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This paper studies the performance of switch and stay combining (SSC) diversity receivers operating over correlated Ricean fading
satellite channels. Using an infinite series representation for the bivariate Ricean probability density function (PDF), the PDF of
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channel capacity (CC) are derived. Furthermore, by considering several families of modulated signals, analytical expressions for
the average symbol error probability (ASEP) for the diversity receivers under consideration are obtained. The theoretical analy-
sis is accompanied by representative performance evaluation results, including average output SNR (ASNR), amount of fading
(AoF), outage probability (Pout), average bit error probability (ABEP), and average CC, which have been obtained by numerical
techniques. The validity of some of these performance evaluation results has been verified by comparing them with previously
known results obtained for uncorrelated Ricean fading channels.
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1. INTRODUCTION

The mobile terrestrial and satellite communication channel
is particularly dynamic due to multipath fading propaga-
tion, having a strong negative impact on the average bit er-
ror probability (ABEP) of any modulation scheme [1]. Di-
versity is a powerful communication receiver technique used
to compensate for fading channel impairments. The most
important and widely used diversity reception methods em-
ployed in digital communication receivers are maximal-ratio
combining (MRC), equal-gain combining (EGC), selection
combining (SC), and switch and stay combining (SSC) [2].
For SSC diversity considered in this paper, the receiver se-
lects a particular branch until its signal-to-noise ratio (SNR)
drops below a predetermined threshold. When this happens,
the combiner switches to another branch and stays there re-
gardless of whether the SNR of that branch is above or be-
low the predetermined threshold. Hence, among the above-
mentioned diversity schemes, SSC is the least complex and
can be used in conjunction with coherent, noncoherent, and
differentially coherent modulation schemes. It is also well
known that in many real life communication scenarios the

combined signals are correlated [2, 3]. A typical example for
such signal correlation exists in relatively small-size mobile
terminals where typically the distance between the diversity
antennas is short. Due to this correlation between the signals
received at the diversity branches there is a degradation in the
achievable diversity gain.

The Ricean fading distribution is often used to model
propagation paths consisting of one strong direct line-of-
sight (LoS) signal and many randomly reflected and usually
weaker signals. Such fading environments are typically en-
countered in microcellular and mobile satellite radio links
[2]. In particular for mobile satellite communications the
Ricean distribution is used to accurately model the mo-
bile satellite channel for single- [4] and clear-state [5] chan-
nel conditions. Furthermore, in [6] it was depicted that the
Ricean K-factor characterizes the land mobile satellite chan-
nel during unshadowed periods.

The technical literature concerning diversity receivers op-
erating over correlated fading channels is quite rich, for ex-
ample, see [7–13]. In [7] expressions for the outage probabil-
ity (Pout) and the ABEP of dual SC with correlated Rayleigh
fading were derived either in closed form or in terms of
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single integrals. In [8] the cumulative distribution functions
(CDF) of SC, in correlated Rayleigh, Ricean, and Nakagami-
m fading channels were derived in terms of single-fold in-
tegrals and infinite series expressions. In [9] the ABEP of
dual-branch EGC and MRC receivers operating over corre-
lated Weibull fading channels was obtained. In [10] the per-
formance of MRC in nonidentical correlated Weibull fad-
ing channels with arbitrary parameters was evaluated. In
[11] an analysis for the Shannon channel capacity (CC) of
dual-branch SC diversity receivers operating over correlated
Weibull fading was presented. In [12], infinite series expres-
sions for the capacity of dual-branch MRC, EGC, SC, and
SSC diversity receivers over Nakagami-m fading channels
have been derived.

Past work concerning the performance of SSC operat-
ing over correlated fading channels can be found in [14–
17]. One of the first attempts to investigate the performance
of SSC diversity receivers operating over independent and
correlated identical distributed Ricean fading channels was
made in [14]. However, in this reference only noncoher-
ent frequency shift keying (NCFSK) modulation was con-
sidered and its ABEP has been derived in an integral rep-
resentation form. In [15] the performance of SSC diversity
receivers was investigated for different fading channels, in-
cluding Rayleigh, Nakagami-m and Ricean, and under dif-
ferent channel conditions but dealt mainly with uncorre-
lated fading. For correlated fading in this reference only the
Nakagami-m distribution was studied. In [16] the moments
generating function (MGF) of SSC was presented in terms of
a finite integral representation for the correlated Nakagami-
m fading channel. In [17] expressions for the average output
SNR (ASNR), amount of fading (AoF) and Pout for the cor-
related log-normal fading channels have been derived.

All in all, the problem of theoretically analyzing the per-
formance of SSC over correlated Ricean fading channels has
not yet been thoroughly addressed in the open technical lit-
erature. The main difficulty in analyzing the performance of
diversity receivers in correlated Ricean fading channels is the
complicated form of the received signal bivariate probability
density function (PDF), see [14, Equation (17)], and the ab-
sence of an alternative and more convenient expression for
the multivariate distribution. An efficient solution to these
difficulties is to employ an infinite series representation for
the bivariate PDF, such as those that were proposed in [18]
or [19]. Such an approachwas used in [20] to analyze the per-
formance of MRC, EGC, and SC in the presence of correlated
Ricean fading. Similarly here the most important statistical
metrics and the capacity of SSC diversity receivers operat-
ing over correlated Ricean fading channels will be studied. In
particular, we derive the PDF, CDF, MGF, moments and the
average CC of such receivers operating over correlated Ricean
fading channels. Furthermore, analytical expressions for the
average symbol error probability (ASEP) of several modula-
tion schemes will be obtained. Capitalizing on these expres-
sions, a detailed performance analysis for the Pout, ASNR,
AoF, and ASEP/ABEP will be presented.

The remainder of this paper is organized as follows. Af-
ter this introduction, in Section 2 the system model is intro-

duced. In Section 3, the SSC received signal statistics are pre-
sented, while in Section 4 the capacity is obtained. Section 5
contains the derivation of the most important performance
metrics of the SSC output SNR. In Section 6, various numer-
ical evaluation results are presented and discussed, while the
conclusions of the paper can be found in Section 7.

2. SYSTEMMODEL

By considering a dual-branch SSC diversity receiver operat-
ing over a correlated Ricean fading channel, the baseband re-
ceived signal at the �th (� = 1 and 2) input branch can be
mathematically expressed as

ζ� = sh� + n�. (1)

In the above equation, s is the transmitted complex sym-
bol, h� is the Ricean fading channel complex envelope with
magnitude R� = |h�|, and n� is the additive white Gaus-
sian noise (AWGN) having single-sided power spectral den-
sity of N0. The usual assumption for ideal fading phase esti-
mation is made, and hence, only the distributed fading enve-
lope and the AWGN affect the received signal. Moreover, the
AWGN is assumed to be uncorrelated between the two diver-
sity branches. The instantaneous SNR per symbol at the �th
input branch is γ� = R2

�Es/(2N0), where Es = E〈|s|2〉 is the
transmitted average symbol energy, where E〈·〉 denoting ex-
pectation and | · | absolute value. The corresponding average
SNR per symbol at both input branches is γ = ΩEs/N0, where
Ω = E〈R2

�〉. The PDF of the SNR of the Ricean distribution
is given by [2, Equation (2.16)]

fγ(γ) = 1 + K

γ
exp

[
− K − (1 + K)

γ
γ
]

× I0

[
2

√
K(K + 1)

γ
γ1/2

]
,

(2)

where K is the Ricean K-factor defined as the power ratio
of the specular signal to the scattered signals and I0(·) is the
zeroth-order modified Bessel function of the first kind [21,
Equation (8.406)]. The CDF of γ is given by [14, Equation
(8)]

Fγ(γ) = Q1

[√
2K ,

√
2(1 + K)

γ
γ

]
, (3)

where Q1(·) is the first-order Marcum-Q function [2, Equa-
tion (4.33)].

The joint PDF of γ1 and γ2, presented in [14, Equation
(17)], can be expressed in terms of infinite series by follow-
ing a similar procedure as for deriving [18, Equation (9)].
Hence, substituting I0(·) with its infinite series representa-
tion [21, Equation (8.445)], expanding the term [γ1 + γ2 +
2√γ1γ2 cos(θ)]i using the multinomial identity [22, Equa-
tion (24.1.2)], using [21, Equation (3.389/1)] and after some



P. S. Bithas and P. T. Mathiopoulos 3

mathematical manipulations the joint PDF of γ1, γ2 can be
expressed as

fγ1,γ2
(
γ1, γ2

) =
∞∑

i,h=0
v1+v2+v3=i

A exp
[− β1

(
γ1 + γ2

)]

× (
Bγ

β2−1
1 γ

β3−1
2 +Cγ−1γβ2−1/21 γ

β3−1/2
2

)
(4)

with

A = 2v3+2h−1(1 + K)1+β4ρ2hKi exp
[− 2K/(1 + ρ)

]
√
πγ1+β4

(
1− ρ2

)1+2h
v1!v2!v3!i!(1 + ρ)2i

,

B =
[
1 + (−1)v3]Γ[h + (

1 + v3
)
/2
]

Γ
(
h + 1 + v3/2

)
Γ
(
1 + 2h

) ,

C =
[− 1 + (−1)v3]2ρ(1 + K)Γ

(
1 + h + v3/2

)
(
ρ2 − 1

)
Γ(2 + 2h)Γ

[
h +

(
3 + v3

)
/2
] ,

β1 = (1 + K)(
1− ρ2

)
γ
, β2 = v1 +

v3
2
+ h + 1,

β3 = v2 +
v3
2
+ h + 1, β4 = i + 2h + 1,

(5)

where Γ(·) is the Gamma function [21, Equation (8.310/1)]
and ρ is the correlation coefficient between γ1 and γ2. It can
be proved that the above infinite series expression always
converges [18].

3. RECEIVED SIGNAL STATISTICS

In this section, the most important statistical metrics,
namely, the PDF, CDF, MGF, and moments of dual branch
SSC output SNR diversity receivers operating over correlated
Ricean fading channels will be presented.

3.1. Probability density function (PDF)

Let γssc be the instantaneous SNR per symbol at the output of
the SSC and γτ the predetermined switching threshold. Fol-
lowing [15], the PDF of γssc, fγssc (γ), is given by

fγssc (γ) =
⎧⎪⎨
⎪⎩
rssc(γ), γ ≤ γτ ,

rssc(γ) + fγ(γ), γ > γτ.
(6)

Moreover, rssc(γ) is given in [23, Equation (21b)] as

rssc(γ) =
∫ γτ

0
fγ1γ2

(
γ, γ2

)
dγ2

=
∫∞
0

fγ1γ2
(
γ, γ2

)
dγ2 −

∫∞
γτ

fγ1γ2
(
γ, γ2

)
dγ2.

(7)

Hence, by substituting (4) in (7) and using [21, Equation
(3.351/2-3)], these integrals can be solved and rssc(γ) can be
expressed as

rssc(γ) =
∞∑

i,h=0
v1+v2+v3=i

A exp
(− β1γ

)
γβ2−1/2

×
[
Bγ

(
β3,β1γτ

)
√
γβ

β3
1

+
Cγ

(
β3 + 1/2,β1γτ

)
γβ

β3+1/2
1

]
,

(8)

where γ(·, ·) is the lower incomplete Gamma function [21,
Equation (8.350/1)].

3.2. Cumulative distribution function (CDF)

Similar to [23, Equation (20)], the CDF of γssc, Fγssc (γ), is
given by

Fγssc (γ) = Pr
(
γτ ≤ γ1 ≤ γ

)
+ Pr

(
γ2 < γτ ∧ γ1 < γ

)
(9)

which after some manipulations can be expressed in terms of
CDFs as

Fγssc (γ) =
⎧⎪⎨
⎪⎩
Fγ1,γ2

(
γ, γτ

)
, γ ≤ γτ ,

Fγ(γ)− Fγ
(
γτ
)
+ Fγ1,γ2

(
γ, γτ

)
, γ > γτ.

(10)

Hence, by substituting (4) in Fγ1,γ2 (γ, γτ) =
∫ γ
0

∫ γτ
0 fγ1,γ2 (γ1,

γ2)dγ1dγ2 using [21, Equation (3.351/1)], Fγ1,γ2 (γ, γτ) can be
derived as

Fγ1,γ2
(
γ, γτ

) =
∞∑

i,h=0
v1+v2+v3=i

A

β
β2+β3
1

×
[
Bγ

(
β2,β1γ

)
γ
(
β3,β1γτ

)

+
C
β1γ

γ
(
β2 +

1
2
,β1γ

)
γ
(
β3 +

1
2
,β1γτ

)]
.

(11)

In order to verify the validity of the above derivations,
(10) and (11) have been numerically evaluated for the spe-
cial case of uncorrelated, that is, ρ = 0, Ricean fading chan-
nels. The resulting CDF was found to be identical to the same
CDF presented in [2, Equation 9.273], which was derived us-
ing a different mathematical approach as a closed-form ex-
pression.

3.3. Moments generating function (MGF)

Based on (6), theMGF of γssc,Mγssc (s) = E〈exp(−sγssc)〉, [24,
Equation (5.62)], can be expressed in terms of two integrals
as

Mγssc (s) =
∫∞
0
exp(−sγ)rssc(γ)dγ

+
∫∞
γτ
exp(−sγ) fγ(γ)dγ = I1 + I2.

(12)
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Using [21, Equation (3.381/4)], I1 can be expressed in terms
of infinite series as

I1 =
∞∑

i,h=0
v1+v2+v3=i

A

[
Γ
(
β2
)

(
β1 + s

)β2 Bβ
−β3
1 γ

(
β3,β1γτ

)

+Cβ
−β3−1/2
1

Γ
(
β2+1/2

)
(
β1+s

)β2+1/2 γ
(
β3+

1
2
,β1γτ

)]
.

(13)

Setting ψ =
√
2γ[(1 + K)/γ + s] and using [2, Equation

(4.33)], I2 can be solved as

I2 = Q1

[√
2K(1 + K)
1 + K + γs

,

√√√2(1 + K + γ s)γτ
γ

]

× exp
[
K(1 + K)
1 + K + sγ

]
(1 + K) exp(−K)

1 + K + γs
.

(14)

3.4. Moments

Based on (6), the moments for γssc, μγssc (n) = E〈exp(γnssc)〉,
[24, Equation (5.38)], can be expressed in terms of two inte-
grals as

μγssc (n) =
∫∞
0
γnrssc(γ)dγ +

∫∞
γτ
γn fγ(γ)dγ

= I3 + I4.

(15)

Using again [21, Equation (3.381/4)], I3 can be expressed in
terms of infinite series as

I3 =
∞∑

i,h=0
v1+v2+v3=i

A
[
Bγ

(
β3,β1γτ

)Γ(n + β2
)

β
β2+β3+n
1

+
Cγ

(
β3 + 1/2,β1γτ

)
β
β2+β3+n+1
1

Γ
(
n + β2 +

1
2

)]
.

(16)

Setting φ =
√
2γ(1 + K)/γ in I4, using [2, Equation

(4.104)], after some straight-forward mathematical manip-
ulations, yields

I4 = γn−1

2n(1 + K)n−1
Q2n+1,0

(
K ,

√√√2(1 + K)γτ
γ

)
, (17)

where Qm,n(·, ·) is the Nuttal Q-function defined in [25].

4. CHANNEL CAPACITY (CC)

CC is a well-known performance metric providing an upper
bound for maximum errorless transmission rate in a Gaus-
sian environment. The average CC, C, is defined as [26]

C
Δ= BW

∫∞
0
log2(1 + γ) fγssc (γ)dγ, (18)

where BW is transmission bandwidth of the signal in Hz.
Hence, substituting (6) in (18), C becomes

C =
∫∞
0
log2(1 + γ)rssc(γ)dγ +

∫∞
γτ
log2(1 + γ) fγ(γ)dγ

= I5 + I6.

(19)

By representing ln(1 + γ) = G1,2
2,2

[
γ | 1,11,0

]
, [27, Equation

(01.04.26.0003.01)], and exp(−γ) = G1,0
0,1

[
γ | 0−

]
, [27, Equa-

tion (01.03.26.0004.01)], where G(·) is Meijer’s G-function
[21, Equation (9.301)] and using [28], I5 can be solved as

I5 =
∞∑

i,h=0
v1+v2+v3=i

A

ln 2

{
B

γ
(
β3,β1γτ

)
β
β3+β2
1

G1,3
3,2

[
1
β1

∣∣∣∣ 1, 1, 1− β2
1, 0

]

+C
γ
(
β3 + 1/2,β1γτ

)
β
β3+β2+3/2
1

×G1,3
3,2

[
1
β1

∣∣∣∣ 1, 1, 1− β2
1, 0

]}
.

(20)

Due to the very complicated nature of I6, it is very difficult,
if not impossible, to derive a closed-form solution for this
integral. However, I6 can be evaluated via numerical inte-
gration using any of the well-known mathematical software
packages, such as MATHEMATICA or MATLAB.

5. PERFORMANCE ANALYSIS

In this section a detailed performance analysis, in terms of
Pout, ASEP, ASNR and AoF, for SSC diversity receivers operat-
ing over correlated Ricean fading channels will be presented.

5.1. Outage probability (Pout)

Pout is the probability that the output SNR falls below a pre-
determined threshold γth, Pout(γth), and can be obtained by
replacing γ with γth in (10) as

Pout
(
γth

) = Fγssc
(
γth

)
. (21)

5.2. Average symbol error probability (ASEP)

The ASEP, Pse, can be evaluated directly by averaging the con-
ditional symbol error probability, Pe(γ), over the PDF of γssc
[29]

Pse =
∫∞
0
Pe(γ) fγssc (γ)dγ. (22)

For different families of modulation schemes, Pe(γ) can
be obtained as follows.

(i) For binary phase shift keying (BPSK) and square M-
ary quadrature amplitude modulation (QAM) signaling for-

mats and for high-input SNR, Pe(γ) = D erfc(
√
Eγ), where
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erfc(·) is the complementary error function [21, Equation
(8.250/1)] andD, E are constants the values of which depend
on the specific modulation scheme under consideration. Us-
ing this expression, by substituting (6) in (22), yields

Pse =
∫∞
0
D erfc

(√
Eγ

)
rssc(γ)dγ +

∫∞
γτ
D erfc

(√
Eγ

)
fγ(γ)dγ

= I7 + I8.
(23)

Expressing erfc(
√
Eγ) = √

π−1G2,0
1,2

[
Bγ | 10,1/2

]
, [27, Equation

(06.27.26.0006.01)], and exp(−γ) = G1,0
0,1

[
γ | 0−

]
, [27, Equa-

tion (01.03.26.0004.01)], using [28] and after some straight-
forward mathematical manipulations I7 can be expressed as

I7 =
∞∑

i,h=0
v1+v2+v3=i

ADΓ
(
β2 + 1/2

)
√
πβ

β3
1 Eβ2

×
{

BΓ
(
β2
)

Γ
(
β2 + 1

)γ(β3,β1γτ)

× 2F1

(
β2,β2 +

1
2
;β2 + 1;−β1

E

)

+
Cγ

(
β3 + 1/2,β1γτ

)
Γ
(
β2 + 1

)
(
β1E

)1/2
Γ
(
β2 +

3
2

)

× 2F1

(
β2 +

1
2
,β2 + 1;β2 +

3
2
;−β1

E

)}

(24)

with 2F1(·, ·; ·; ·) being Gauss Hypergeometric function [21,

Equation (9.100)]. Moreover, I8 =
∫∞
0 D erfc(

√
Eγ) fγ(γ)dγ−∫ γτ

0 D erfc(
√
Eγ) fγ(γ)dγ = I8,a − I8,b. Hence, substituting

again I0(·) with its infinite series representation [21, Equa-
tion (8.445)], I8,a can be solved with the aid of [28] and I8,b

using [27, Equation (06.27.21.0019.01)]. Thus, using these
solutions of I8,a and I8,b and after some mathematical ma-
nipulations, I8 can be expressed as in (25):

I8 = D(1 + K) exp(−K)
γ

∞∑
k=0

(k!)−2
[
K(K + 1)

γ

]k

×
{
Γ(k + 1)Γ(k + 3/2)√

πEk+1Γ(k + 2)

× 2F1

[
k + 1, k +

3
2
; k + 2;−1 + K

γE

]

− 2
√
E/π[

β1
(
1− ρ2

)]k+3/2
∞∑
ρ=0

[− (1 + K)/γ
]ρ
Eρ

(2ρ + 1)ρ!

×Γ
[
k+

3
2
+ρ,

(1+K)γτ
γ

]
− Γ

[
k+1, (1+K)γτ/γ

]
2
[
β1
(
1−ρ2)]k+1

}
.

(25)

In (25), Γ(·, ·) is the upper incomplete Gamma function [22,
Equation (6.51)].

(ii) For noncoherent binary frequency shift keying
(BFSK) and binary differential phase shift keying (BDPSK),
Pe(γ) = D exp(−Dγ). Similar to the derivation of (12), that
is, using [21, Equation (3.381/4)] and [2, Equation (4.33)],
Pse can be expressed as

Pse =
∞∑

i,h=0
v1+v2+v3=i

AD

×
[

Γ
(
β2
)
B(

β1 + E
)β2ββ31

γ
(
β3,β1γτ

)

+
CΓ

(
β2 + 1/2

)
(
β1 + E

)β2+1/2ββ3+1/21

γ
(
β3 +

1
2
,β1γτ

)]

+Q1

[√
2K(1 + K)
1 + K + γE

,

√√√2(1 + K + γE)γτ
γ

]

× exp
[
K(1 + K)
1 + K + γE

]
(1 + K) exp(−K)

1 + K + γE
.

(26)

(iii) For Gray encoded M-ary PSK and M-ary DPSK,
Pe(γ) = D

∫ Λ
0 exp[−E(θ)γ]dθ, where Λ is constant. Thus, Pse

can be expressed as

Pse =
∞∑

i,h=0
v1+v2+v3=i

AD

×
{
Bγ

(
β3,β1γτ

)
β
β3
1

∫ Λ

0

Γ
(
β2
)

[
β1 + E(θ)

]β2 dθ

+
Cγ

(
β3 + 1/2,β1γτ

)
β
β3+1/2
1

×
∫ Λ

0

Γ
(
β2 + 1/2)[

β1 + E(θ)
]β2+1/2 dθ

}

+
∫ Λ

0
Q1

[√
2K(1 + K)

g(θ)
,

√√√2g(θ)γτ
γ

]

× exp
[
K(1 + K)
g(θ)

]
(1 + K) exp(−K)

g(θ)
dθ,

(27)

where g(θ) = 1+K +γE(θ). The above finite integrals can be
easily evaluated via numerical integration.

5.3. Average output SNR (ASNR) and
amount of fading (AoF)

The ASNR, γssc, is a useful performance measure serving as
an excellent indicator for the overall system fidelity and can
be obtained from the first-order moment of γssc as

γssc = μγssc (1). (28)
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Figure 1: Normalized average output SNR (ASNR) versus the
Ricean K-factor for several values of the correlation coefficient ρ.

The AoF, defined as AoF
Δ= var(γssc)/γ2ssc, is a unifiedmea-

sure of the severity of the fading channel [2] and gives an
insight to the performance of the entire system. It can be ex-
pressed in terms of first- and second-order moments of γssc
as

AoF = μγssc (2)

μγssc (1)2
− 1. (29)

6. PERFORMANCE EVALUATION RESULTS

Using the previous mathematical analysis, various perfor-
mance evaluation results have been obtained by means of
numerical techniques and will be presented in this section.
Such results include performances for the ASNR, AoF, Pout,
ABEP1, and C and will be presented for different Ricean
channel conditions, that is, different values for K and ρ, as
well as for various modulation schemes.

In Figures 1 and 2 the normalized ASNR (γssc/γ) and AoF
are plotted as functions of the RiceanK-factor for several val-
ues of the correlation coefficient ρ. These performance eval-
uation results have been obtained by numerically evaluating
(15)–(17), (28), and (29). The results presented in Figure 1

1 For the consistency of the presentation from now on instead of the ASEP
the ABEP performance will be used. As it is well known [2] for M-ary
(M > 2) modulation schemes, assuming Gray encoding, the ABEP can
be simply obtained from the ASEP as Pbe ∼= Pse/ log2M, since Es =
Eb log2M, where Eb denotes the transmitted average bit energy.
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Figure 2: Amount of fading (AoF) versus the Ricean K-factor for
several values of the correlation coefficient ρ.

show that as K increases, that is, the severity of the fading de-
creases, and/or ρ increases, the normalized ASNR decreases,
resulting in a reduced diversity gain. We note that similar ob-
servations have been made in [3, 30]. Furthermore, the re-
sults presented in Figure 2 indicate that asK increases and/or
ρ decreases, AoF is degraded.

Next the ABEP has been obtained using (23)–(27). In
Figures 3 and 4 the ABEP is plotted as a function of the av-
erage input SNR per bit, that is, γb = γ/ log2M, for several
values of K . Figure 3 considers the performance of DBPSK,
BPSK, and M-ary PSK signaling formats and ρ = 0.5. As
expected, when K increases, the ABEP improves and BPSK
exhibits the best performance. Figure 4 presents the ABEP
of 16-QAM for different values of ρ and K . For comparison
purposes, the performance of an equivalent single receiver,
that is, without diversity, is also included. Similar to the pre-
vious cases, it is observed that the ABEP improves as K in-
creases and/or ρ decreases, while significant overall perfor-
mance improvement, as compared to the no-diversity case,
is also noted.

In Figure 5, Pout is plotted as a function of the normalized
outage threshold per bit, γth/γb, for several values of K and
ρ. These performance results have been obtained by numer-
ically evaluating (10), (11), and (21) and for ρ = 0 they are
identical to the ones obtained by using [2, Equation 9.273].
It is observed that Pout decreases, that is, the outage perfor-
mance improves, as K increases and/or ρ decreases.

Finally, the normalized average CC can be obtained as
C̃ = C/BW (in b/s/Hz) by employing (19) and (20). In
Figure 6, C̃ is plotted as a function of γb for several values
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signaling formats, for different values of the Ricean K-factor.
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of ρ and for K = 1. These results illustrate that as ρ increases,
C̃ decreases, as expected [12], and the receiver without diver-
sity has always the worst performance.

7. CONCLUSIONS

In this paper, the performance of dual branch SSC diversity
receivers operating over correlated Ricean fading channels
has been studied. By deriving a convenient expression for
the bivariate Ricean PDF, analytical formulae for the most
important statistical metrics of the received signals and the
capacity of such receivers have been obtained. Capitalizing
on these formulas, useful expressions for a number of per-
formance criteria have been obtained, such as ABEP, Pout,
ASNR, AoF, and average CC. Various performance evalua-
tion results for different fading channel conditions have been
also presented and compared with equivalent performance
results of receivers without diversity.
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