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1. INTRODUCTION

Use of space-time codes with multiple transmit antennas has
generated a lot of interest for increasing spectral efficiency as
well as improved performance in wireless communications.
Although, the literature on space-time coding is quite rich
now, the orthogonal designs of Alamouti [1], Tarokh et al.
[2, 3], Naguib and Seshádri [4] remain popular. The strength
of orthogonal designs is that these lead to simple, optimal re-
ceiver structure due to the possibility of decoupled detection
along orthogonal dimensions of space and time.

Presence of a frequency offset between the transmitter
and receiver, which could arrive due to oscillator instabilities,
or relative motion between the two, however, has the poten-
tial to destroy this orthogonality and hence the optimality of
the corresponding receiver. Several authors have, therefore,
proposedmethods based on pilot symbol transmission [5] or
even blind methods [6] to estimate and compensate for the
frequency offset under different channel conditions. Never-
theless, some residual offset remains, which adversely affects
the code orthogonality and leads to increased symbol error
rate (SER).

The purpose of this paper is to analyze the effect of such a
residual frequency offset on performance of MIMO system.
More specifically, we obtain a general result for calculating
the SER in the presence of imperfect carrier offset knowl-
edge (COK) and compensation, and the resulting imperfect
CSI (due to imperfect COK and noise). The results of [7–12]

which deal with the cases of performance analysis of OSTBC
systems in the presence of imperfect CSI (due to noise alone)
follow as special cases of the analysis presented here.

The outline of the paper is as follows. Formulation of
the problem is accomplished in Section 2. Mean square er-
ror (MSE) in the channel estimates due to the residual offset
error (ROE) is obtained in Section 3. In Section 4, we dis-
cuss the decoding of OSTBC data. In Section 5, the prob-
ability of error analysis in the presence of imperfect offset
compensation is presented and we discuss the analytical and
simulation results in Section 6. Section 7, contains some con-
clusions and in the appendix we derive the total interference
power in the estimation of OSTBC data.

NOTATIONS

Throughout the paper we have used the following notations:
B is used for matrix, b is used for vector, b ∈ b or B, B and
b are used for variables, [·]H is used for hermitian of matrix
or vector, [·]T is used for transpose of matrix or vector,[I] is
used for identity matrix, and [·]∗ is used for conjugate ma-
trix or vector.

2. PROBLEM FORMULATION

2.1. Systemmodeling

Here for simplicity of analysis we restrict our attention to the
simpler case of a MISO system (i.e., one withm transmit and



2 EURASIP Journal on Wireless Communications and Networking

1

m

...

Tx

h1 ω0

...

hm
ω0

Rx

Figure 1: MISO system considered in the problem.

single receive antennas) shown in Figure 1, in which the fre-
quency offset between each of the transmitters and the re-
ceiver is the same, as will happen when the source of fre-
quency offset is primarily due to oscillator drift or platform
motion.

Here hk are channel gains between kth transmit antenna
and receive antenna and ω0 is the frequency offset. The re-
ceived data vector corresponding to one frame of transmitted
data in the presence of carrier offset is given by

y = Ω
(
ω0
)
Fh + e, (1)

where y = [y1y2 · · · yNt+N ]
T; Nt and N being the num-

ber of time intervals over which, respectively, pilot sym-
bols and unknown symbols are transmitted, F consists of
data formatting matrix [StS] corresponding to one frame;
St and S being the pilot symbol matrix and space-time ma-
trix, respectively, h = [h1 h2 · · · hm]T denotes the chan-
nel gain vector with statistically independent complex cir-
cular Gaussian components of variance σ2, and station-
ary over a frame duration, e is the AWGN noise vector
[e1e2 · · · eNt+N ]

T with a power density of N0/2 per dimen-
sion, andΩ(ω0) = diag{exp( jω0), exp( j2ω0), . . . , exp( j(Nt+
N)ω0)} denotes the carrier offset matrix.

2.2. Estimation of carrier offset and imperfect
compensation of the received data

Maximum likelihood (ML) estimation of transmitted data
requires the perfect knowledge of the carrier offset and the
channel. The offset can be estimated through the use of pilot
symbols [5], or using blind method [6]. However, a few pi-
lot symbols are almost always necessary, for estimation of the
channel gains. Considering all this, therefore, we use in our
analysis a generalized frame consisting of an orthogonal pilot
symbol matrix (typically proportional to the identity matrix)
and the STBC data matrix. In any case, the estimation of the
offset cannot be perfect due to the limitations over the data
rate, and delay and processing complexity. There could also
be additional constraint in the form of time varying nature
of the unknown channel. Thus, a residual offset error will al-
ways remain in the received data even after its compensation
based on its estimated value. This can be explained as follows:
if ω̂0 denotes the estimated value of the offset ω0, we have

ω̂0 = ω0 − Δω, (2)

where Δω is a residual offset error (ROE) the amount of
which depends upon the efficiency of the estimator. The
compensated received data vector will be

yc = Ω
(− ω̂0

)
y = Ω(Δω)Fh +Ω

(− ω̂0
)
e. (3)

It is reasonable to consider ROE to be normally dis-
tributed with zero mean and variance σ2ω. We have also as-
sumed that carrier offset and hence ROE remains constant
over a data frame. The problem of interest here is to analyt-
ically find the performance of the receiver in the presence of
ROE.

3. MEAN SQUARE ERROR IN THE ESTIMATION OF
CHANNEL GAINS IN THE PRESENCE OF RESIDUAL
OFFSET ERROR

Although it is possible to continue with the general case ofm
transmit antennas, the treatment and solution becomes cum-
bersome, especially since the details will also depend on the
specific OSTBC used. On the other hand, the principle be-
hind the analysis can be easily illustrated by considering the
special case of two transmit antennas, employing the famous
Alamouti code [1]. Suppose we transmit K orthogonal pilot
symbol blocks of 2× 2 size and L Alamouti code blocks over
a frame. One such frame is depicted in Figure 2, where x is a
pilot symbol of unit power and sr(k) represents the rth sym-
bol transmitted by the kth antenna and x, sr(k) ∈M-QAM.

The compensated received vector corresponding to K
training data blocks (denoted here by matrix P) can be ex-
pressed as

�
yc =

[
y1c y

2
c · · · y2Kc

]T

= Ω(Δω)2K×2KPh +Ω
(− ω̂0

)
2K×2Ke2K×1,

(4)

where Ω(Δω)2K×2K is the ROE matrix and Ω(−ω̂0)2K×2K is
compensating matrix, respectively, corresponding to K pilot
blocks, and e2K×1 is the noise in pilot data. It may be noted
that the last term in (4) can still be modeled as complex,
circular Gaussian and contains independent components. As
the receiver already has the information about P, we can find
the ML estimate of the channel gains as follows [2, 4]:

ĥ = 1
K|x|2P

H �yc . (5)

Substituting the value of
�
yc from (4) into (5), we get

ĥ = 1
K|x|2P

HΩ(Δω)2K×2KPh

+
1

K|x|2P
HΩ

(− ω̂0
)
2K×2Ke2K×1.

(6)

In the low mobility scenario where the carrier offset is
mainly because of the oscillator instabilities, its value is very
small and if sufficient training data is transmitted or an effi-
cient blind estimator is used, the variance σ2ω of ROE is gen-
erally very small (σ2ω � 1), thus we can comfortably use a
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Figure 2: Complete frame for two transmit antennas and single receive antenna case.

first order Taylor series approximation for exponential terms
inΩ(Δω)2K×2K as

exp( jNΔω) = 1 + jNΔω. (7)

After a simple manipulation, we can find the estimates of
channel gains as

ĥ =
[
h1
h2

]

+

[
jKΔωh1

j(1 + K)Δωh2

]

︸ ︷︷ ︸
error due to residual offset

+
1

K|x|2P
HΩ

(− ω̂0
)
2K×2Ke2K×1

︸ ︷︷ ︸
error due to noise

= h + Δh,

(8)

where Δh = [
jKΔωh1

j(1+K)Δωh2
] + (1/K|x|2)PHΩ(−ω̂0)2K×2Ke2K is

the total error in estimates. It is easy to see that there are
two distinct interfering terms in (8) due to ROE and AWGN
noise. In the previous work [7–12], the interference only due
to the AWGN noise is considered. However, here in (8) we
are also taking into account the effect of the interference due
to ROE. The mean square error (MSE) of channel estimate
in (8) can be found as follows:

MSE

= 1
2
Tr
{
Eh,Δω,e

{
ΔhΔhH

}}

= 1
2
Tr

{

Eh,Δω,e

{([
jKΔωh1

j(1 + K)Δωh2

]

+
1

K|x|2P
HΩ

(− ω̂0
)
2K×2Ke2K×1

)

·
([

jKΔωh1
j(1 + K)Δωh2

]

+
1

K|x|2P
HΩ

(− ω̂0
)
2K×2Ke2K×1

)H}}

.

(9)

Assuming, elements of h, Δω and elements of e are statis-
tically independent of each other, the expectation of cross

terms will be zero and the MSE would be simplified as
follows:

MSE

= 1
2
Tr

{

Eh,Δω

{([
jKΔωh1

j(1 + K)Δωh2

][
jKΔωh1

j(1 + K)Δωh2

]H )}

+ Ee

{(
1

K|x|2P
HΩ

(− ω̂0
)
2K×2Ke2K×1

)

·
(

1
K|x|2P

HΩ
(− ω̂0

)
2K×2Ke2K×1

)H}}

=
((

K2 + (1 + K)2
)

2

)

σ2ωσ
2 +

(
1
K

)(
N0

|x|2
)
.

(10)

This generalizes the results of mean square channel estima-
tion error in AWGN noise only [7, 8] to the case where there
is also a residual offset present in the data being used for
channel estimation. It is clear that the expression reduces to
that in [7, 8], when σ2ω = 0. Figure 3 depicts the results in a
graphical form for two pilot blocks. It is also satisfying to see
that the results match closely (except very large ROEs) those
based on experimental simulations. The effect of σ2ω is seen
to be very prominent as it introduces a floor in MSE value,
independent of SNR.

4. ESTIMATION OF OSTBC DATA

Next, we consider the compensated received data vector cor-
responding to the OSTBC part of the frame. Consider the lth
STBC (Alamouti) block, which can be written as [1]

z = [
y(2v−1)c

(
y2vc

)∗]T =
[
e j(2v−1)Δω 0

0 e− j2vΔω

]

Hs

+

[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

]
[
e2v−1 e∗2v

]T
,

(11)

where v = K + l, H = [ h1 h2
h∗2 −h∗1 ], and s = [s2l−1 s2l]T . If the

channel is known perfectly, then the ML estimation rule for
obtaining estimate of s is given as

ŝ = argmin‖r− ρs‖, (12)
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Figure 3: Analytical and experimental plots of MSE in the chan-
nel estimates for different values of ROE; σ2

ω = (2π/30)2, (2π/50)2,
(2π/100)2, (2π/250)2, (2π/1000)2, 0 from uppermost to downmost,
respectively.

where

ρ = HHH, r = HHz. (13)

In the presence of channel estimation errors, as discussed in
Section 3, the vector r will be equal to

r = H̃Hz = (H + ΔH)Hz, (14)

where ΔH = [ Δh1 Δh2
Δh∗2 −Δh∗1 ]. Substituting the value of z from

(11) into (14), we get

r = H̃H

([
e j(2v−1)Δω 0

0 e− j2vΔω

]

︸ ︷︷ ︸
I

Hs

+

[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

][
e(2v−1) e∗2v

]T
)

.

(15)

Applying Taylor series approximation for the exponential
term in the term (I) in (15), we will get

r = H̃HHs + H̃H

[
j(2v − 1)Δω 0

0 − j2vΔω

]

Hs

+ H̃H

[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

][
e2v−1 e∗2v

]T
.

(16)

From (14) and (16), r can be expressed as

r = ρs + ΔHHHs︸ ︷︷ ︸
interfering term (1)

+ H̃HHΩs︸ ︷︷ ︸
interfering term (2)

+ H̃H

[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

][
e(2v−1) e∗2v

]T

︸ ︷︷ ︸
interfering term (3)

,
(17)

where HΩ = [ j(2v−1)Δω 0
0 − j2vΔω ]H. Clearly, estimation of ŝ via

minimization of (12) would be affected by the interfering
terms (1)–(3) shown in (17). In the next section, we carry
out an SER analysis by first obtaining expression for the total
interference power and its subsequent effect on the signal-to-
interference ratio (SIR).

5. ERROR PROBABILITY ANALYSIS

In order to obtain an expression for the SIR, and hence for
the probability of error, we need to find the total interference
power in (17). To simplify the analysis, we restrict ourself to
those cases when ω0 is typically much smaller than the sym-
bol period and if a sufficiently efficient estimator like [5, 6] is
used for carrier offset estimation, Δω is also very less than the
symbol period. Under this restriction and assuming channel,
noise, training data and S-T data independent of each other
and of zeromean, the correlations between Δh and h,Δh and
Δω, and H̃ and HΩ, which mainly depend upon ω0 and Δω,
would be so small that these could be neglected. We make
use of this assumption in the following analysis for simplic-
ity, but without any loss of generality. In this case, the total
interference power in (17) is obtained in the appendix and
the average interfering power will be

Poweravg = 2Esσ2 MSE+2(2v − 1)2Esσ2ωσ
2(σ2 +MSE

)

+ 2
(
σ2 +MSE

)
N0.

(18)

Since the channel is modeled as complex Gaussian random
variable with variance σ2, hence E{∑m

i=1 |hi|2} = mσ2 and
the average SIR per channel will be

γ = Es
2 Poweravg

σ2

= Es
2
{
Esσ2 MSE+(2v−1)2Esσ2ωσ2

(
σ2+MSE

)
+
(
σ2+MSE

)
N0
}σ2,

(19)

where Es is signal power. If there is no carrier offset present,
that is, σ2ω=0, and channel variance is unity, that is, σ2=1, (19)
reduces into the following conventional form [7–12]:

γ = Es
2
{
EsMSE+N0 +N0 MSE

} . (20)

Hence, (19) is more general form of SIR than (20) and there-
fore, our analysis presents a comprehensive view of the be-
havior of STBC data in the presence of carrier offset. Further,
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the expression of exact probability of error forM-QAM data
received over J-independent flat fading Rayleigh channels, in
the terms of SIR, is suggested in [13] as

Pe = 4
(
1− 1√

M

)(
1− μc
2

)J J−1∑

l=0

(
J − 1 + l

l

)(
1 + μc
2

)J

− 4
(
1− 1√

M

)2

·
⎛

⎝1
4
− μc

π

⎛

⎝
[
π

2
− arctanμc

] J−1∑

l=0

(
2l
l

)

4
(
1 + gQAMγ

)l

− sin
(
arctanμc

) J−1∑

l=1

l∑

i=1

Til
(
1 + gQAMγ

)l

·[cos (arctanμc
)]2(l−i)+1

⎞

⎠

⎞

⎠ ,

(21)

where

μc =
√

gQAMγ

1 + gQAMγ
, gQAM = 3

2(M − 1)
,

Til =

(
2l
l

)

((
2(l − i)
(l − i)

)

4i
(
2(l − i) + 1

)
) .

(22)

Probability of error in the frame consisting of L blocks of OS-
TBC data will be

Pe = 1
L

L∑

i=1

(
Pe
)
i, (23)

where (Pe)i denote the error probability of ith OSTBC block.
As all the interference terms in (17) consist of Gaussian data
and have zero mean and diagonal covariance matrices (see
the appendix), we may assume without loss of generality that
all the interference terms are Gaussian distributed with zero
mean and certain diagonal covariance matrices.

6. ANALYTICAL AND SIMULATION RESULTS

The analytical and simulation results for a frame consisting
of two pilot blocks and three OSTBC blocks are shown in
Figures 4–6. All the simulations are performed with the 16-
QAM data. The average power transmitted in a time interval
is kept unity. TheMISO system of two transmit antennas and
a single receive antenna employs Alamouti code. The chan-
nel gains are assumed circular, complex Gaussian with unit
variance and stationary over one frame duration (flat fad-
ing). The analytical plots of SIR and probability of error are
plotted under the same conditions as those of experiments.

Figure 4 shows the effect of ROE on the average SIR per
channel with −30 dB MSE, in channel estimates. Here, we
have plotted (19) with different values of ROE. It is easy to
see that there is not much improvement in SIR with the in-
crease in SNR at large values of ROE, which is quite intu-
itive. Hence, our analytical formula of SIR presents a feasible
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Figure 4: Plot of average SIR per channel versus SNR for MSE =
−30 dB (graphs are plotted for σ2
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Figure 5: SER versus SNR plots for 16 QAM, with no MSE
(graphs are plotted for σ2

ω = (2π)2/10000, (2π)2/20000, (2π/200)2,
(2π/300)2, (2π/500)2, (2π/1000)2, 0 from uppermost to downmost,
resp.).

view of the behavior of OSTBC imperfect knowledge of car-
rier offset in MIMO channels.

Figures 5 and 6 show the analytical and experimental,
probability of error plots with different values of MSE in
channel estimates and with different values of ROE. It is very
much satisfying to see that the analytical results match closely
those based on experimental simulations for small value of
residual carrier offsets. However, for the large values of off-
set error, the analytical results do not follow the simulation
results very tightly because our assumption of uncorrelated-
ness between different quantities (Section 5) gets violated in
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Figure 6: SER versus SNR plots for 16 QAM, with MSE = −40 dB
(graphs are plotted for σ2

ω = (2π)2/20000, (2π)2/80000, (2π/500)2,
(2π/1000)2 from uppermost to down most, resp.).

such cases. Nevertheless, our analysis is still able to provide
an approximate picture of the behavior of the S-T data with
large residual offset errors.

7. CONCLUSIONS

We have performed a mathematical analysis of the behavior
of orthogonal space-time codes with imperfect carrier off-
set compensation in MIMO channels. We have considered
the effect of imperfect carrier offset knowledge over the esti-
mates of the channel gains and resulting probability of error
in the final decoding of OSTBC data. Our analysis also in-
cludes the effect of imperfect channel state information due
to AWGN noise, over the decoding of OSTBC data. Hence, it
presents a comprehensive view of the performance of OSTBC
with imperfect knowledge of small carrier offsets (in case of
small oscillator drifts or low mobility and an efficient offset
estimator) in flat fading MIMO channels with offsets. The
proposed analysis can also predict the approximate behavior
of S-T data with large carrier offsets (in case of high mobility
or highly unstable oscillators and an inefficient offset estima-
tor).

APPENDIX

A. DERIVATION OF TOTAL INTERFERENCE POWER IN
THE ESTIMATIONOF OSTBC DATA

We will find the expression of the total interference power in
(17) here. There are three interfering terms in (17). Initially,
we will calculate power of each term separately and finally we
will sum the power of all terms to find the total interference
power. Before proceeding to the power calculation, we can
also assume s being a vector of statistically independent sym-

bols, which are also independent of channel, carrier offset,
channel estimation error, and ROE.

A.1. Power of first interfering term

In view of the discussion of Section 5, we can write

E
{
ΔHHHs

} = E
{
ΔHH

}
E{H}E{s} = 0, (A.1)

implying that the first term has zero mean. Further, it can
be shown that E{ssH} = (Es/2)[I], E{HHH} = 2σ2[I] and
E{ΔHHΔH} = 2(MSE)[I], where [I] is identity matrix of
2 × 2. In view of the uncorrelatedness assumption of ΔH,
H and s, and using the results of [14], the covariance matrix
associated with this term can be found as follows:

E
{(
ΔHHHs

)(
ΔHHHs

)H}=E{ΔHH
[
E
{
H
(
E
{
ssH

})
HH

}]
ΔH

}

=2Esσ2(MSE)

[
1 0
0 1

]

.

(A.2)

A.2. Power of second interfering term

The mean of the second interfering term, as per the discus-
sion of Section 5, will be

E
{
H̃HHΩs

} = E
{
H̃H

}
E
{
HΩ

}
E{s} = 0, (A.3)

implying that the second term also has zero mean. Further,
it can be shown that E{HΩHH

Ω} ∼= 2(2v − 1)2σ2ωσ
2[I] and

E{H̃HH̃} = 2(σ2 +MSE)[I]. In view of the uncorrelatedness
assumption of H̃,HΩ and s, and using the results of [14], the
covariance matrix associated with this term can be found as
follows:

E
{(
H̃HHΩs

)(
H̃HHΩs

)H}

= E
{
H̃H

[
E
{
HΩ

(
E
{
ssH

})
HH

Ω

}]
H̃
}

= 2(2v − 1)2Esσ2ωσ
2(σ2 +MSE

)
[
1 0
0 1

]

.

(A.4)

A.3. Power of third interfering term

Assuming e, H̃ and ω̂0 being statistically independent of each
other, the mean of the third interfering term will be

E

{

H̃H

[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

]
[
e(2v−1) e∗2v

]T
}

= E
{
H̃H

}
E

{[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

]}

E
{[

e(2v−1) e∗2v
]T} = 0,

(A.5)

implying that the third term also has zero mean. Further, it
can be shown that

E

{[
e(2v−1)
e∗2v

]
[
e∗(2v−1) e2v

]
}

= N0[I],

E

{[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

][
e− j(2v−1)ω̂0 0

0 e j2vω̂0

]}

= [I].

(A.6)
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Using the results of [14], the covariance matrix can be found
as follows:

E

⎧
⎨

⎩

(

H̃H

[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

]
[
e(2v−1) e∗2v

]T
)

×
(

H̃H

[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

][
e(2v−1) e∗2v

]T
)H

⎫
⎬

⎭

= E

{

H̃H

[

E

{[
e j(2v−1)ω̂0 0

0 e− j2vω̂0

]

×
(

E

{[
e(2v−1)
e∗2v

]
[
e∗(2v−1) e2v

]
})

×
[
e− j(2v−1)ω̂0 0

0 e j2vω̂0

] } ]

H̃

}

= 2
(
σ2 +MSE

)
N0

[
1 0
0 1

]

.

(A.7)

Apparently, all interfering terms are distributed identi-
cally with zero mean and their covariance matrices are pro-
portional to the identity matrix. Further, we note that the
power in the three terms can be simply added, since, these
can be shown to be mutually uncorrelated. Hence, the total
interfering power will be

Powertot = 2Esσ2 MSE

[
1 0
0 1

]

+ 2(2v − 1)2Esσ2ωσ
2(σ2 +MSE

)
[
1 0
0 1

]

+ 2
(
σ2 +MSE

)
N0

[
1 0
0 1

]

.

(A.8)
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