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We concentrate on an ad hoc network model with nodes on integer lattice points over a 2D plane. We examine the limits of ad hoc
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network size. In the second case, we consider a more practical system where each node can form a fixed number of beams of finite
beamwidth. Our results show that the spatial multiplexing gains depend on the system size, antenna beamwidth, and number of
antenna beams. Furthermore, we show that spatial multiplexing gains offsetting the interference-related performance degradation
can be achieved in ad hoc networks with thousands of nodes.
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1. INTRODUCTION

The application of multiple antennas at both the transmit-
ter and receiver sides of a wireless system for the purpose
of spatial multiplexing (simply put, spatial multiplexing in
this context means making use of multiple paths distinct in
physical space to deliver information from a source to the
corresponding destination) [1, 2] has been shown to have
the potential of achieving extraordinary bit rates. As a re-
sult, this topic has received significant study recently [3-10].
The issues of MAC/routing protocol design for ad hoc net-
works utilizing multiple antennas were also studied in [11-
17]. It should be noted that antenna arrays can implement
directional processing and beamforming in addition to spa-
tial multiplexing. When these approaches are suitably com-
bined, good network performance is achieved. However, the
majority of research has focused on point-to-point commu-
nications. Here we study spatial multiplexing at the network
level. Further, we assume the antenna arrays used for the spa-
tial multiplexing will also be used for beamforming.

We will study the uniform throughput capacity, or sim-
ply uniform throughput, which we define as the minimum
long-term average rate at which every node in the network
can transmit to its corresponding destination. The through-
put in wireless ad hoc networks is inherently limited by in-

terference since the nodes have to use the common wireless
channel in order to transmit different information. The use
of multiple directed beams and spatial multiplexing cannot
completely eliminate the interference but, as we will see, can
greatly alleviate it, even if a small number of beams at every
node is used.

Previous results [18] have shown poor performance for
large ad hoc networks without spatial multiplexing. In this
paper, we will show that spatial multiplexing provides large
gains in throughput for small networks, and that while these
gains shrink for larger networks, there are still spatial multi-
plexing gains in networks with thousands of nodes.

In this paper, we consider a network consisting of #n nodes
located on a square grid with periodic boundary conditions.
We begin by examining a simpler case of infinitely narrow
beamwidth where every beam is just a zero-width ray with
the origin at the transmitting node. We find that in this
case, the uniform throughput is upper bounded by Wg/2,
where W is the rate of point-to-point transmission along
a single beam, and g is the number of beams each trans-
mitter can form. Furthermore, we show that, under reason-
able assumptions, the uniform throughput of Wg/2 can be
achieved regardless of the network size (and the distance be-
tween sources and destinations). Next, we consider the case
of a finite angular beamwidth D where the beams are infinite
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FIGURE 1: A node with 4 transmitting beams of angular width D.

two-dimensional cones with vertices at the transmitter. We
show that in this case the uniform throughput is bounded
from above by a quantity, that is proportional to Wg, and

for larger network sizes, proportional to I/ \/n, where I is
the average of the longest g hops possible from a given node
without interference. Moreover, a fixed fraction of this upper
bound can be shown to be achievable. The result is that, al-
though the degradation of performance due to interference is
still present for the finite beamwidth case, the spatial multi-
plexing allows one to “postpone” the throughput from falling
below W (which is what the throughput would be for just a
single source-destination pair) until fairly large network sizes
(thousands of nodes for beamwidth of about 10 degrees and
no more than 10 beams) which makes practically large net-
work sizes entirely feasible.

The directional antenna assumptions used in this paper
are consistent with accepted results [19] that imply that an-
tenna arrays (smart antennas) can be used to form beams in
n different directions if at least # antennas are available in an
array. Further, by proper spacing of the antennas and by em-
ploying more antennas, these beams can be made more nar-
row. Therefore, the number of antennas limits the number of
directional beams that each node may employ.

The rest of the paper is organized as follows. In Section 2,
we formulate the model used in the paper. Section 3 is de-
voted to evaluating the uniform throughput for both cases of
infinitely narrow beamwidth and finite beamwidth. Section 4
contains conclusions.

2. SYSTEM DESCRIPTION

In this paper, we evaluate the uniform throughput among
n = m? nodes with each node located at a unique integer
point of the lattice Q(m) = {(a,b) la,b = 1,2,...,m} cov-
ering an m-by-m square region with periodic boundary con-
ditions (a torus).! We measure all the distances below in L;

! That is, as the coordinates are to be understood “module m.” More pre-
cisely, the nodes with coordinates (x + m, y) are identified with nodes
with coordinates (x,y) for y = 1,2,...,m + 1 and nodes with coor-
dinates (x,m + y) are identified with nodes with coordinates (x, y) for
x=12,....,m+1.

metric (“Manhattan distance”) in units of lattice space, un-
less noted otherwise.

We assume that each transceiver node is equipped with
an antenna array that can produce g antenna beams, each
with angular width D (see Figure 1) such that gD < 27.
Node-to-node transmissions on the torus are allowed only
in the “shorter” direction, that is, the largest horizontal and
vertical transmitting distance allowed by the model is [ m/2].
The latter requirement is used to imitate a real system with
boundaries while disregarding boundary effects where they
can lead to unwanted complications.

A transmission from node i to node j along a beam b,
I=1,2,...,g, is assumed to be successful if?

(1) node j lies inside the beam b},

(2) node j does not lie inside any other beam bf‘, closer to
the node k than the intended receiver.

If a transmission along a given beam is successful, the cor-
responding transmission rate is assumed to be equal to W.
We assume that if a node-to-node transmission is success-
ful, exactly one packet is transmitted.> We use the full-duplex
assumption: a node can both transmit and receive up to g
packets simultaneously from different directions (along dif-
ferent beams). Thus the maximum number of packets that a
node can simultaneously handle* (either transmit or receive)
is equal to 2g.

Finally, we make the following assumption about the rel-
ative position of sources and destinations.

Assumption 1. We assume each source and destination are
separated by a distance m/2 lattice spaces in the horizontal
and vertical directions (and thus are separated by a distance
of m in L metric).

This assumption is used to simplify calculations, and by
removing the “randomness” from them, make it possible to
obtain quantitative results for networks of finite size as op-
posed to asymptotic results valid only in the limit n— 0.

In the following, we measure the throughput in units of
W. Thus in order to obtain the throughput in conventional
units of bits/s, all the following results should be multiplied
by w.

3. THROUGHPUT WITH SPATIAL MULTIPLEXING

In this section, we explore the uniform throughput for the
model described above.

2 This reception success model can be justified by assuming that nodes ex-
ercise power control so that the received powers are all the same.

3 Thus all packets are assumed to be of size W t, where 8t is the time slot
length.

4 Note that, this is just an assumption made for the sake of convenience.
For a real system that cannot simultaneously transmit and receive due to
interference, the schedule described later in the paper can easily be modi-
fied so that each node’s transmissions and receptions are separated in time
(done in different time slots) and the overall capacity will simply pick up
a factor of 1/2 compared to the results in this paper.
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3.1. General bounds on throughput of ad hoc
networks with spatial multiplexing

The uniform throughput of any network can be upper
bounded on the basis of just the number of successful trans-
missions per time slot and the average number of node-
to-node hops necessary to complete a source-to-destination
transmission. Assume that any successful node-to-node
transmission happens at a rate of W. Let s be the expected
number of distinct successful transmissions per node in a
time slot for the given transmission scheme. Also, let h;, be
the number of hops it takes to completely reach the destina-
tion from the source node i when using the path® a. Define
h; = min 4h;, to be the length of the shortest path between
node i and its destination. Finally, let i = (1/n)>. ! | h; be the
mean hop count of the shortest source-to-destination path
taken over all nodes in the network. Then a simple upper
bound on the uniform throughput can be obtained.

Theorem 1. For any transmission scheme, the uniform
throughput per node, T, satisfies the inequality

T < % (1)

Proof. Let us consider a large number T of time slots. Then
the total number of successful node-to-node transmissions
over these T time slots is

Np = snT. (2)

On the other hand, in order to obtain a throughput of at least
T for the source node i, one would need at least 7 h; T suc-
cessful node-to-node transmissions. Therefore, in order to
obtain a throughput of at least 7 for all n sources, the cor-
responding count of successful node-to-node transmissions
has to be at least

hi = nThT. (3)

-

NI =TT
1

1

It is clear then that we must have Nr{ < Nr, which implies,
using (2) and (3), that

T

IA

S| »

(4)
O

In the following, we will be interested in transmission
schemes which allow for all nodes to successfully transmit
using all available beams in every time slot,® that is, schemes
for which s = g. Consider a given node i. Let V; be the set of
nodes such that if j € V;, then g nonoverlapping beams b},
I=1,2,...,g, originating at node i can be arranged in such
a way that

> We need the path index since for multiple antenna systems it may be pos-
sible to simultaneously transmit information to the same destination us-
ing different node-to-node transmission paths.

© It is easy to show, using geometric arguments, that such schemes yield the
highest possible throughput.

(i) je bf for some value of [;
(ii) if k € b for k#J, then r;; < ry (where r;j is the Eu-
clidean distance between nodes i and j).

We will call nodes in V; visible without interference, or vwi, to
node i.

Let L; be the distance between the source i and its desti-
nation. Also let i1, lip, ..., lijy, be the distances from node i
to nodes in the set V; ordered so that I;; > I, > - - - [jy,.

Let f; = (1/g)2§:1 li; be the mean of the g largest distances

lij, and let I = (1/n)> ?:17; be the mean of the quantities 7,,-.
Then one can show that the uniform throughput 7 can be
upper bounded as follows. (Here L = > 1" | L;.)

Theorem 2. The uniform throughput T satisfies the inequality

-8l
T <= 5
i (5)
Proof. Consider a long time period (measured in time slots)
T. During this time, in order to have a throughput of 7 for
all sources, the total information transport (i.e., information
transmitted over distance, measured in bit - m) of

Cr=nJLT (6)

would be needed.

On the other hand, let us compute the largest informa-
tion transport that can be achieved during the same time 7.
If in every time slot every node uses all its beams for success-
ful transmission (thus transmitting to vwi nodes only), the
largest information transport would be

n £
Cr = (Z > l,,-)T =ngl T. (7)
i=1 j=1

Since Cr < Cr, we see from (6) and (7) that

T =<

(8)
O

N

Let us now explore the achievability of these upper
bounds. Let Assumption 1 hold. In addition, let us assume
that there exists a transmission scheme A such that

(i) every node in the network successfully transmits r
packets every time slot;

(ii) each path from a source to the corresponding destina-
tion is at most fimax hops long;

(iii) the paths from each source to destination are the same
(relative to the source and the corresponding destina-
tion) for every source node;

(iv) every node uses the same directions (hops) for its
transmissions in every time slot.

Then we can make the following claim.

Theorem 3. The uniform throughput achieved by the trans-
mission scheme A satisfies the inequality

r

T >

)

hmax
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F1GURE 2: Numerical evaluation of |Q(w, m)|/|Q(m)].

Proof. Due to symmetry between nodes (i.e., ensured by As-
sumption 1), the total number of source-destination paths
passing through every node is the same. The total number
of such paths is equal to rn, and the total number of links
in them is at most r#nhmax . So, the number of paths passing
through every node is at most rhmax . Since every node can
send and receive r packets in every time slot, there exists a
schedule in which a node serves every path passing through it
at least once in Ay, time slots. This means that every source
node can send its own packets at least once in hy, time slots
using all r beams. By the definition of throughput, this im-
plies that every source node can have a throughput of at least
7/hmax » which proves the theorem. O

3.2. Infinitely narrow beamwidth

Let us first consider the case of infinitely narrow beamwidth,
that is, D = 0. In this case, the beams are just straight lines.
Given m and an arbitrary point w € Q(m), let Q(w,m) be
the set of lattice points in Q(m) that are vwi to w. If the
beamwidth is infinitely small, a node is vwi to another node
as long as no other nodes lie on the line segment between
them. It is shown in [20] that, for a square (with boundaries)
lattice, regardless of w,

a=lim —————F—— = ~ 0.6079. (10)

|Qw,m)| _ 6
m=e | Q(m)| 2

This value can be thought of as the asymptotic fraction of
nodes that are vwi to an arbitrary node on the grid. In the
case of a torus, the number of nodes (lattice sites) that are
vwi to a given node is obviously the same regardless of the
lattice site w. In fact, it is easy to see that for the network on
an m X m torus, | V;| = max,|Q(w, m)|, and therefore,

Vil _ 6

W T T .

Figure 2 shows the minimum and maximum values for
the quantity Q(w, m)/Q(m) for the square grid (with bound-
aries). We see that for a torus the ratio |V;|/m? always stays
above the limiting ratio 6/72.

The following proposition shows that any node on the
torus can communicate with any other node’ in at most two

hops.

Proposition 1. Any node i can communicate with any other
node j in two hops so that node-to-node transmissions are be-
tween vwi nodes.

Proof. In order to prove the proposition, we only need to
show that the intersection of sets V; and V; is nonempty for
any pair of nodes i and j.

Using the set-theoretic equality

(Vivvi[ = [Vil+|V;| = [VinV;[,  (12)

we can write
[Vin V| = [ Vil +|V;] = [Viu V] (13)
Since |V; U V;| < nand | V;| = |V;| = an, we conclude that
|[VinV;| = Qa—1)n>0, (14)
which proves the lemma. O

We can now state the upper bound on the throughput of
a lattice ad hoc network with infinitely narrow beamwidth.

Theorem 4. The uniform throughput T for an ad hoc network
on a square lattice with g beams of zero width for each node
satisfies the inequality

T <= 15
£ (15)
Proof. We use Theorem 1. In that theorem, s < g, and, in
order to take advantage of the spatial multiplexing, one needs

at least 2 hops. So /1 > 2, which proves the theorem. O

As to the achievability of the upper bound, it could in
principle depend on the location of sources and destinations.
If, as we assumed, they all are separated by a distance of m/2
in both vertical and horizontal directions, then a transmis-
sion strategy employing 2 hops for all g paths from every
source to destination can be used. Then, as is easy to see, a
throughput of exactly g/2 for all source-destination pairs can
be achieved whenever | V; N V)| = g (where d(i) stands for
the destination of the source 7). In other words, the necessary
and sufficient condition for the achievability of throughput
g/2 is the existence of at least g nodes that are vwi to both the
source and the destination. Any g of these nodes can be used
as relays. Thus we have the following theorem.

7 In any real network, a tradeoff between the hop length and the error rate
(and therefore throughput) would be present. Within the approximation
adopted here we neglect these issues understanding that they would have
to be considered in order to obtain practically applicable results.
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Theorem 5. For the lattice ad hoc network with the source-

destination locations described in Assumption 1, the uniform (H = v|-1,v)
throughput of g/2 is achievable provided | Vi N V)| = g. /‘_‘(ﬁ )

On the other hand, from Lemma 1, we know that |V; n
Vil = 2(a — 1)n for any pair of nodes i and j. It fol-
lows that the conditions of Theorem 5 are satisfied as long
as (2a — 1)n = g. Noting also that, since the source-to-
destination relative locations are the same for all source-
destination pairs, all relay nodes will get the same number
of packets to forward, we have the following corollary.

Corollary 1. The uniform throughput of g/2 is achievable pro-
vided 2a — 1)n = g.

3.3. Finite beamwidth

Now, let the beamwidth be D > 0. As we will see, in this
case the number of nodes that are vwi to a given node will
not grow with the network size. Instead, it will be dependent
on the beamwidth, resulting in the need for multiple hops in
order to reach the destination.

The following theorem establishes a connection between
the beamwidth D and the maximum distance H to a vwi
node.

Theorem 6. The maximum beamwidth D that can be used to
transmit without interference to a node a distance H away is

A 1
D = arctan (m) (16)

and the maximum distance for a transmission without interfer-
ence given a beamwidth D is

PAI=2+[ ! J, (17)

tan D

forany H = 3 and D < 90°.

Proof. Equation (16) can easily be seen to be correct for H <
4 by a straightforward enumeration of possibilities. In the
following, we consider the case H = 5.

First, we show that D < arctan (1/H — 2) for any vwi
node at a distance H from the source. Let the source i be at
the origin. Due to lattice symmetry, it is sufficient to only
consider vwi nodes with coordinates (H — v,v) where v <
(H — 1/2) (the node with coordinates (H/2, H/2) cannot be
vwi unles H = 2). We consider cases v < H/3 and v > H/3
separately. O

Casel <v < H/3

For the node (H—v, v) to be vwi, the corresponding beam has
to “clear” the nodes with coordinates (H — v —1,v) and (H —
v—2,v—1). Let u, and uj, be vectors with these coordinates,
respectively (see Figure 3). Let us denote the angle between
these vectors by 6. Also let 8y = arctan (1/H — 2). Thus we

e R

v—1)

(0,0% 6,

1

FiGuRre 3: In order for the node (H — v,v) to be vwi to the source
at the origin, the corresponding beam has to “clear” nodes (H — v —
1,v)and (H — v —2,v — 1). In this figure, H = 10 and v = 3 so that
v < H/3.

need to show that 8; < 0. Using the standard vector algebra,
we see that

((H—v—1)(H—v—2)+1/(v—1))2

2 _
05" (0) = (v S ) ((H v -2 (v - 1)
(18)
On the other hand, for the angle 6, we have
20y = =2
cos*(6y) = H_2°+1 (19)
Subtracting, we obtain
cos?(6y) — cos?(6,)
_ di(v)
(H=2)*+1)(H-v-1+v)(H-v=2)"+(v—1)%)’
(20)

where

dy(v) = —v(v — 1)((V— (H— %))2 - i) @1)

We see that dy(v) < 0 forv < H — 2 and v > 1. This implies
that cos?(0y) — cos?(61) < 0 in this range of v. We conclude
that 8; < 0, for all values of v not exceeding H/3.

CaseH/3<v < (H—-1/2)

In this case for the node (H — v, v) to be vwi to the source at
the origin, the corresponding beam has to “clear” the nodes

(H-v—-2,v—1)and (H —v — 1,v — 1). Again, let up and
u, be vectors with these respective coordinates (see Figure 4).

Let 0, be the angle between these vectors. The use of standard
vector algebra yields

cos? (6,)

(H=v-1)H-v-2)+@-1?3°
(H-v-1+0v-D)H(H-v-2+(v-1)?%)"
(22)
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FI1GURE 4: In order for the node (H — v,v) to be vwi to the source
at the origin, the corresponding beam has to “clear” nodes (H — v —
2,v—1)and (H — v — 1,v — 1). In this figure, H = 11 and v = 4 so
that v > H/3.

Subtracting cos?(6,) from cos?(6y), we obtain

cos?(8y) — cos*(6,)

_ dz(V) 5
(H=-2*+D)(H-v-10*+v-D)(H-v-2+w-1?
(23)
where
dz(V)

= —(H?—4H +5)(H?> - 2Hv - 3H+ 2V + v+ 3)°

+ (H=-2)X((v=1)*+H-v-1))((v=1)*+(H-v-2)%).
(24)

The second derivative of d,(v) is

H—1/2>2
+

H? - 6H + 15/2)
2 .

& (v) = —48((\/ - =

(25)

It is easy to see that d5' (v) < 0 everywhere as long as H > 5.
This implies that the first derivative d;(v) is monotonously
decreasing everywhere and has one real root vy. Setting v =
H — 1/2 and evaluating the first derivative, we obtain d5(H —
1/2) = H> —6H?+11H — 6 > 0, for H > 3. This implies that
vo > H—1/2 and, therefore, d5(v) > 0, forv < H—1/2. Hence,
d»(v) is an increasing function for the whole interval H/3 <
v < H—1/2. On the other hand, by setting v = H —1/2 in the
expression for d,(v) we obtain d,(H — 1/2) = 0. Therefore,
we conclude that d,(v) < 0 for H/3 < v < H — 1/2 which
means that, on this interval, 8, < 6y, and the inequality D <
arctan (1/H — 2) is valid for H > 5.

Moreover, if we consider the node (H — v — 1, 1), we can
easily see that this node is vwi for D = arctan (1/H — 2),
meaning that the bound D < arctan (1/H —2) is tight.

Finally, it follows directly from (16) that if the beamwidth
D is given, then the maximum hop length H to a vwi node
can be found as

ﬁ:2+[ta;DJ' (26)

FiGURE 5: Envelope of nodes vwi to a source for finite beamwidth.
Only the nodes inside the envelope can be vwi to the node in the
origin.
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F1GURE 6: The dependence of the number of vwi nodes on the dis-
tance from the source and the beamwidth.

Theorem 6 described the largest L; distance for which a
node is vwi to a source for a given beamwidth. It was also
found that this maximum distance is achieved by a node
whose position is one lattice point above the horizontal (v =
1). Numerical evaluation shows that for larger beamwidths,
almost all the nodes within a certain distance can be vwi. As
the beamwidth is decreased, the nodes along the horizontal
and vertical directions can be vwi disproportionately more.
Therefore, for larger beamwidths, the envelope of vwi nodes
looks like a diamond, and as the beamwidth decreases, the
envelope becomes more and more cross-like in appearance
(see Figure 5). Some nodes within this envelope cannot be
vwi since some nodes may directly block other nodes. For
example, a node at lattice point (1,1) cannot “see” a node
at lattice point (3, 3) since a node at (2,2) is blocking it. We
found the total number of nodes vwi to a source node for var-
ious distances and for various beamwidths (Figure 6), using
numerical evaluation.
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Upper bound

Before stating the upper bound on the uniform throughput,
let us define Sp.x as the number of nodes that are vwi to a
given node. This number depends on the beamwidth only.
Let «’ be an upper bound?® on the fraction of nodes that are
vwi for a given node in the zero beamwidth case.

Lemma 1. In terms of the maximum hop size,
Smax = 20/ H(H +1). (27)

Proof. For a system with nodes on a grid, it is obvious that

the maximum number of nodes within a distance H can be
found by counting the nodes within two squares of sides H

and H + 1 surrounding the source. This is shown in Figure 7
foran H = 5. The total number of nodes within these squares
is (H + 1)2 +H? =202 +2H +1. Removing the source node
itself from the count results in a total of 2H? + 2H nodes
within a distance H. Multiplying by the maximum fraction

of nodes which are vwi «’ yields the statement of the lemma.
O

We can now obtain an upper bound on the throughput.

Theorem 7. The uniform throughput T satisfies the inequality

T < min{— —,%,— } (28)

Proof. We know from Theorem 1 that 7 < s/h, where h is
the average length of the shortest source-to-destination path
(measured in hops). It is clear that s < min {g, Smax, & n}.
Also, for any transmission scheme, h > max {2, \/E/Ifl } (the
latter is because the distance between sources and destina-
tions is equal to m, and the longest possible hop is equal to
i ). Noting that \/ﬁ/ﬁ > 2 implies a’n > Spax, we obtain the
statement of the theorem. O

8 We can set, for example, ' = 0.72 which is valid for m > 5 (see Figure 2).

In case \/E/Ifl > 2, that is, when it takes more than two
hops to reach the destination from the corresponding source,
the upper bound of Theorem 7 can be further tightened.

Theorem 8. If \/n/H > 2, the uniform throughput can be up-
per bounded as

T < min{’\g/—lﬁ, sril/a%l } (29)

Proof. It follows from Theorem 2 by noting that all source-
destination distances are equal to m = /i, and therefore L =

Ji. O

Achievability

Let us assume, without loss of generality,” that g < Spax
and ¢ < a’'n. Under these assumptions, the upper bounds
of Theorems 7 and 8 take the form

- -gi}
T smm{z,ﬁ. (30)

Let us consider the two cases separately.

Casel /\n<1/2

Consider the following transmission scheme.

Transmission Scheme 1

In this transmission scheme, the node-to-node transmissions
are always to vwi nodes. The g successful transmissions from
each node are possible in every time slot. Let us denote the
possible hops to vwi nodes by the corresponding length in
horizontal and vertical directions. Thus, if a transmission to
a vwi node can be made in which a packet moves by k lat-
tice space in horizontal direction and by [ lattice space in the
vertical direction, we denote such hop by (k,[). Because of
system symmetry (no boundaries), all nodes have the same
vwi hops available to them. Due to lattice symmetry, for ev-
ery (k,I) vwi hop there is sgn(lk)(, k) vwi hop.!° Let us as-
sume, for additional simplicity, that the number of beam g is
divisible!! by 4.

Let (ky, 1), (I, k1), . . . 5 (kg/25 lg2) be g hops listed from the
largest value of the hop length [k| + || in a nonincreasing
order. Our goal is to construct g paths from a source to the
corresponding destination in such a way that

(1) each node in the network is able to transmit to g vwi
nodes in every time slot;

(2) each node uses the same g hops in a given time slot—
this ensures that every node receives exactly g trans-
missions.

® The other cases can be considered in an analogous way.
10 For example, the availability of (H — 1, —1) hop to a vwi node implies that
the hop (1, —(ﬁ — 1)) also leads to a vwi node.
'L If this is not so, corresponding modifications can easily be made.
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FiGgure 8: All packets will arrive in the diagonal nodes within the
center H x H square, 4;.

It is easy to see that in order to satisfy the first condition
above, it is sufficient to demand that

(i) the first hop directions of all g paths are different;

(ii) each hop direction has a unique predecessor: a hop
(ki I;) can only follow a hop (kj, ;) for a unique value

].
Phase |

We can satisfy these demands by constructing paths from
pairs of directions. Namely, Let path 1 consist of hops
(ki,11) and sgn(kil)(l;, k) following each other: P, =
{(kl, ll), sgn(klll)(ll, kl), (kl, 11), e } Path 2 will consist of
the same hops with odd and even hops exchanged: P, =
{Sgl’l(klll )(ll, k] ), (kl, l] ), Sgl‘l(kl l1 )(l], k1 ), . } Paths 3 and
4 are constructed in the same way from hops (kz,;) and
sgn(k,l,) (L, ky) and so on.

It is easy to see that the paths constructed in the above
way generically will not necessarily end up exactly at the des-
tination. On the other hand, since each packet will move by
m < H lattice spaces in both horizontal and vertical direc-
tions after any two successive hops, it will eventually arrive
at one of diagonal nodes within the A’ x H’ square'? sur-
rounding the destination. We denote such a square around a
destination node i by 4; (see Figure 8).

It remains to complete the paths Py, P,,...,P, so that
they end up exactly at the destination. We should also do
it while maintaining the property of unique predecessor.
In order to make this possible, we have to find a different
(i.e., using different hops) continuation for every path P;,
j = 1,2,...,8. As we see from the above paths P;, different

12 Here H' is equal to H if H is odd and to H + 1 if H is even.

FIGURE 9: Sets S and “shifted” S(3).

values of j may end up at different diagonal nodes within the
square 4;. Because of the symmetry between the four quad-
rants, it is sufficient to find distinct continuations of paths
Pi,..., Py

Let us introduce some additional notation.

(i) If Vi and V; are sets of notes that are vwi to nodes i and
j»> respectively. We will denote by V;; the set of nodes
that are vwi to both nodes i and j, or V;; = V;n V.

(ii) If S is any set of nodes (lattice sites), we will denote
by S(I) the set of nodes that is obtained by shifting the
nodes in the set S by [ lattice spaces in both horizontal
and vertical directions (see Figure 9).

(iii) We also introduce special notation for the diagonal
nodes within the square §;. We denote by i) the diag-
onal node in the “left-bottom corner” of 4;, by zAz the
next diagonal node in the direction of d(i), and so on
(see Figure 8).

As mentioned previously, Phase I of Transmission
Scheme 1 ends with packets arriving at diagonal nodes of
square 4§;. Suppose the total number of such packets wait-
ing at nodes fl, ?2,. .. s ny, ny,. .., respectively. We would like
to find whether it is possible to find distinct 2 hop paths
for all these packets to d(i). Consider the following algo-
rithm.

Algorithm 1. (1) Let ky, ka, . .., k, be values of the index | such
that n; > 0.

(2) If ng, > \ngld(i) |, stop. Finding the required path con-
tinuations is impossible.

(3) Otherwise, choose a set of nodes S\ < Vi ) so that
IS(I')| = ny, and |V12d(i) \ (sﬁ” U S(ll)(kz — k1))| is maximized.

1,

(4) If mi, > V3 g \ (S U 81 (ky — k1)), stop. Finding

1,
the required path continuations is impossible.



Eugene Perevalov et al.

TaBLE 1: Cardinalities of sets V;[ i) for D =25°,D =15°,D = 10°,
and D = 5°, respectively.

Node Cardinality
h 1 D =25°
i 8
i 2 D=15
1 18
i 24
i 39 D = 10°
i 24
i 52
i 42
i 64 D_s
iy 50
s 89
is 54

; 13 ¢ld) -~
(5) Otherwise, choose sets of nodes'> S;" < V; 4 and

(i) (1) (i)
83" € Vi aw so that [$\7] = nk, 1S7°] = ng, and [V; g6\

(S U 8 (ky — k1) U S U S (ks — ky)) | is maximized.

(6) Continue in the same way until either the required path
continuations are found or declared to be impossible to find.
In the former case the output of the algorithm will include sets

SO, 8¢

The cardinalities of sets Viati for different values of D are
shown in Table 1.

Thus we arrive at the second phase of source-to-
destination transmission.

Phase Il

Forward the packets waiting at node ?k,- ,j=1,2,...,r, tothe
destination via two hops: from ?1(] to one of the nodes in the

set S§’) and from that node to the destination.

We can now state the achievability result. Let [y, be
the smallest L; hop length used in Phase I of Transmission
Scheme 1.

Theorem 9. The uniform throughput of at least g/| \/n/Imin |+
2 is achievable provided g < | V;| and g path continuations can
be found using Algorithm 1.

Proof. The proof follows directly from Theorem 3 where we
set ¥ = g and hmax = |/%/Inin | + 2. It only remains to
be noted that in order to make the overall transmission
strategy (Transmission Scheme 1) satisfy the conditions of
Theorem 3, we need to synchronize Phase I and Phase II.
Namely, out of every | \/#/lnin | + 2 time slots, | \/#/Inin | are

13 Note that the set S(li) chosen at this step may be different from S(li) chosen
at the previous step.

dedicated to all nodes performing Phase I and 2 time slots to
all nodes performing Phase II. O

For some specific values of g and D we can actually es-
tablish the feasibility of Algorithm 1 and make more specific
claims. For example, if g = 8, it is easy to see from Table 1
that finding the required path continuations are possible for
any D < 10°. A brief consideration of the worst case scenario
also shows that this is true for g = 16 as well. For larger val-
ues of g closer inspection would be needed. We can formulate
these observations as a corollary. Let H=2+|1/tan D] as
shown in Theorem 6.

Corollary 2. The uniform throughput of at least g/(| /n/H | +
2) for g < 8 and D < 25° is achievable.

Casel /\/n>1/2

In this case, the inequality gH/./n > 1/2 holds as well, and,
therefore, the source for every destination is located within
the corresponding square 4§;. As we have already seen, two-
hop transmission is possible under these conditions. We have
the following theorem.

Theorem 10. The uniform throughput of at least g/2 is achiev-
able provided Viqi) = g.

3.4. Numerical results

The upper and lower bounds on uniform throughput per
node for a system with beamwidth 25, 15, 10, and 5 degrees
were numerically computed. The number of beams is set to
g = 8. The throughput is measured in terms of W. Each
beam is capable of sending W bits of data per second. The
results are shown in Figures 10, 11, 12, and 13.

These figures also show the size of the network required
to bring the throughput per node down to one W, where
there is no longer any spatial multiplexing gain. The results
show that the network can be very large (thousands of nodes
even for 10 degree beamwidth) before this occurs. There-
fore, using spatial multiplexing with directional antennas, ad
hoc networking can be implemented in practical sized sys-
tems without experiencing performance degradation (com-
pared with the individual link rate) even for fairly wide
beamwidths.

4. CONCLUSION AND DISCUSSION

We analyzed the throughput of ad hoc networks with nodes
located on a square lattice with periodic boundary condi-
tions. For the case of infinitely narrow beamwidth, we found
that a uniform throughput proportional to the maximum
number of beams a node can form and independent of the
system size is achievable.

We also showed large gains (compared to systems with-
out spatial multiplexing) for a practical system with a
small number of antennas and a finite practically achievable
beamwidth. These gains have been shown to offset the in-
terference effect on throughput up to network sizes in the
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FiGure 10: Throughput 7 versus n (upper and lower bounds) for
beamwidth of 25 degrees.

3.5

1.5

=

—

\

400 800 1200 1600 2000

n

——

FiGure 11: Throughput 7 versus n (upper and lower bounds) for
beamwidth of 15 degrees.

thousands thus making network of such sizes effectively un-
affected by interference-related throughput degradation.
Our results demonstrate that there is a strong incentive
to design and deploy ad hoc networks with good directional
antenna or beamforming capability in order to improve ca-
pacity or simplify the communication protocol design.
Obviously, one of the limitations of the proposed analy-
sis approach is the assumption that the nodes are located on
a regular square grid. While this assumption makes the anal-
ysis tractable, it does not fully reflect the topology of the ma-
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FiGurg 12: Throughput 7 versus n (upper and lower bounds) for
beamwidth of 10 degrees.
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FiGure 13: Throughput 7 versus n (upper and lower bounds) for
beamwidth of 5 degrees.

jority of real networks. While the full consideration of more
realistic models goes well beyond the scope of this paper, we
will attempt to sketch an argument showing that the main
results would likely not change much under a more realistic
model.

The main result of the paper depends on the ability to
simultaneously transmit along g beams over long distances
(longer than the typical internode distance). To consider a
different, perhaps more realistic model, let us assume that the
nodes are placed randomly with a unit density inside a circle
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Source

F1GURE 14: The sector of area r>D/2 has to contain no nodes for the
node j at a distance r from the source to be vwi to the latter.

(or square) of area n?. The probability that a node at a dis-
tance r from a source is vwi to it can be approximately cal-
culated (using the two-dimensional Poisson distribution) as
e ""D/2 (see Figure 14). The total number of nodes at a dis-
tance r from the source can be approximately calculated as
27r (since the node density is unity). Therefore, the number
of nodes at a distance r from the source that are vwi to it can
be estimated as 27zre " P/2,

So for g = 8, one should be able to find 8 relays at a
distance r =~ 6 from the source for D = 5°. For D = 10°,
one should be able to find 8 relays at a distance of r ~ 3,
and for D = 15°, 8 relay nodes can be found at a distance
of r = 2. We see that these distances are roughly 2 times
smaller than those found in this paper for the square grid
model. This would result in the “efficient” network size (the
size for which the throughput is no less than W) roughly 4
times smaller. Or, equivalently, the throughput for the same
network size would be roughly 2 times smaller than the one
found in this paper. It is also fairly easy to see that the total
number of vwi nodes for both models is about the same for
the same value of D, but the regular grid model has an ad-
vantage in the largest hop distance because of the presence of
“preferred” directions along the grid’s main axes. Also note
that the real-life networks may well have such directions (i.e.,
along major streets in urban networks) and this would most
likely lead to values of the achievable throughput between
those found in this paper and those that can be obtained via
a careful analysis of a random node placement model.
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