂k xk−dk + B1∂k uk + D1∂k wk

yk = C∂k xk + Cd∂k xk−dk + B2∂k uk + D2∂k wk

xk0 = χk0 , k0 = −d2,−d2 + 1, · · · ,−1, 0

(2)Pr{∂k+1 = q|∂k = p} = πpq

(3)x̂ik =

{

xik
x̂i(k−1)

|x̂i(k−1) − xik | > δi|xik |
|x̂i(k−1) − xik | ≤ δi|xik |

(4)x̂k = (I +Hk)xk

(5)uk = Kσk x̂k

(6)Pr{σk = j|∂k = p} = θpj
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which denotes the controller works in mode j when the system (1) is in mode p, in which 
θpj ∈ [0, 1] and 

∑s
j=1 θpj = 1 for ∀p, j ∈ S.

Remark 2 The controller and the physical plant (1) are mode asynchronous, and the 
asynchronous relationship is described by an HMM, which can well describe the asyn-
chronization and connection between the controller and the plant through CPM. The 
controller’s mode is influenced by the plant’s mode, and their asynchronous level is 
reflected by the CPs. In addition, the asynchronous controller under the HMM scheme 
is more general, which covers both synchronous (i.e., �=I ) and mode-independent (i.e., 
σk ∈ {1} ) cases [42].

Considering that there exists network between the controller and the actuator, 
packet dropouts are inevitable. A Bernoulli stochastic process is used in this work to 
describe the packet dropout process:

where βk denotes the Bernoulli process with

and satisfies

Furthermore, to facilitate subsequent derivations. Defining ¯βk = βk − β , we obtain

where ¯β =

√

β − β2.
For the convenience of expression, let ∂k = p , ∂k+1 = q and σk = j . According to (1), 

(4) and (7), we can obtain the following closed-loop dynamic system:

where ¯Apjk = Ap + βkB1pKj(I +Hk) , ¯Cpjk = Cp + βkB2pKj(I +Hk).
Next, some important lemmas and definitions are introduced to facilitate the work 

of this paper.

Definition 2.1 [43] The system (11) is stochastically stable, if wk ≡ 0 and for any initial 
condition (x0, ∂0) , satisfying

Definition 2.2 [43] Given a constant γ > 0 , matrices µ ≤ 0 , ϑ and symmetric υ , the 
closed-loop system (11) is considered to be strictly (µ,ϑ , υ)− γ−dissipative, for any 
positive integer N, when wk ∈ l[0,∞) and under 0 initial condition, satisfying

(7)ûk = βkuk

(8)Pr{βk = 1} = β , Pr{βk = 0} = 1− β

(9)E{βk} = β , E{β2
k } = β

(10)E{ ¯βk} = 0, E{ ¯β2
k } =

¯β2

(11)
{

xk+1 =
¯Apjkxk + Adpxk−dk + D1pwk

yk =
¯Cpjkxk + Cdpxk−dk + D2pwk

(12)E

{

∞

∑

k=0

||xk ||
2
|x0, ∂0

}

< ∞
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where F(wk , yk) = yTkµyk + 2yTk ϑwk + wT
k υwk , and µ

�
= −UT

1 U1 is negative 
semi-definite.

Lemma 2.1 [44] Given the matrices A, B, C and AT
= A , then

holds if there exists a matrix D > 0 , satisfying

2.2  Stability and dissipativity analysis of the system

This section will derive a sufficient condition to ensure that the system (11) is stochasti-
cally stable and strictly (µ,ϑ , υ)− γ−dissipative.

Theorem  2.1 The system (11) is stochastically stable and strictly (µ,ϑ , υ)− γ−dissi-
pative, if there exist a matrix Kj ∈ R

nu×nx , positive matrices Pp ∈ R
nx×nx , Q ∈ R

nx×nx , 
Rpj ∈ R

nx×nx and a positive diagonal matrix Gpj ∈ R
nu×nu , for ∀p, j ∈ S , satisfying

where

�pj =























−
¯P−1
p 0 0 0 ¯A∗

pj Adp D1p

∗ −
¯P−1
p 0 0 ¯β ¯B1pj 0 0

∗ ∗ −I 0 U1
¯C∗

pj U1Cdp U1D2p

∗ ∗ ∗ −I ¯βU1
¯B2pj 0 0

∗ ∗ ∗ ∗ dQ − Rpj 0 −
¯C∗T
pj ϑ

∗ ∗ ∗ ∗ ∗ −Q −CT
dpϑ

∗ ∗ ∗ ∗ ∗ ∗ Mp























,

Npj =

[

β ¯BT
1pj

¯β ¯BT
1pj β

¯BT
2pj

¯β ¯BT
2pj 0 0 β(ϑTB2pjKj)

T
]T

,

L =

[

0 0 0 0 I 0 0
]

 , ¯A∗

pj = Ap + βB1pKj , ¯B1pj = B1pKj,

¯C∗

pj = Cp + βB2pKj , ¯B2pj = B2pKj , � = diag{δ1, δ2, · · · , δnx },

Mp = −DT
2pϑ − ϑTD2p + γ I − υ , ¯Pp =

s
∑

q=1

πpqPq , d = d2 − d1 + 1.

(13)
N
∑

k=0

E{F(wk , yk)} ≥ γ

N
∑

k=0

wT
k wk

(14)A+ CB+ CTBT < 0

(15)A+ CD−1CT
+ BTDB < 0

(16)
s

∑

j=1

θpjRpj < Pp

(17)





�pj Npj LT�Gpj

∗ −Gpj 0

∗ ∗ −Gpj



 < 0
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Proof First, using Schur complement to (17), we obtain that

By Lemma 2.1, we have

and thus obtain

where

˜Apjk = Ap + βB1pKj(I +Hk) , ˜B1pjk = B1pKj(I +Hk),

˜Cpjk = Cp + βB2pKj(I +Hk) , ˜B2pjk = B2pKj(I +Hk).

which implies

Then, using Schur complement to (21) and (20) again, we have

where

¯Ŵ2
p = diag{− ¯Pp,−¯Pp,−I ,−I} , Ŵ1

=

[

dQ 0

∗ −Q

]

 , φpjk =

[

˜Apjk Adp

¯β ˜B1pjk 0

]

,

Ŵ2
pjk =





dQ 0 −
˜CT
pjkϑ

∗ Q −CT
dpϑ

∗ ∗ Mp



 , ϕpjk =









˜Apjk Adp D1p

¯β ˜B1pjk 0 0

U1
˜Cpjk U1Cdp U1D2p

¯βU1
˜B2pjk 0 0









.

Next, choose the mode-dependent Lyapunov–Krasovskii function as follows:

(18)�pj + NT
pjG

−1
pj Npj + L�Gpj�LT < 0

(19)¯�pjk
�
= �pj + NT

pjHkL
T
+ LHkNpj < 0

(20)¯�pjk =























−
¯P−1
p 0 0 0 ˜Apjk Adp D1p

∗ −
¯P−1
p 0 0 ¯β ˜B1pjk 0 0

∗ ∗ −I 0 U1
˜Cpjk U1Cdp U1D2p

∗ ∗ ∗ −I ¯βU1
˜B2pjk 0 0

∗ ∗ ∗ ∗ dQ − Rpj 0 −
˜CT
pjkϑ

∗ ∗ ∗ ∗ ∗ −Q −CT
dpϑ

∗ ∗ ∗ ∗ ∗ ∗ Mp























< 0

(21)









−
¯P−1
p 0 ˜Apjk Adp

∗ −
¯P−1
p

¯β ˜B1pjk 0

∗ ∗ dQ − Rpj 0

∗ ∗ ∗ −Q









< 0

(22)
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 where V1k = xTk P∂k xk , V2k =

−d1+1
∑

b=−d2+1

k−1
∑

a=k−1+b

xTa Qxa . We introduce ξ1k =

[

xTk xTk−dk

]T

 

and ξk =

[

ξT
1k wT

k

]T . Denoting ∇Vk as the forward differential of Vk,

Then, figure out E{∇V1k} and E{∇V2k}

where “ ≤ ” is obtained from (27) and (28).

Noting that wk ≡ 0 in the definition of stochastic stability, and combining (24), (25) and 
(26), we can get

where “<” is obtained from (22), and ̟ = �max(
s
∑

j=1

θpjRpj − Pp).

Accordingly,

(23)Vk =

2
∑

l=1

Vlk

(24)E{∇Vk} = E{∇V1k} + E{∇V2k}

(25)

E{∇V1k} =
{

V1(k+1) − V1k |xk , ∂k = p
}

= E{xTk+1
Pqxk+1 − xTk Ppxk}

= E{
s
∑

j=1

s
∑

q=1

θpjπpqx
T
k+1

Pqxk+1 − xTk Ppxk}

= E{
s
∑

j=1

θpjξ
T
k

[

φT
pjk

DT
1p

]

¯Pp
[

φpjk D1p

]

ξk − xTk Ppxk}

(26)

E{∇V2k} = E{V2(k+1) − V2k}

= E{
−d1+1
∑

b=−d2+1

k
∑

a=k+b

xTa Qxa −
−d1+1
∑

b=−d2+1

k−1
∑

a=k−1+b

xTa Qxa}

= E{
−d1+1
∑

b=−d2+1

{xTk Qxk − xTk−1+bQxk−1+b}}

≤ E{xTk dQxk − xTk−dk
Qxk−dk }

= E{ξT
1kŴ

1ξ1k}

(27)
−d1+1
∑

b=−d2+1

xTk Qxk = xTk dQxk

(28)
−d1+1
∑

b=−d2+1

xTk−1+bQxk−1+b =

k−d1
∑

b=k−d2

xTb Qxb ≥ xTk−dk
Qxk−dk

(29)

E{∇Vk} = E{∇V1k} + E{∇V2k}

≤ E{
s
∑

j=1

θpjξ
T
1k�1pjkξ1k − xTk Ppxk}

< E{xTk (
s
∑

j=1

θpjRpj − Pp)xk}

≤ ̟E{xTk xk}
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We know that ̟ < 0 from (16); hence,

which conforms to definition 2.1; namely, the stochastic stability of the system (11) is 
proved.

Next, we will show that the system (11) is strictly (µ,ϑ , υ)− γ−dissipative. Define the 
performance index as

Then, calculate E{∇V1k} and E{∇V2k} , respectively,

 Combining (32), (33) and (34), we can obtain

 where the two “<” are obtained from (22) and (16), respectively. By definition 2.2, we 
can know that the system (11) is strictly (µ,ϑ , υ)− γ−dissipative. Thus, the proof is 
completed. 

Remark 3 A sufficient condition for stochastic stability and strict dissipativity is 
derived for the system (11) in Theorem 2.1. However, in terms of existing nonlinear term 
in Theorem 2.1, we cannot parameterize the controller gain directly by conditions (16) 
and (17); therefore, further linearization is required.

(30)E{

∞

∑

0

∇Vk} = E{V
∞

− V0} ≤ ̟E{

∞

∑

0

xTk xk}

(31)E

{

∞

∑

0

x
T
k
xk

}

< ∞

(32)
J =

∞
∑

k=0

E{wT
k (γ I − υ)yk − yTkµyk − 2yTk ϑwk}

≤

∞
∑

k=0

E{wT
k (γ I − υ)yk − yTkµyk − 2yTk ϑwk + ∇Vk}

(33)E{∇V1k} =E







s
�

j=1

θpjx
T
k+1

¯Ppxk+1 − xTk Ppxk







(34)E{∇V2k} =E







s
�

j=1

θpjξ
T
k diag{Ŵ

1, 0}ξk







(35)

J ≤
∞
∑

k=0

E{
s
∑

j=1

θpjξ
T
k �2pjkξk − xTk Ppxk}

<
∞
∑

k=0

E{xTk (
s
∑

j=1

θpjRpj − Pp)xk}

< 0

�
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2.3  Design of the event‑triggered asynchronous controller

This section will provide a design method for an event-triggered asynchronous con-
troller and further determine the controller gains.

Theorem  2.2 The system (11) is stochastically stable and strictly (µ,ϑ , υ)− γ−dis-
sipative, if there exist matrices ¯Kj ∈ R

nu×nx , V ∈ R
nx×nx , positive matrices ¯Pp ∈ R

nx×nx , 
¯Rpj ∈ R

nx×nx , ¯Q ∈ R
nx×nx and a positive diagonal matrix ¯Gpj ∈ R

nu×nu , for ∀p, j ∈ S , 
satisfying

where

Jp = [

√

θp1 ¯Pp · · ·
√

θpj ¯Pp · · ·
√

θps ¯Pp] , ˆRp = diag{− ¯Rp1, · · · ,−¯Rpj , · · · ,−¯Rps},

Xpj =













d ¯Q +
¯Rpj − V T

− V 0 −
˜C∗T
pj ϑ 0 � ¯Gpj

∗ −
¯Q −

¯CT
dpϑ 0 0

∗ ∗ Mp βϑTB2p
¯Kj 0

∗ ∗ ∗ −
¯Gpj 0

∗ ∗ ∗ ∗ −
¯Gpj













,

Ypj =

[

U1(CpV + βB2p
¯Kj) U1CdpV U1D2p βU1B2p

¯Kj 0
¯βU1B2p

¯Kj 0 0 ¯βU1B2p
¯Kj 0

]T

,

Zpj =

[

√

πp1W
T
pj

√

πp2W
T
pj · · ·

√

πpsW
T
pj

]

,

Wpj =

[

ApV + βB1p
¯Kj AdpV D1p βB1p

¯Kj 0
¯βB1p

¯Kj 0 0 ¯βB1p
¯Kj 0

]

,

˜C∗

pj = CpV + βB2p
¯Kj , ¯Cdp = CdpV  , ˆP = diag{− ¯P1,−¯P2, · · · ,−¯Ps}.

and the controller gain Kj can be determined by

Proof First, we define

where V is an invertible slack matrix. Applying a congruence conversion to (36) by 
diag{Pp, I , · · · , I} , one has

where ¯Jp = [

√

θp1I · · ·
√

θpjI · · ·
√

θpsI] . Then, (40) is equivalent to (16).

(36)
[

−
¯Pp Jp
∗

ˆRp

]

< 0

(37)





Xpj Ypj Zpj

∗ −I 0

∗ ∗
ˆP



 < 0

(38)Kj =
¯KjV

−1

(39)¯Pp = P−1
p , ¯Rpj = R−1

pj ,
¯Kj = KjV , ¯Q = V TQV , ¯Gpj = V TGpjV

(40)
[

−Pp ¯Jp
∗

ˆRp

]

< 0
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Moreover, due to the fact that

namely

Then, (37) implies

where

¯Xpj =













d ¯Q + V T
¯RpjV 0 −

˜C∗T
pj ϑ 0 � ¯Gpj

∗ −
¯Q −

¯CT
dpϑ 0 0

∗ ∗ Mp βϑTB2p
¯Kj 0

∗ ∗ ∗ −
¯Gpj 0

∗ ∗ ∗ ∗ −
¯Gpj













.

Denoting � = diag{(V T)−1, (V T)−1, I , (V T)−1, (V T)−1, I , · · · , I} , and applying a con-
gruence conversion to (43) by � , we can get

where

Xpj =













dQ − Rpj 0 −
¯C∗T
pj ϑ 0 �Gpj

∗ −Q −CT
dpϑ 0 0

∗ ∗ Mp βϑTB2pKj 0

∗ ∗ ∗ −Gpj 0

∗ ∗ ∗ ∗ −Gpj













,

˜Ypj =

[

U1(Cp + βB2pKj) U1Cdp U1D2p βU1B2pKj 0
¯βU1B2pKj 0 0 ¯βU1B2pKj 0

]T

,

˜Zpj =

[

√

πp1 ˜WT
pj

√

πp2 ˜WT
pj · · ·

√

πps ˜W
T
pj

]

,

˜Wpj =

[

Ap + βB1pKj Adp D1p βB1pKj 0
¯βB1pKj 0 0 ¯βB1pKj 0

]

.

By employing Schur complement to (44), we get (17), and the proof is accomplished. �

Remark 4 In Theorem 2.1, it is difficult to compute the controller gain due to the non-
linear term. Thus, we introduce the slack matrix V in Theorem 2.2 and transform the 
nonlinear problem into LMIs by using matrix scaling and slack matrix techniques.

Remark 5 Based on dissipative theory, the larger γ implies, the better dissipative per-
formance. We can obtain the optimal performance γ ∗ by solving a convex optimization 
problem as follows:

(41)( ¯Rpj − V )T ¯R−1
pj (

¯Rpj − V ) ≥ 0

(42)−V T
¯R−1
pj V ≤

¯Rpj − V T
− V

(43)





¯Xpj Ypj Zpj

∗ −I 0

∗ ∗
ˆP



 < 0

(44)





˜Xpj ˜Ypj ˜Zpj

∗ −I 0

∗ ∗
ˆP



 < 0
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Moreover, it is noted that the dissipative performance also includes two special 
performances:

(1) H
∞

 : let µ = −I ,ϑ = 0, υ = (γ 2
+ γ )I in  (37).

(2) Passivity: when Rny
= R

nw , let µ = 0,ϑ = I , υ = 2γ I in (37).

Remark 6 Compared with the literature [26], although the same asynchronization 
method is introduced in this work, there are great differences in the issues of interest, 
the data transmission mechanism and the system performance. The work [26] mainly 
considered the H

∞
 control of MJSs with time delay and quantization. However, we con-

sider not only the time delay, but also the packet dropouts between the controller and 
the actuator. Considering the limited communication resources, we also introduce an 
event-triggered mechanism to reduce communication consumption. In addition, the dis-
sipative control we consider is more general, which covers both H

∞
 control and passive 

control. In particular, due to the introduction of event-triggered mechanism and packet 
dropouts, the technical derivation of the design method in this work is more complex.

3  Experimental results and discussion
In this section, a 4-mode robotic arm system [45] will be used to verify the validity of 
this design method, and the corresponding parameters are as follows:

A1 =

[

1 0.1

−0.4905 0.8

]

 , A2 =

[

1 0.1

−0.4905 0.96

]

 , A3 =

[

1 0.1

−0.4905 0.98

]

,

A4 =

[

1 0.1

−0.4905 0.9867

]

 , Ad1 =

[

0.01 −0.02

−0.01 0.02

]

 , Ad2 =

[

0.01 −0.02

0.01 0.04

]

,

Ad3 =

[

0.01 −0.02

0.01 0.05

]

 , Ad4 =

[

0.01 −0.02

0.01 0.08

]

 , B11 =

[

0

0.1

]

 , B12 =

[

0

0.02

]

,

B13 =

[

0

0.01

]

 , B14 =

[

0

0.007

]

 , B21 = B22 = B23 = B24 = 0,

C1 = C2 = C3 = C4 =

[

1 0
]

 , Cd1 =
[

0.1 0.01
]

 , Cd2 =
[

0.1 0.02
]

,

Cd3 =
[

0.1 0.05
]

 , Cd4 =

[

0.1 0.08
]

 , D11 = D12 = D13 = D14 =

[

0

0.1

]

,

D21 = D22 = D23 = D24 = 0.1.
Let TPM ϒ and CPM � as follows:

ϒ =







0.3 0.2 0.4 0.1

0.4 0.2 0.2 0.2

0.55 0.15 0.3 0

0.1 0.2 0.3 0.4






 , � =







0.2 0.25 0.4 0.15

0.1 0.2 0.3 0.4

0.3 0.2 0.4 0.1

0.4 0.2 0.2 0.2






,

respectively. Choose the dissipative parameters µ = −0.36,ϑ = −2, υ = 2 , the 
parameter β = 0.9 and the error threshold δ = 0.15.

(45)
{

min

s.t.
−γ

(36), (37)
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Via solving the LMIs in Theorem 2.2, we get the optimal performance γ ∗

= 1.4140 , 
and the controller gain:
K1 =

[

−24.4130 −4.4994
]

 , K2 =
[

−24.5972 −4.5774
]

,
K3 =

[

−24.5182 −4.5793
]

 , K4 =

[

−28.4887 −5.7050
]

.
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Fig. 2 System state, output and control input
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Fig. 3 The event-triggered interval
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Based on the feasible solution obtained above, we assume that the initial state 
x0 =

[

0.3 0.2
]T and disturbance input wk = 0.9k cos(k) . Then, a simulation is car-

ried out with the proposed event-triggered asynchronous controller. The simulation 
results are shown in Figs. 2, 3 and 4. It can be observed that the system state, output 
and control input tend to be stable gradually from Fig. 2; namely, the system is sto-
chastically stable. Furthermore, we can find from Fig. 3 that the amount of data trans-
mission has decreased significantly. Figure 4 shows the modes of the controller and 
the plant, which are asynchronous.

Then, we will examine the event-triggered performance by changing the threshold 
δ . Based on Theorem 2.2, the simulation results are obtained in Table 1. It is easy to 
observe that as δ increases, the optimal control performance decreases slightly, while 
DTP is greatly improved. Therefore, we can choose a relatively appropriate δ to effec-
tively reduce the data transmission rate on the premise that the system has satisfying 
dissipative performance. Then, we will discuss the impact of different packet dropout 
rates on system performance. As shown in Table 2, we can find that when β =1 which 

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

0 20 40 60 80 100 120 140 160 180 200
0

1

2

3

4

5

Fig. 4 The modes of the controller and the plant

Table 1 Dissipative performance γ ∗ and data transmission performance

δ 0 0.1 0.15 0.2 0.3

γ ∗ 1.4245 1.4173 1.4140 1.4107 1.4033

DTP(%) 100 64 49.5 40 27

Table 2 Dissipative performance γ ∗ under different packet dropout rates

β 1 0.9 0.8 0.7 0.6

γ ∗ 1.4204 1.4140 1.4064 1.3975 1.3869
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stands for no packet dropout, the control performance of the system is the best. With 
the increase of packet dropout rate, the control performance becomes worse.

Next, we will investigate three control performances (i.e., dissipative performance, 
H
∞

 performance and passive performance) under different CPMs: synchronous, 
weakly asynchronous, strongly asynchronous and completely asynchronous cases. 
The corresponding CPMs are as follows:

Case 1: � =







1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1






 , Case 2: � =







1 0 0 0

0 1 0 0

0.3 0.2 0.4 0.1

0.4 0.2 0.2 0.2






,

Case 3: � =







1 0 0 0

0.1 0.2 0.3 0.4

0.3 0.2 0.4 0.1

0.4 0.2 0.2 0.2






 , Case 4: � =







0.2 0.25 0.4 0.15

0.1 0.2 0.3 0.4

0.3 0.2 0.4 0.1

0.4 0.2 0.2 0.2






.

Furthermore, the parameters (µ,ϑ , υ) for three different performances are presented 
in Table  3. The optimal performance γ ∗ obtained by solving LMIs in Theorem  2.2 is 
shown in Table  4. We know that the smaller γ ∗ means, the worse dissipative perfor-
mance, while the better H

∞
 performance and passive performance [46]. Transparently, 

the higher the asynchronous level between the physical plant and the controller is, the 
worse the control performance we obtain.

4  Conclusions
In this paper, the dissipative asynchronous control issue has been investigated for net-
worked time-delay MJSs with event-triggered scheme and packet dropouts. An event-trig-
gered strategy has been introduced to reduce the communication pressure, and an HHM 
has been used to describe the asynchronization between the controller and the physical 
plant. By using Lyapunov–Krasovskii function and dissipative theory, and combining 
slack matrix and matrix scaling techniques, a controller design method has been obtained. 
Finally, an example of robotic arm system has been taken to illustrate the effectiveness of 
our obtained approach. The relationship between dissipative performance, data transmis-
sion  performance and event-triggered threshold has also been discussed. In the future, 
it will be worthy of our further investigation on the asynchronous control for networked 

Table 3 The values of µ , ϑ and υ for different performances

µ ϑ υ

Dissipativity −0.36 −2 2

H
∞

−1 0 γ 2
+ γ

passivity 0 1 2γ

Table 4 The values of optimal performance γ ∗ under different performances

γ ∗ Case 1 Case 2 Case 3 Case 4

Dissipativity 1.4446 1.4415 1.4393 1.4140

H
∞

0.1386 0.1394 0.1399 0.1446

passivity(×10−13) 0.5251 0.7161 4.5803 9.1461
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MJSs with partially unknown TPs and CPs. Moreover, how to design more novel and inter-
esting event-triggered mechanism and packet dropout strategy to save communication 
resources and further improve control performance is also our goal in the future.
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