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We address a fundamental problem in wireless sensor networks, how many hops does it take a packet to be relayed for a given
distance? For a deterministic topology, this hop-distance estimation reduces to a simple geometry problem. However, a statisti-
cal study is needed for randomly deployed WSNs. We propose a maximum-likelihood decision based on the conditional pdf of
f (r | Hi). Due to the computational complexity of f (r | Hi), we also propose an attenuated Gaussian approximation for the
conditional pdf. We show that the approximation visibly simplifies the decision process and the error analysis. The latency and
energy consumption estimation are also included as application examples. Simulations show that our approximation model can
predict the latency and energy consumption with less than half RMSE, compared to the linear models.
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1. INTRODUCTION

The recent advances inMEMS, embedded systems, and wire-
less communications enable the realization and deployment
of wireless sensor networks (WSN), which consist of a large
number of densely deployed and self-organized sensor nodes
[1]. The potential applications of WSN, such as environment
monitor, often emphasize the importance of location infor-
mation. Fortunately, with the advance of localization tech-
nologies, such location information can be accurately esti-
mated [2–5]. Accordingly, geographic routing [6–8] was pro-
posed to route packets not to a specific node, but to a given
location. An interesting question arises as “how many hops
does it take to reach a given location?” The prediction of the
number of hops, that is, hop-distance estimation, is impor-
tant not only in itself, but also in helping, estimate the latency
and energy consumption, which are both important to the
viability of WSN.

The question could become very simple if the sensor
nodes are manually placed. However, if sensor nodes are de-
ployed in a random fashion, the answer is beyond the reach
of simple geometry. The stochastic nature of the random de-
ployment calls for a statistical study.

The relation between the Euclidean distance and network
distance (in terms of the number of hops), also referred to
as hop-distance relation, catches a lot of research interest re-

cently. In [9], Huang et al. defined the Γ-compactness of a
geometric graph G(V ,E) to be the minimum ratio of the Eu-
clidean distance to the network distance,

γ = min
i, j∈V

d(i, j)
h(i, j)

, (1)

where d(i, j) and h(i, j) are the Euclidean distance and net-
work distance between nodes i and j, respectively. The con-
stant value γ is a good lower bound, but might not be enough
to describe the nonlinear relation between Euclidean distance
and network distance. In fact, their relation is often treated as
linear for convenience, for example, [r/R] + 1 is widely used
to estimate the needed number of hops to reach distance r
given transmission range R. Against this simple intuition, the
relation between Euclidean distance and network distance is
far more complex. Fortunately, a lot of probabilistic stud-
ies have been applied to this question. In [10], Hou and Li
studied the 2D Poisson distribution to find an optimal trans-
mission range. They found that the hop-distance distribu-
tion is determined not only by node density and transmission
range, but also by the routing strategy. They showed results
for three routing strategies, most forward with fixed radius,
nearest with forward progress, and most forward with vari-
able radius. Cheng and Robertazzi in [11] studied the one-
dimensional Poisson point and found the pdf of r given the
number of hops. They also pointed out that the 2D Poisson
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point distribution is analogous to the 1D case, replacing the
length of the segment by the area of the range. Vural and
Ekici reexamined the study under the sensor networks cir-
cumstances in [12], and gave the mean and variance of mul-
tihop distance for 1D Poisson point distribution. They also
proposed to approximate the multihop distance using Gaus-
sian distribution. Zorzi and Rao derive the mean number of
hops of the minimal hop-count route through simulations
and analytic bounds in [8]. Chandler [13] derives an expres-
sion for t-hop outage probability for 2D Poisson node distri-
bution. However, Mukherjee and Avidor [14] argue that one
of Chandler’s assumptions is relaxed, and thus his expression
is in fact a lower bound on the desired probability. Using
the same assumption, they also derive the pdf of the mini-
mal number of hops for a given distance in a fading envi-
ronment. Although these analytic results are available in the
literature, their monstrous computational complexity limits
their applications. Therefore, we try to approximate the hop-
distance relation and simplify the decision process and error
analysis in this paper. Considering the application of resource
allocation, only large-scale path loss is considered, and thus
the fading is ignored.

The rest of this paper is organized as follows. The num-
ber of hops prediction problem is addressed and solved in
Section 2. Since this problem has no closed-form solution,
we propose an attenuated Gaussian approximation and show
how to simplify the error analysis in Section 2.1. Application
examples are shown in Section 3. Section 4 concludes this pa-
per.

2. ESTIMATIONOF NETWORK DISTANCE BASEDON
EUCLIDEAN DISTANCE

Suppose the sensor nodes are placed on a plane at random,
and N(A), the number of nodes in a given area A, follows
two-dimensional Poisson distribution with average density
λ. The problem of interest is to find the number of hops
needed to reach a distance r away. We can make a maximum-
likelihood (ML) decision,

̂H = argmax f
(

r | Hn
)

, n = 1, 2, 3, . . . , (2)

where the eventHn can be described as “the minimum num-
ber of hops is n from the source to the specific node at Eu-
clidean distance r.” In the following discussion, we are trying
to approximate f (r | Hn) for 2D Poisson distribution. Note
that r < R implies H1, that is, the specific node is within one
hop from the source. We are more interested in multiple-hop
distance relation, especially when n is moderately large.

2.1. Attenuated Gaussian approximation

Since f (r | Hi) is awkward to evaluate even using numeri-
cal methods, we use histograms collected from Monte Carlo
simulations as substitute to the joint pdf. All the simulation
data are collected from a scenario whereN sensor nodes were
uniformly distributed in a circular region of radius of RBound

meters. For convenience, polar coordinates were used. The
source node was placed at (0, 0). The transmission range was

Table 1: Statistics of f (r | Hi).

Number of hops Mean STD Skewness Kurtosis

1 19.991 7.0651 −0.57471 −0.58389
2 45.132 7.8365 −0.16958 −1.0763
3 72.01 8.2129 −0.10761 −1.0332
4 99.45 8.391 −0.07938 −0.97857
5 127.14 8.5323 −0.06445 −0.93104
6 154.96 8.6147 −0.05341 −0.9004
7 182.68 8.573 −0.07738 −0.91687
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Figure 1: Histograms of hop-distance joint distribution (N = 1000,
RBound = 200, R = 30).

set as Rmeters. For each setting of (N ,RBound,R), we ran 300
simulations, in each of which all nodes are redeployed at ran-
dom. We ran simulations for extensive settings of node den-
sity λ and transmission range R. Due to space constraints,
only the histograms for (N = 1000,RBound = 200, R =
30) are plotted in Figure 1, which approximately shows that
f (r | Hi) approaches the normal when Hi increases. Table 1
lists the first-, second-, third-, and fourth-order statistics of
f (H , r).

Skewness is a third-order statistic used to measure of
symmetry, or more precisely, the lack of symmetry. Skewness
is zero for a symmetric distribution and positive skewness in-
dicates right skewness while negatives indicates left skewness.

Definition 1 (see [15]). For a given sample set X ,

m3 = Σ(X − X)3

n
,

m2 = Σ(X − X)2

n
,

(3)

where X is the sample mean of X , and n is the size of X . Then
a sample estimate of skewness coefficient is given by

g1 = m3

m3/2
2

. (4)
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Figure 2: The histogram versus postulated distribution for end-to-end distances for given number of hops: (a) three hop; (b) four hop; (c)
five hop; (d) six hop.

Kurtosis is a fourth-order statistic indicating whether the
data are peaked or flat relative to a normal distribution.

Definition 2 (see [15]). A sample estimate of kurtosis for a
sample set X is given by

g2 = m4

m2
2
− 3, (5)

where m4 = Σ(X − X)4/n is the fourth-order moment of X
about its mean.

Skewness and kurtosis are useful in determining whether
a sample set is normal. Note that the skewness and kurtosis
of a normal distribution are both zero; significant skewness
and kurtosis clearly indicate that data are not normal. Table 1
clearly shows that the skewness and kurtosis satisfy the Gaus-
sianity condition within tolerance of error. Furthermore, The
postulated distribution and histogram are drawn together in

Figures 2(a), 2(b), 2(c), and 2(d), which clearly shows a close
match for each case. Also, note that f (r | Hn) attenuates ex-
ponentially with n increase, we need to introduce an attenu-
ation factor to model this behavior.

Thus, the objective function can be approximated by

f
(

r | Hn
) = αnN

(

mn, σn
) = αn

2πσ
e−(r−mn)2/2σ2n , (6)

where α is the equivalent attenuation base, mn and σn are
the mean and standard deviation (STD), respectively. Since
f (r | Hn) attenuates with n increasing, αmust be less than 1.
The specific values of these parameters can be estimated from
simulations or computed numerically from the exact pdfs.
Our extensive simulations show that even for only moder-
ately large Hi, f (r | Hi) has the following properties.

(1) σn ≈ σn−1, which means that the neighboring joint
pdfs have similar spread.
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Figure 3: Gaussian approximation.

(2) mn − mn−1 ≈ mn+1 − mn, which means that the joint
pdfs are evenly spaced.

(3) 3 < (mn −mn−1)/σn < 5, which means the overlap be-
tween the neighboring joint pdfs is small but not neg-
ligible. (As a rule of thumbs, Q(3) is considered rela-
tively small and Q(5) is regarded negligible.)

(4) (mn −mn−2)/σn � 5, which means the overlap be-
tween the nonneighboring joint pdfs is negligible.

(5) α < 1. For large density λ, α → 1. Along with prop-
erty (1), this tell us that the neighboring joint pdfs have
nearly identical shape.

As shown in the following discussion, these properties largely
simplify the decision rule and the error analysis. Another in-
teresting observation, besides these properties, is that the fol-
lowing equations do not stand true,

mn = nm1,

mn = nR,

mn = (n− 1)R + R/2.

(7)

Although these equations sound plausible, they all give vis-
ible errors. The aforementioned estimator [r/R] + 1 for Hi,
though widely used, is not good in the new light shed by this
study.

2.2. Decision boundaries

Following (2), and observing the f (r | Hi) in Figure 3, the
decision is needed only between neighboring Hi, that is,

f
(

r | Hn
)

n
≷
n+1

f
(

r | Hn+1
)

. (8)

This is because, for a specific value of r, there are only two
values of Hi with dominating f (r | Hi), compared to which
f (r | Hi) for other values of Hi is negligible. Substituting
(6) into (8), we obtain the decision boundary dn between the
regions Hn and Hn+1,

dn = B +
√
B2 + AC

A
,

A = σ2n+1 − σ2n ,

B = mnσ
2
n+1 −mn+1σ

2
n ,

C = m2
nσ

2
n+1 −m2

n+1σ
2
n + 2σ2nσ

2
n+1 lnα.

(9)

Using property (1),

dn = m2
n+1 −m2

n − 2σ2n lnα
2
(

mn+1 −mn
) . (10)

For large density λ, property (5) is applicable, (9) simplifies
to

dn = σ2nmn+1 + σ2n+1mn

σ2n + σ2n+1
. (11)

Applying property (1) to (11),

dn = mn +mn+1

2
. (12)

No matter which approximate solution we choose for dn, the
decision rule is given by

r
n+1
≷
n

dn. (13)

In other words,

we decide n̂ if dn̂−1 < r ≤ dn̂. (14)

2.3. Error performance analysis

For our decision rule, a decision error occurs only when the
required number of hops is n, but our decision n̂ /=n. Thus,
the probability of error for a specific r is

p(ε | r) =
∑

n /=n̂
f
(

Hn | r
)

, (15)

where f (H | r) is related to f (r | Hi) by the Bayesian rule.
The total probability of error is obtained by integrating (15)
over all possible r,

p(ε) =
∫

p(ε | r) fr(r)dr. (16)

According to property (4), only f (r | H = n − 1) and f (r |
H = n + 1) could have outstanding value over the decision
region [dn−1,dn],

p(ε)≈
∞
∑

n=2

∫ dn

dn−1
f
(

r | Hn−1
)

p
(

Hn−1
)

+ f
(

r | Hn+1
)

p
(

Hn+1
)

dr

=
∞
∑

n=2
αn−1p

(

Hn−1
)

[

Q
(

dn−1−mn−1
σn−1

)

−Q
(

dn −mn−1
σn−1

)]

+αn+1p
(

Hn+1
)

[

Q
(

mn+1−dn
σn+1

)

−Q
(

mn+1−dn−1
σn+1

)]

.

(17)
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Note that

dn −mn−1
σn−1

− dn−1 −mn−1
σn−1

= dn − dn−1
σn−1

� 1, (18)

therefore, Q((dn − mn−1)/σn−1) is negligible compared to
Q((dn−1 − mn−1)/σn−1). Similarly, Q((mn+1 − dn)/σn+1) is
negligible. Equation (17) is approximated by

p(ε) ≈ α3p
(

H3
)

Q
(

m3 − d2
σ3

)

+
∞
∑

n=3

[

αn−1p
(

Hn−1
)

Q
(

dn−1 −mn−1
σn−1

)

+ αn+1p
(

Hn+1
)

Q
(

mn+1 − dn
σn+1

)]

= α2p
(

H2
)

Q
(

d2 −m2

σ2

)

+
∞
∑

n=3
αnp

(

Hn
)

[

Q
(

mn − dn−1
σn

)

+Q
(

dn −mn

σn

)]

.

(19)

Substituting an appropriate solution of dn into (19) would
give us the probability of error within required accuracy. For
example, if we choose (12),

p(ε) ≈ α2p
(

H2
)

Q
(

m3 −m2

2σ2

)

+
∞
∑

n=3
αnp

(

Hn
)

[

Q
(

mn −mn−1
2σn

)

+Q
(

mn+1 −mn

2σn

)]

.

(20)

Thanks to the Gaussian approximation, the error probabil-
ity is given in forms of Q functions, which is tremendously
simpler than the derivation from the original pdfs. This er-
ror process is general and applicable to other estimators. For
example, even when we have to use a linear estimator due
to limit of computation capacity, we can still use the above
process to obtain the corresponding error probability.

3. APPLICATION EXAMPLES

We provide two application examples, latency and energy es-
timation, in this section. To emphasize the role of the num-
ber of hops in the estimation, we use general time and energy
models. On how to derive the parameters such as Trx,Ttx for
a specific routing scheme, readers are referred to [16, 17].

3.1. Latency estimation

We use a simple time model, in which the latency increases
linearly with the number of hops [18]. Suppose it takes Trx,
Ttx for a sensor node to process 1 bit of incoming and out-
going messages, respectively, and Tpr is the required time to
transmit 1 bit of message through a band-limited channel.
Therefore, the latency introduced for each hop is

Thop = Ttx + Tpr + Trx. (21)

mTrx mTtx
· · ·

Tpr

Figure 4: Time model.

Table 2: Energy consumption parameters

Name Value

r0 86.2m

Eelec 50 nJ/bit

EDA 5 nJ/bit

ε f s 10 pJ/bit/m2

εmp 0.0013 pJ/bit/m4

As shown in Figure 4, given the end-to-end distance r, we can
find the required number of hops n̂ according to (13), thus,
a good estimator of the total latency of an l-bit message is

ln̂Thop. (22)

3.2. Energy consumption estimation

The following model is adopted from [19] where perfect
power control is assumed. To transmit l bits over distance
r, the sender’s radio expends

Etx(l, r) =
⎧

⎨

⎩

lEelec + lε f sr2, r < d0,

lEelec + lεmpr4, r ≥ d0,
(23)

and the receiver’s radio expends

Erx(l, r) = lEelec. (24)

Eelec is the unit energy consumed by the electronics to pro-
cess one bit of message, ε f s and εmp are the amplifier factor
for free-space and multipath models, respectively, and d0 is
the reference distance to determine which model to use. In
fact, the first branch of (23) assumes a free-space propaga-
tion and the second branch uses a path-loss exponent of 4.
The values of these communication energy parameters are
set as in Table 2.

Let sn denote the single-hop distance from the (n− 1)th-
hop to the nth-hop. Obviously, sn ≤ R. In our experimental
setting, R = 30m < d0 so that the free-space model is al-
ways used. This agrees well with most applications, in which
multihop short-range transmission is preferred to avoid the
exponential increase in energy consumption for long-range
transmission. Naturally, the end-to-end energy consumption
for sending l bit over distance r is given by

Etotal(l, r) =
n̂
∑

1

{

Etx
(

l, r1
)

+ Erx(l)
}

, (25)
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Figure 5: Estimation average: (a) latency; (b) energy consumption.

where n̂ is the estimated number of hops for given r and r1
is the single-hop distance because the message is relayed hop
by hop.

On the average,

Etotal(l, r) = n̂l
(

Eelec + ε f sE
[

r21
]

+ Eelec
)

= n̂l
(

2Eelec + ε f s
(

m2
1 + σ21

))

.
(26)

3.3. Simulation

We used the same scenario described in Section 2.1 and var-
ied the node density λ and transmission range R. In each sim-
ulation, the number of hops is estimated for each node using
(11) and (13), and then the latency and energy consumption
are estimated using (22) and (26), respectively. As compar-
ison to our proposed statistic-based estimator, we choose a
widely used linear estimator,

linear estimator 1 n̂ =
[

r

R

]

+ 1,

linear estimator 2 n̂ =
[

r

R

]

+ 2,
(27)

where r is the given distance, R, the transmission range, and
[r/R] is the maximum integer less than r/R. We plot the av-
erage of latency and energy consumption in Figures 5(a) and
5(b) and the RMSE in Figures 6(a) and 6(b), respectively. The
latency is plotted in units of Thop while the energy consump-
tion in units of joules. The ripple shape of RMSE is due to the
fact that decision errors occur more often in the overlapping
zones of neighboring f (r | Hi). Figure 5 shows that the linear

estimator 1 performs well at the shorter range but suffers vis-
ibly at larger range, while the linear estimator does the oppo-
site. The linear estimators, nomatter what value their param-
eters take, may significantly underestimate or overestimate
the latency and energy consumption as already pointed out
in Section 2.1, while our statistic-based model keeps close to
the actual latency and energy consumption at all ranges ex-
cept for the border. This is also verified by Figure 6, which
also shows that our model can reduce RMSE to at least half
for both latency and energy consumption. These results show
that linear models cannot identify network behavior accu-
rately, as also confirmed by our extensive simulations for dif-
ferent settings of node density and transmission range, which
is not shown here due to space constraints.

4. CONCLUSION

To address the fundamental problem “how many hops does
it take for a packet to be relayed for a given distance,” we
make both probabilistic and statistical studies. We proposed
a Bayesian decision based on the conditional pdf of f (r | Hi).
Since f (r | Hi) is computationally complex, we also pro-
posed an attenuated Gaussian approximation for the condi-
tional pdf, which visibly simplifies the decision process and
the error analysis. This error analysis based on Gaussian ap-
proximation is also applicable to other estimators, includ-
ing the linear ones. We also show that several linear mod-
els, though intuitively sound and widely used, may give sig-
nificant bias error. Given as application examples, our ap-
proximation is also applied in the latency and energy con-
sumption estimation in dense WSN. Simulations show that
our approximation model can predict the latency and energy
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Figure 6: Estimation RMSE: (a) latency; (b) energy consumption.

consumption with less than half RMSE, compared to the
aforementioned linear models.
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