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Call admission control (CAC) is important for cellular wireless networks to provide quality-of-service (QoS) requirements to
users. Static and adaptive CAC schemes, respectively, make unrealistic assumptions about the distributions of the handoff call
arrival process and the number of users in a cell. Handoff arrivals are usually assumed to follow Poisson process in static CAC
schemes for Poisson new call arrivals and exponentially distributed call holding and cell residence times. We use a simple proof to
show that this assumption of Poisson handoff arrival process is not justified for a two-cell wireless network. In general, we find that
the handoff process can be captured by a two-dimensional Markov chain. We propose a novel adaptive CAC scheme for the two-
cell system which accepts a new call if it can guarantee, with a certain probability, that a user’s call will be maintained irrespective of
its (his/her) movement in the system. Then, we extend this adaptive scheme for multiple-cell network. We develop another variant
of this adaptive scheme which we call fractional adaptive scheme. Both the adaptive and fractional adaptive schemes are found to
outperform the guard channel scheme in controlling the handoff failure probability in a cellular wireless network.

Copyright © 2008 M. Rahman and A. S. Alfa. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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1. INTRODUCTION

Call admission control (CAC) is a strategy to provide high
QoS to users by limiting the number of call connections
into a communication network, to a profitable level, while
reducing network congestion, depending on the availability
of resources. In cellular wireless networks, another factor
comes into play, the possibility of dropping a connected
call due to the mobility of users. It is more irritating for
a user’s call not to be completed due to handoff failure
than the call to be blocked during the new call attempt.
Therefore, handoff calls are prioritized over new calls. It
has been found that prioritizing handoff calls over new calls
results in the decrease of the number of handoff failures
and the call dropping probabilities. However, prioritizing
handoff calls over new calls results in the increase of the new
call blocking probability. A good CAC scheme for a wireless
cellular network has to balance the call blocking and the
call dropping probabilities in order to provide the desired
QoS requirements. The design of CAC algorithms for mobile
cellular wireless networks is especially challenging given the
limited and highly variable resources, and the mobility of
users encountered in such networks.

CAC schemes for cellular wireless networks have been
extensively studied in the literature. Those studies can be
broadly classified into two categories—static schemes and
distributed schemes. In the literature, static CAC schemes,
which are mainly guard channel schemes, are generally stud-
ied for a single cell [1–4]. On the other hand, in distributed
CAC schemes [5–9], which are also called adaptive CAC
schemes, a call is accepted in the target cell depending on the
number of calls in the target cell and the number of calls in
the neighboring cells. Ahmed [10] and Ghaderi and Boutaba
[11] provided comprehensive surveys on static and adaptive
CAC schemes.

In the guard channel schemes, a call is accepted in a
cell if the number of ongoing calls in the cell is below a
threshold value. In these schemes, the interarrival times of
new and handoff calls are generally assumed to be distributed
according to exponential, hyper-exponential, gamma, phase
type, or Markovian arrival process (MAP) functions. Hong
and Rappaport [2] analyzed a guard channel scheme by
approximating the channel holding time distribution with
an equivalent exponential distribution for uniformly dis-
tributed velocity for mobile users which is not quite realistic.
Ramjee et al. [4] proposed fractional guard channel scheme
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(FGCS), where a new call is accepted in a cell with a
particular probability depending on the number of calls in
the cell. Leong et al. [3, 12] analyzed integration of voice
and data calls for fractional guard channel scheme with
bandwidth allocation and update of the number of guard
channels with traffic variation. The approximation of higher-
dimensional Markov chains to lower-dimensional Markov
chains in [3, 12] may cause inaccuracy. Alfa and Li [1, 13]
studied guard channel schemes where new and handoff calls
are assumed to follow MAP distribution and cell residence
times, and call holding durations are assumed to follow
phase type distribution. However, their models [1, 13] are
computationally demanding and actually intractable using
reasonable computing resources as they keep track of the
phase of the channel holding time of each call which makes
the state-space large. Chou and Shin [14] developed and
analyzed a cutoff priority scheme for supporting multilevel
QoS by introducing upgrade/degrade frequency (UDF).
UDF is generated based on approximation using a discrete
time absorbing Markov chain which could be exactly deter-
mined using a continuous time absorbing Markov chain.
Chen et al. [15] proposed dynamic multiple thresholds for
new/handoff real-time and nonreal-time calls with periodic
exchange of information between neighboring base-stations
for providing relative QoS priority. The thresholds in [15] are
computed assuming fixed numbers of arrivals and departures
in a period of time which has no justification. In some of
the guard channel schemes such as schemes of Guerin [16],
Lau and Maric [17], Hong and Rappaport [2], Lin et al. [18],
Li and Alfa [19], Tekinay and Jabbari [20], Yoon and Un
[21], and Haung et al. [22], calls queue when they cannot be
allocated free channels, which reduces new call blocking and
handoff dropping probabilities. Gavish and Sridhar [23] and
Fang and Zhang [24] analyzed the new call bounding scheme
which accepts a new call if the number of ongoing new calls
is below some threshold value and there is a free channel in
the cell.

Naghshineh and Schwartz [8] developed a distributed
scheme for only voice calls whereas Mišić et al. [7], Epstein
and Schwartz [25], and Ghaderi and Boutaba [5] developed
distributed schemes for multiple classes of calls. In these
schemes, a new call is accepted in a cell after determining the
probabilities of successful handoff of calls in the current and
the neighboring cells in some time ahead. The binomially
distributed number of ongoing calls in a cell is approximated
with normal distribution in [5, 8, 25] and Poisson distri-
bution in [7]. The approximation of binomial distribution
by normal distribution may cause inaccuracy as normal
distribution has negative tail. The approximation of the
binomial distribution by Poisson distribution is unrealistic
when the mean and variance of the binomial distribution
differ more than ten percent. In the scheme of Levine et al.
[6], new calls are admitted in a cell by computing the
influence of the ongoing calls in the current and neighboring
cells using shadow cluster concept which is complex. In
[5, 9], time is divided into control periods. In the scheme of
Wu et al. [9], new calls are accepted in a control period with
some probability which is computed by solving a diffusion
equation. Calls accepted in a control period with some

probability in the schemes of Ghaderi and Boutaba [5] and
Wu et al. [9] can result in under utilization of the channels in
a cell.

In static CAC schemes, a cell is studied to approximate
the whole cellular network. In static schemes, a new call is
admitted in the target cell depending only on the number
of calls in that cell. On the other hand, in distributed CAC
schemes, the numbers of calls in the target cell and the
neighboring cells are considered for accepting a new call in
the target cell. In this paper, we first study a cellular system
which consists of two cells. We study the two-cell wireless
network to understand how the two-cell system works with
the goal in mind to use the results in approximating a cellular
network consisting of more than two cells.

In static CAC schemes, exponentially distributed handoff
interarrival time is usually assumed for exponentially dis-
tributed call holding duration and cell residence time. How-
ever, Chlebus and Ludwin [26], Rajaratnam and Takawira
[27], Sohraby [28], Sidi and Starobinski [29], and Hegde
and Sohraby [30] showed non-Poisson handoff arrivals for
Poisson new call arrival and exponentially distributed cell
residence time and call holding duration due to blocking.
Hegde and Sohraby [30] analyzed blocking probability using
single and multidimensional Markov chains for single and
multiple cells. Their emphasis was on one and two cells
as the computations become complex for larger number of
cells. Their model, which captured handoff rate to a cell
for multiple cells by cell residence time and the number of
ongoing calls in the neighboring cells, was used to analyze
blocking probability for bursty traffic. We also use a two-
cell model like Hegde and Sohraby [30] but our focus is
to develop models for call acceptance based on handoff
guarantees. Fang [31] analyzed handoff arrival process and
channel holding time for general distributed cell residence
time and call holding duration but could not provide
analytical expressions for new and handoff call blocking
probabilities. On the other hand, we use a simple proof
to show that the assumption of exponentially distributed
handoff call interarrival time is unrealistic for the case when
interarrival time for new calls, call holding duration, and
cell residence time all follow exponential distribution. We
demonstrate that the handoff call interarrival time does not
follow exponential or hyperexponential distribution even if
new call interarrival time, call holding duration, and cell
residence time are exponentially distributed. In general, we
find that the handoff arrival process is better captured by
a two-dimensional Markov chain. We consider how the
number of ongoing calls in the neighboring cell affects
a cell in the two-cell system which is not considered for
guard channel scheme in the literature. In our CAC scheme,
handoff calls are accepted whenever a handoff call arrives,
and there is at least one free channel. On the other hand,
when a new call arrives we get the probability of dropping
the call in the neighboring cell if we predict that it needs
to handoff based on a table which is computed offline. We
admit a new call in our scheme if this probability is not
more than some threshold value. In other words, our scheme
accepts a new call in a cell if a guarantee can be provided with
some probability that the call will be successfully handed
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off if it moves to the neighboring cell. We carry out the
transient analysis for our proposed two-cell system using
matrix geometric method [32] to compute the probability
of dropping the candidate call in the neighboring cell if the
candidate call needs to handoff in the neighboring cell. These
dropping probabilities are computed for different number
of ongoing calls in the current cell and the neighboring
cell. These values of handoff drop probabilities for candidate
call in the neighboring cell are stored in a table. Using
simulation study, we determine the thresholds for accepting
a new call for exponentially distributed new call interarrival
time, call holding, and cell residence times to provide the
required QoS of handoff failure probabilities. Our method
is designed for offline computation since our schemes
are mainly suitable for designing call admission controller
whereas other distributed schemes can be considered as
operational schemes as they use online computation. Our
CAC algorithm needs to look up a table for the handoff
dropping probability of a candidate call being dropped
for unavailability of a free channel in the neighboring cell
if the candidate call is accepted. Checking the table, the
CAC algorithm can decide about the acceptance of the call.
We find that our adaptive CAC scheme for the two-cell
system better controls the admission of new calls by keeping
lower the new call blocking probability and better channel
utilization than the guard channel scheme for maintaining
the handoff call dropping probability below some threshold
value.

We extend our adaptive CAC scheme for two-cell wireless
network to a cellular wireless network consisting of multiple
cells. We approximate the neighbors of the target cell with
one cell and the target cell as another cell for the two-cell
system. We find that this approximation better controls the
handoff call dropping probability than the guard channel
scheme. We develop another variant of this adaptive scheme
which we call fractional adaptive scheme for a cellular
wireless network consisting of more than two cells. Our
schemes for a multiple-cell wireless network are found to
outperform the guard channel scheme in controlling handoff
failure probability. Fractional adaptive scheme is found
to better control the handoff failure probability than the
adaptive scheme.

The rest of the paper is organized as follows. In Section 2,
we show the steady-state analysis of guard channel scheme
for the two-cell system. Our proposed adaptive model
for the two-cell system, the approximation model and its
variant fractional adaptive scheme for a multiple-cell wireless
network are explained in Section 3. Section 4 presents our
analytical and simulation results, and Section 5 concludes the
paper.

2. STEADY-STATE ANALYSIS OF GUARD CHANNEL
SCHEME FOR TWO-CELL SYSTEM

A cellular wireless network consists of many cells. If a Markov
chain is used to model the whole cellular wireless network,
the state-space of the Markov chain becomes exponentially
large. In the literature, a cell is generally studied to approx-
imate the whole network with the assumption that both
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Figure 1: The two-cell system.

the new and handoff calls are of same distributions such as
Poisson, phase type, or MAP. However, we study a two-cell
system to understand how the two-cell system works with the
goal in mind to use the modeling technique for developing
adaptive schemes in Section 3.

In this section, we develop and analyze the guard channel
scheme for the two-cell system. We assume that a call
is completed in the cell where it is generated or in the
neighboring cell. We denote the two cells as cell 1 and cell
2 as shown in Figure 1. We assume that a user can only move
from cell 1 to cell 2 and from cell 2 cell 1. These two cells
are identical and each cell has C channels. g (0 ≤ g < C)
number of channels are reserved as guard channels for only
handoff calls in each cell. A handoff call is accepted in a cell
if there is any free channel in that cell. On the other hand, a
new call is accepted in a cell if the number of ongoing calls
in that cell is less than K = C − g. Moreover, we assume
that the new call arrival to a cell follows Poisson distribution
with mean λn. Both call holding time (the time duration a
completed call needs) and cell residence time (the time a
caller spends in a cell) are assumed to follow exponential
distribution with means 1/μ and 1/η, respectively. Channel
holding time (the time a call occupies a channel in a cell) of a
call in a cell is the minimum of the cell residence time and the
call holding duration. As a result, the channel holding time
of a call in a cell is also exponentially distributed with mean
1/μc = 1/(μ + η). We follow these assumptions about the
total number of channels in a cell and statistical distributions
of new call arrival process, call holding duration, and cell
residence time throughout this paper.

We consider a continuous time Markov chain (CTMC)
for the two-cell system. The state space of this CTMC is
{(i, j) : 0 ≤ i, j ≤ C}, where i and j represent, respectively,
the total number of calls in cells 1 and 2. The summation
of the number of calls in both cells cannot be more than
2C−g = C+K (i.e., 0 ≤ i+ j ≤ 2C−g) as there are g number
of guard channels in both cells 1 and 2. An example of the
CTMC and possible transitions in the CTMC are shown in
[33]. The CTMC has the following generator matrix:

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 U0

D1 B1 U1

D2 B2 U2

. . .
. . .

. . .
DC−1 BC−1 UC−1

DC BC

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)

Here, Bi (0 ≤ i ≤ C) is an Li×Li matrix, where Li = C+1
for 0 ≤ i ≤ K and Li = 2C − i − g + 1 = C + K − i + 1 for
K + 1 ≤ i ≤ C. Di (1 ≤ i ≤ C) and Ui (0 ≤ i ≤ C − 1) are
Li × Li−1 and Li × Li+1 matrices, respectively. Bi, Di, and Ui
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represent, respectively, no change, a decrease by one, and an
increase by one in the number of ongoing calls in cell 1.

The structure of Bi is shown in Table 1. The diagonal
element Bi( j, j) for 0 ≤ j < Li of Bi represents no change
in the number of ongoing calls in cells 1 and 2. The super-
diagonal element Bi( j, j + 1) for 0 ≤ j < K of Bi represents
an increase in the number of ongoing calls in cell 2 by one
for accepting a new call. The subdiagonal element Bi( j, j−1)
for 0 ≤ i < C, 0 < j < Li− 1 of Bi represents a decrease in the
number of ongoing calls in cell 2 by one for a call completion.
On the other hand, the subdiagonal element BC( j, j − 1) for
0 < j < LC − 1 of BC represents a decrease in the number
of ongoing calls in cell 2 by one for a call completion or an
unsuccessful handoff to cell 1.

The diagonal element Di( j, j) of Di for 1 ≤ i ≤ K , 0 ≤
j ≤ C − 1 or K + 1 ≤ i ≤ C, 0 ≤ j ≤ Li − 1 represents a call
completion in cell 1. On the other hand, the diagonal element
Di(C,C) of Di for 1 ≤ i ≤ K represents a call completion
in cell 1 or an unsuccessful handoff to cell 2. The handoff
from cell 1 to cell 2 is captured by the super-diagonal element
Di( j, j+ 1) of Di for 1 ≤ i ≤ K , 0 ≤ j ≤ C−1, or K + 1 ≤ i ≤
C, 0 ≤ j ≤ Li−1. Di (1 ≤ i ≤ K) has the following structure:

Di =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iμ iη
iμ iη

iμ iη
. . .

. . .
iμ iη

iμc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2)

Di (K + 1 ≤ i ≤ C) has the following structure:

Di =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

iμ iη
iμ iη

iμ iη
. . .

. . .
iμ iη

iμ iη

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3)

The diagonal element Ui( j, j) of Ui for 0 ≤ i ≤ K−1, 0 ≤
j ≤ C represents an increase in the number of ongoing calls
in cell 1 by acceptance of a new call. The handoff from cell 2
to cell 1 is captured by the subdiagonal element Ui( j, j − 1)
of Ui for 0 ≤ i ≤ C − 1, 1 ≤ j ≤ Li − 1. Ui (0 ≤ i ≤ K − 1)
has the following structure:

Ui =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λn
η λn

2η λn
. . .

. . .
(C − 1)η λn

Cη λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (4)

Ui (K ≤ i ≤ C − 1) has the following structure:

Ui =

⎡
⎢⎢⎢⎢⎢⎢⎣

η
2η

. . . (
Li − 2

)
η (

Li − 1
)
η

⎤
⎥⎥⎥⎥⎥⎥⎦
. (5)

Let us assume that x = [x0, x1, . . . , xC] is the steady-state
probability vector for the CTMC Q in (1) which satisfies
xQ = 0T and x1 = 1. Here, 0 and 1 are column vectors
of zeros and ones, respectively. On the other hand, xi (0 ≤
i ≤ C) is a row vector having Li scalar elements. xi =
[xi,0, xi,1, . . . , xi,Li−1], where xi, j represents the steady-state
probability of having i ongoing calls in cell 1 and j ongoing
calls in cell 2. If we let

∏n
i=1 βi = β1,β2, . . . ,βn for matrices

β1,β2, . . . ,βn, we can find the steady-state probability vector
xi (1 ≤ i ≤ C) using the technique of Gaver et al. [34] in the
following way:

xi = x0

i∏

k=1

(
Uk−1

(− Ek
)−1)

(1 ≤ i ≤ C), (6)

where x0 satisfies x0E0 = 0T , and

x0

(
I +

C∑

i=1

i∏

k=1

(
Uk−1

(− Ek
)−1)

)
1 = 1. (7)

Ek (0 ≤ k ≤ C) is recursively determined by EC = BC ,
and

Ek = Bk + Uk
(− Ek+1

)−1
Dk+1 (0 ≤ k ≤ C − 1). (8)

In our two-cell system, we capture handoff call arrivals
to cells 1 and 2 as subdiagonal of Ui (0 ≤ i ≤ C − 1) and
super-diagonal of Di (1 ≤ i ≤ C) matrices, respectively.
The handoff rate due to an individual user from a cell to
the neighboring cell is η. For l (1 ≤ l ≤ C) users in
a cell, the handoff rate to the neighboring cell is lη and
this l varies with the number of users in that cell (i.e.,
with the state of the Markov chain). On the other hand,
for exponentially distributed interarrival time or Poisson
distributed arrival process the transition to another state
occurs with a fixed rate. However, the handoff arrival process
from and to a cell in our two-cell system does not remain
fixed. For hyperexponential distribution, the change from
one state to another state can occur with any rate of the
fixed number of exponential distributions that constitute
the hyperexponential distribution. However, the change
between handoff generation rates is correlated for our two-
cell system. The handoff generation rate can switch from
lη to (l − 1)η but not to the rate (l − 2)η (for l ≥ 2)
directly. Similarly, the handoff generation rate cannot change
directly from lη to (l + 2)η (for l + 1 < C). Therefore,
the handoff interarrival time from and to a cell is neither
exponentially nor hyperexponentially distributed. Hence, the
assumption of Poisson distributed handoff arrival process
or exponentially distributed handoff interarrival time is not
justified.

The handoff generation process from cell 1 to cell 2
occurs with rate iη (0 ≤ i ≤ C), and the handoff generation
rate from cell 2 to cell 1 occurs with rate jη (0 ≤ j ≤ C).
As both the cells are identical, the mean handoff arrival rate
λh1 from cell 2 to cell 1 and the mean handoff arrival rate λh2
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Table 1: Structure of Bi in cutoff priority guard-channel handoff scheme for two-cell system.

Bi (0 ≤ i ≤ K − 1) has the following structure:

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bi(0, 0) Bi(0, 1)

Bi(1, 0) Bi(1, 1) Bi(1, 2)

Bi(2, 1) Bi(2, 2) Bi(2, 3)
. . .

. . .
. . .

Bi(K − 1,K − 2) Bi(K − 1,K − 1) Bi(K − 1,K)

Bi(K ,K − 1) Bi(K ,K)
. . .

. . .

Bi(C − 1,C − 2) Bi(C − 1,C − 1)

Bi(C,C − 1) Bi(C,C)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Bi( j, j) = −(2λn + (i+ j)μc) for (0 ≤ j ≤ K − 1), Bi( j, j) = −(λn + (i+ j)μc) for (K ≤ j ≤ C), Bi( j, j + 1) = λn for (0 ≤ j ≤ K − 1),
and Bi( j, j − 1) = jμ for (1 ≤ j ≤ C).

Bi (K ≤ i ≤ C) has the following structure:

Bi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Bi(0, 0) Bi(0, 1)

Bi(1, 0) Bi(1, 1) Bi(1, 2)

Bi(2, 1) Bi(2, 2) Bi(2, 3)
. . .

. . .
. . .

Bi(K − 1,K − 2) Bi(K − 1,K − 1) Bi(K − 1,K)

Bi(K ,K − 1) Bi(K ,K)
. . .

. . .

Bi

(
Li − 2,Li − 3

)
Bi

(
Li − 2,Li − 2

)

Bi

(
Li − 1,Li − 2

)
Bi

(
Li − 1,Li − 1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Bi( j, j) = −(λn + (i + j)μc) for (0 ≤ j ≤ K − 1), Bi( j, j) = −(i + j)μc for (K ≤ j < Li), Bi( j, j + 1) = λn for (0 ≤ j ≤ K − 1),
Bi( j, j − 1) = jμ for (K ≤ i ≤ C − 1, 1 ≤ j < Li), and BC( j, j − 1) = jμc for (1 ≤ j < LC).

from cell 1 to cell 2 are same, that is, the mean handoff arrival
rate to a cell is λh = λh1 = λh2 . We can express λh1 and λh2 as

λh1 =
C∑

i=0

Li−1∑

j=1

jηxi, j ,

λh2 =
C∑

i=1

Li−1∑

j=0

iηxi, j .

(9)

We can compute the handoff failure probabilities in
cells 1 and 2 using the approach of Poisson arrivals see
time averages (PASTA) [35]. For the duration of time T ,
an outside observer sees

∑C
i=1 iηxi1T = ∑C

i=1

∑Li−1
j=0 iηxi, jT

and
∑C

i=0

∑Li−1
j=1 jηxi, jT as average numbers of handoff calls

from cell 1 to cell 2 and from cell 2 to cell 1, respectively.
The outside observer also notices that

∑LC−1
j=1 jηxC, jT and∑K

i=1 iηxi,CT calls are dropped on average in cell 1 and cell
2, respectively, for time T . Therefore, the handoff failure
probabilities Phf1 in cell 1 and Phf2 in cell 2 can be expressed as

Phf1 =
∑LC−1

j=1 jxC, j
∑C

i=0

∑Li−1
j=1 jxi, j

,

Phf2 =
∑K

i=1 ixi,C∑C
i=1

∑Li−1
j=0 ixi, j

.

(10)

Similarly, the new call blocking probabilities Pb1 of cell 1
and Pb2 of cell 2 can be expressed as

Pb1 =
C∑

i=K

Li−1∑

j=0

xi, j ,

Pb2 =
C∑

i=0

Li−1∑

j=K
xi, j .

(11)

The two cells are identical with respect to total number
of channels, number of guard channels, new call arrival rate,
cell residence time, and call holding duration. Hence, they
have the same handoff failure probabilities and the same new
call blocking probabilities which we can be written as Phf1 =
Phf2 = Phf, and Pb1 = Pb2 = Pb.

We now have the expressions for new call blocking
and handoff failure probabilities. We can now compute the
optimum number of guard channels g that we require to keep
the new call blocking probability minimum and the handoff
call failure probability within a threshold. We can write this
optimization problem as

compute g which
minimizes Pb

subject to Phf ≤ Pth.
(12)
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Enumeration technique can be used to solve the above
optimization problem to obtain the optimum value of g.

We can find the mean number of calls in a cell for
the two-cell system with guard channel scheme. The mean
number of calls in cell 1 is N1 =

∑C
i=1

∑Li−1
j=0 ixi, j , and the

mean number of calls in cell 2 is N2 =
∑C

i=0

∑Li−1
j=1 jxi, j . As

both the cells are identical, the mean number of calls in both
the cells are same which we can write as N = N1 = N2. On
the other hand, the expected channel utilization for the two-
cell system with the guard channel scheme is N/C.

Nonprioritized handoff scheme for the two-cell system
is a special case of guard channel scheme with no guard
channels, that is, g = 0, Li = C + 1 (0 ≤ i ≤ C),
and K = C. Distribution of average number of calls,
new call blocking probability, handoff failure probability,
distribution of handoff call arrival process, and average
handoff call arrival rate for nonprioritized handoff scheme
can be computed in the same fashion like the guard channel
scheme.

3. AN ADAPTIVE CALL ADMISSION
CONTROL SCHEME FOR TWO-CELL AND
MULTIPLE-CELL SYSTEMS

In this section, we first develop an adaptive call admission
control scheme for the two-cell system. In our adaptive
scheme, we try to ensure, with some probability, that if a
call is considered for acceptance in a cell then the call gets
a handoff channel in the neighboring cell if it needs one.
Moreover, we guarantee, with some probability, that the
acceptance of the new call in the target cell will not have
adverse effect on calls seeking handoff to the target cell. We
propose a set of constraints for acceptance of calls in the
two cells of our system which implicitly prioritizes handoff
calls over new calls. If we assume that i and j represent total
number of calls in cells 1 and 2, respectively, then a new call
is accepted in cell 1 with this set of rules when the following
constraints are satisfied.

(i) There is at least one free channel in cell 1 for accepting
the new call, that is, i < C.

(ii) We can guarantee with at least probability PE that
the call will get a free channel in cell 2 if it needs to
handoff.

We can compute the probability of a call getting a free
channel in the neighboring cell if it needs to handoff. We
can perform the transient analysis to compute the average
probability PE(T) of dropping a candidate call in cell 2 in
T time ahead when it comes to cell 1 for acceptance. If the
candidate call is accepted in cell 1, then we have to consider
the remaining C − 1 channels of cell 1 and C channels of cell
2. We can consider a CTMC for both cells as in Section 2.
The state-space of this CTMC for the adaptive scheme has
C(C + 1) elements. The state space of this CTMC can be
represented as {(î, ĵ) : 0 ≤ î ≤ C − 1, 0 ≤ ĵ ≤ C}, where
î represents total number of calls in the C−1 channels of cell
1, and ĵ represents total number of calls in C channels of cell

2. An example of the CTMC and all possible transitions in
the CTMC are shown in [33]. The generator matrix of the
CTMC is shown in the following equation:

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̃0 Ũ0

D̃1 B̃1 Ũ1

D̃2 B̃2 Ũ2

. . .
. . .

. . .

D̃C−2 B̃C−2 ŨC−2

D̃C−1 B̃C−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (13)

Here, B̃ î, Ũî, and D̃ î represent, respectively, no change,
an increase by one, and a decrease by one in the number of
ongoing calls in (C − 1) channels of cell 1 when the number
of ongoing calls in (C − 1) channels of cell 1 is î. B̃ î (0 ≤
î ≤ C − 1), Ũî (0 ≤ î ≤ C − 2), and D̃ î (1 ≤ î ≤ C − 1)
are (C + 1) × (C + 1) matrices. B̃ î has nonzero elements in
the diagonal, subdiagonal, and super diagonal. The diagonal
elements of B̃i represent the rate of no change in the number
of ongoing calls in both cells 1 and 2. The super-diagonal
elements of B̃ î represent the rate of a new call connection
in cell 2. The subdiagonal elements of B̃ î show the rate of
completion of an ongoing call in cell 2. Ũî has nonzero
elements in the diagonal and subdiagonal. The diagonal of
Ũî indicates the rate of a new call connection in cell 1. The
subdiagonal elements of Ũî represent the rate of a successful
handoff call from cell 2 to cell 1. D̃ î has nonzero elements in
the diagonal and super diagonal. The diagonal elements of
D̃ î show the rate of a call completion in cell 1. The super
diagonal elements of D̃ î represent the rate of a successful
handoff call from cell 1 to cell 2.

The structure of B̃ î (0 ≤ î ≤ C − 1) is shown in Table 2.
D̃ î (1 ≤ î ≤ C − 1) has the following structure:

D̃ î =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

îμ îη

îμ îη

îμ îη
. . .

. . .

îμ îη

îμc

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (14)

Ũî (0 ≤ î ≤ C − 2) has the following structure:

Ũî =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λn
η λn

2η λn
. . .

. . .
(C − 1)η λn

Cη λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (15)

Let x̃(0) and x̃(t) be 1 × C(C + 1) row-vectors repre-
senting the state of the two-cell system at time 0 and t,
respectively, for (C − 1) channels in cell 1 and C channels
for cell 2. In the model for admission control, we can express
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Table 2: Structure of B̃ î in adaptive call admission control scheme for two-cell system.

B̃ î (0 ≤ î ≤ C − 1) has the following structure:

B̃ î =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̃ î (0, 0) B̃ î (0, 1)

B̃ î (1, 0) B̃ î (1, 1) B̃ î (1, 2)

B̃ î (2, 1) B̃ î (2, 2) B̃ î (2, 3)
. . .

. . .
. . .

B̃ î

(
ĵ − 1, ĵ − 2

)
B̃ î

(
ĵ − 1, ĵ − 1

)
B̃ î

(
ĵ − 1, ĵ

)

B̃ î

(
ĵ, ĵ − 1

)
B̃ î

(
ĵ, ĵ
)

B̃ î

(
ĵ, ĵ + 1

)

. . .
. . .

. . .

B̃ î (C − 1,C − 2) B̃ î (C − 1,C − 1) B̃ î (C − 1,C)

B̃ î (C,C − 1) B̃ î (C,C)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where B̃ î ( ĵ, ĵ) = −(2λn + (î + ĵ)μc) for (0 ≤ î ≤ C − 2) and (0 ≤ ĵ ≤ C − 1), B̃ î (C,C) = −(λn + (î + C)μc) for (0 ≤ î ≤ C − 2),

B̃C−1( ĵ, ĵ) = −(λn + ( ĵ + C − 1)μc) for (0 ≤ ĵ ≤ C − 1), B̃C−1(C,C) = −(2C − 1)μc, B̃ î ( ĵ, ĵ + 1) = λn for (0 ≤ î ≤ C − 1, 0 ≤ ĵ ≤ C − 1),

B̃ î ( ĵ, ĵ − 1) = ĵμ for (0 ≤ î ≤ C − 2, 1 ≤ ĵ ≤ C), and B̃C−1( ĵ, ĵ − 1) = ĵμc for (1 ≤ ĵ ≤ C).

x̃〈r0 → r〉(0, t) = Pr{x̃(t) = r | x̃(0) = r0} as the probability
that the system is in state r at time t given the initial state
r0 at time zero. If we consider the system at time t, we
have x̃〈r〉(t) = Pr{x̃(t) = r} which is conditioned on the
initial state. These transient probabilities are the elements
of x̃(t) = [x̃0(t), x̃1(t), . . . , x̃C−1(t)], where x̃ î (t) (0 ≤ î ≤
C − 1) is a (C + 1)-element row vector representing the
probability vector for total î calls in the C − 1 channels
of cell 1 at time t. x̃ î (t) can be represented as x̃ î (t) =
[x̃ î,0(t), x̃ î,1(t), x̃ î,2(t), . . . , x̃ î,C(t)]. Here, x̃ î, ĵ (t) denotes the

probability of seeing î customers in C − 1 channels of cell 1
and ĵ customers in C channels of cell 2 at time t. To calculate
x̃(t), we have to solve the Kolmogorov-forward equations
which can be expressed in the matrix form as follows:

dx̃(t)
dt

= x̃(t)Q̃. (16)

If we solve (16), we get

x̃(t) = x̃(0)eQ̃t. (17)

If the candidate call at time 0 sees î and ĵ calls in
cells 1 and 2, respectively, then (î(C + 1) + ĵ )th element
(with the assumption of counting begins from the starting
position as 0th position) of x̃(0) is one and all other elements
of x̃(0) are zero. Now, exploiting the special structure of
x̃(0) we can determine x̃(t) which is the (î (C + 1) +
ĵ )th row of eQ̃t. eQ̃t is not computed using formula of

exponential function which is eQ̃t = I +
∑∞

k=1 ((Q̃t)
k
/k!) as

Q̃ has negative elements in the diagonal which makes the

computation of eQ̃t unstable as this computation involves
repeated multiplication and addition of negative and positive
quantities. Therefore, uniformization technique of Jensen
[36] is used for computing eQ̃t which is a general and efficient
way to obtain the solution from the above (17) as it does
not involve repeated multiplication and addition of negative

and positive quantities. In this technique, the new transition
probability matrix P is defined as

P = Q̃

Λ
+ I , (18)

where Λ ≥ max(−B̃ î ( ĵ, ĵ ), 0 ≤ î ≤ C − 1, 0 ≤ ĵ ≤ C). If
the arrival rate of new call is greater than the inverse of mean
channel holding time (i.e., λn > μc), we use Λ = 2λn + (2C −
3)μc. On the other hand, if the arrival rate of new call is less
than the inverse of mean channel holding time (i.e., λn < μc)
we use Λ = (2C − 1)μc. Now, using (17) and (18), we get

x̃(t) = x̃ (0)e(P−I)Λt

= x̃ (0)ePΛte−Λt

= x̃ (0)
∞∑

n=0

Pn (Λt)n

n!
e−Λt .

(19)

The infinite summation in (19) is truncated at some
value n = M such that the truncation error remains below
ε which can be expressed mathematically as

x̃(t) = x̃(0)
M∑

n=0

Pn (Λt)n

n!
e−Λt, (20)

where
∑∞

n=M+1 e
−Λt((Λt)n/n!) < ε.

The probability of an accepted user in cell 1 that needs
handoff at time t is (1 − e−ηt)e−μt. Now, the probability
of all the channels in cell 2 being occupied at time t is∑C−1

î=1 x̃ î,C(t). Therefore, the candidate call accepted at cell 1

will be dropped at time t if at that moment the call needs to
handoff to cell 2 and finds all the channel occupied which

occurs with probability pe(t) = e−μt(1 − e−ηt)
∑C−1

î=1 x̃ î,C(t).

Now, the average probability PE(T) of an accepted call in cell
1 of not finding any empty channel in cell 2 if it requires
handoff is

PE(T) = 1
T

∫ T

0
pe(t)dt. (21)
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The integration of (21) is carried out numerically using
Simpson’s method of numerical integration. In this method,
the range [0,T] is divided into r subintervals of equal
length l = T/r, where r is an even number. The numerical
integration can be expressed as

PE(T)

= l

3T

(
f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 + · · · + 2 fr−2 + 4 fr−1 + fr

)

= 1
3r

(
f0 + 4 f1 + 2 f2 + 4 f3 + 2 f4 + · · · + 2 fr−2 + 4 fr−1 + fr

)
,

(22)

where fk = pe(kT/r), 0 ≤ k ≤ r.
For different C(C+1) values of x̃0 we can compute values

of PE(T). The threshold value PE is one of the C(C + 1)
values for different initial states of x0. We can determine this
threshold value of PE for accepting a new call by running
simulation experiments with the goal of minimizing the
new call blocking probability while keeping the handoff
failure probability below a prespecified value. The admission
controller can keep the table of PE(T) and the threshold
values of PE in memory. Whenever a new call comes to cell
1, then the admission controller needs to check whether the
(î (C + 1) + ĵ )th entry of the table storing values of PE(T)
is not more than PE. If this condition is satisfied the call is
accepted in cell 1. On the other hand, when a call comes to
cell 2 for admission it needs to check that the ( ĵ (C+1)+ î )th
entry of the table storing values of PE(T) is not more than
PE. If this condition is satisfied, the call is accepted in cell
2. We conjecture that acceptance of new call in our model
guarantees a successful handoff for the accepted call with
some probability. Guard channel scheme fails to guarantee
this handoff in a cell for different number of calls in the
neighboring cells.

The advantage of our model is that we can compute
PE(T) in T time ahead for different values of x̃ (0) and keep
these values in a table. Whenever a new call attempt is made
in a cell, the CAC algorithm needs to get the value of PE to
decide about accepting the call.

3.1. Extension tomultiple-cell wireless network

We can extend our adaptive CAC scheme for the two-cell
system to multiple-cell wireless network. Here, each cell
contains C channels, new call arrival process to each cell
is Poisson distributed with mean λn, cell residence time in
each cell is exponentially distributed with mean 1/η, and call
holding duration is exponentially distributed with mean 1/μ.
In this approximation, let us assume that our target cell Ft
has i calls, and the target cell has J immediate neighbors
Fn1 ,Fn2 , . . . ,FnJ having ln1 , ln2 , . . . , lnJ calls, respectively. A new
call is blocked if i = C. On the other hand, we can use the
values in the table for accepting a call in the target cell for
i < C and j = �∑J

k=1 lnk /J	 using the table which contains
values for probability of dropping a candidate call in the
target cell if it needs to handoff the neighboring cell. We
need to determine the threshold value PE by carrying out

1

23

4

65

7

8910

Figure 2: Hexagonal structure of cellular wireless network.

simulation to keep the handoff failure probability below that
value. When a call comes to the target cell with at least one
free channel, we can consider î = i and ĵ = j. The admission
controller needs to check whether the (i(C+1)+ j)th entry of
the table storing values of PE(T) is not more than PE. If this
condition is satisfied, the call is accepted in the target cell.
Otherwise, the new call is blocked. In lower load, the handoff
failure probability is very low and needs no prioritization of
handoff calls over new calls. As a result, the value of PE is
the highest value of the values of handoff failure probabilities
of candidate call in the neighboring cell stored in the table.
An example of hexagonal cell structure of cellular wireless
network is shown in Figure 2. If a new call comes to cell 1,
then cell 1 is the target cell. If there is at least one free channel
in cell 1, then i is the value of the number of calls in cell 1
and the value of j is computed as the ceiling of the average
number of calls in the immediate neighboring cells 2, 3, 4, 5,
6, and 7. We show the adaptive CAC algorithm for the target
cell in the multiple-cell system using Pseudocode 1.

In Section 4, we find that it is not always possible to
get the exact desired handoff call failure probability using
adaptive algorithm in higher load. We develop another
variant of this adaptive algorithm which we call fractional
adaptive algorithm using the approach similar to fractional
guard channel scheme [4]. In this algorithm, we select the
threshold value PE which is the immediate higher value than
the threshold value used in adaptive scheme from the table
of the adaptive scheme. In the fractional adaptive scheme,
a new call is always accepted in a target cell if the (i(C +
1) + j)th entry of the table storing values of PE(T) is less
than PE. On the other hand, a new call is accepted with
some probability Pth when the (i(C + 1) + j)th entry of
the table storing values of PE(T) is equal to PE. We can
choose the value of Pth by simulation in such a way that
the handoff failure probability is approximately equal to the
desired handoff failure probability value. Adaptive scheme
can be considered as a special case of fractional adaptive
scheme, where Pth = 1, and PE is chosen in such a way
that handoff failure probability is not more than the desired
handoff failure probability. We show the fractional adaptive
CAC algorithm for target cell in the multiple-cell system
using Pseudocode 2.

4. NUMERICAL EXAMPLES

We carry out analytical and discrete event simulation studies
on the two-cell system of Figure 1. Simulation studies are
also performed on the nineteen-cell wireless system of
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if (handoff call)
if (i < C)

accept the handoff call;
else /∗if (i = C)∗/

reject the call;
else /∗ if (new call) ∗/

if (i = C)
reject the call

else /∗ if (i < C)∗/
sum ← 0;
for k ← 1 to J do

sum ← sum + lnk ;

j ←
⌈(

sum
J

)⌉
;

Get (i(C + 1) + j)th entry
PE(T) from table;
if (PE(T) ≤ PE)

accept the call;
else /∗ if (PE(T) > PE)∗/

reject the call;

Pseudocode 1: Adaptive algorithm.

1

2

4

3

5
6

7

8
9

10

11

12
13

14
15

16

17

18
19

Figure 3: Cellular network consisting of nineteen cells with wrap-
around structure.

Figure 3 with wrap-around structure. We assume that there
are ten channels in each cell. The cell residence time and call
holding duration are assumed to be exponentially distributed
with means 1.0 unit time and 0.25 unit time, respectively.
New call arrival process is assumed to follow Poisson dis-
tribution. Mean call arrival rate is varied from 4.0/unit time
to 48.0/unit time. We assume that our goal is to minimize
the new call blocking probability while keeping handoff call
failure probability below 0.015. We use T = 5.0 unit time
for our adaptive admission control scheme in numerical
examples. 100000.0 unit time is chosen as warm-up time
for the simulation. Ten independent replications of length
50000.0 unit time are performed in the simulation studies.
We discuss numerical examples for two-cell and multiple-
cell wireless networks in Sections 4.1 and 4.2, respectively.
In the figures, we denote analytical and simulation results
for nonpriority handoff scheme as “Guard0 Analytical”
and “Guard0 Simulation,” respectively. We denote analytical
results for guard channel schemes with one and two guard
channels as “Guard1 Analytical” and “Guard2 Analytical,”
respectively. Similarly, we denote simulation results for guard
channel schemes with one and two guard channels as

if (handoff call)
if (i < C)

accept the handoff call;
else /∗if (i = C)∗/

reject the call;
else /∗ if (new call) ∗/

if (i = C)
reject the call

else /∗ if (i < C)∗/
sum ← 0;
for k ← 1 to J do

sum ← sum + lnk ;

j ←
⌈(

sum
J

)⌉
;

Get (i(C + 1) + j)th entry
PE(T) from table;
if (PE(T) < PE)

accept the call;
else if (PE(T) = PE)

u← rand(0, 1);
if (u ≤ Pth)

accept the call;
else /∗ if (u > Pth)∗/

reject the call;
else /∗ if (PE(T) > PE)∗/

reject the call;

Pseudocode 2: Fractional adaptive algorithm.

“Guard1 Simulation” and “Guard2 Simulation,” respectively.
The simulation results for adaptive and fractional adaptive
scheme are represented as “adaptive simulation” and “frac-
tional adaptive simulation,” respectively.

4.1. Numerical result for two-cell system

Analytical studies are carried out on nonpriority handoff
scheme and guard channel scheme with one and two guard
channels. Simulation studies are performed on nonpriority
handoff scheme, guard channel scheme with one and two
guard channels, and our adaptive CAC scheme.

Analytical and simulation results of channel utilization,
new call blocking probability, and handoff call failure
probability are shown in Figures 4, 5, and 6, respectively. We
can see that our analytical and simulation results agree well
for nonpriority handoff scheme and guard channel scheme
with one and two guard channels from these figures.

Figures 4, 5, and 6 show that nonpriority handoff scheme
and guard channel scheme with one guard channel fails to
keep the handoff failure probability below 0.015 for higher
load while they have lower new call blocking probability and
higher channel utilization. On the other hand, our adaptive
CAC scheme and guard channel scheme with two guard
channels succeed to keep the handoff failure probability
below the required value 0.015. Moreover, our adaptive call
admission control scheme has higher channel utilization and
lower new call blocking probability than the guard channel
scheme with two guard channels.
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Figure 4: Analytical and simulation results of channel utilization
for the two-cell system.
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Figure 5: Analytical and simulation results of new call blocking
probability for the two-cell system.

4.2. Numerical result formultiple-cell system

Channel utilization, new call blocking probability, and
handoff failure probability are studied using simulation for
guard channel scheme. The guard channel schemes are
with zero, one, and two guard channels. Simulation is also
carried out for adaptive and fractional adaptive CAC schemes
for the wrapped around nineteen-cell wireless network of
Figure 3 where each cell has six neighbors (e.g., cell 12
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Figure 6: Analytical and simulation results of handoff failure
probability for the two-cell system.
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Figure 7: Simulation results of channel utilization for nineteen-cell
wrap around structure.

has neighboring cells 4, 11, 13, 17, 18, and 19). Results of
simulation studies for channel utilization, new call blocking,
and handoff failure probabilities are presented in Figures 7,
8, and 9, respectively.

Figures 7 and 8 show that at lower new call arrival rates
channel utilization, and new call blocking probabilities are
almost the same for the different schemes. At higher new
call arrival rates, channel utilization and new call blocking
probabilities are largest for nonpriority handoff scheme.
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Figure 8: Simulation results of new call blocking probability for
nineteen-cell wrap around structure.

With respect to channel utilization and new call blocking
probabilities, the remaining schemes can be ordered in
decreasing order as guard channel scheme with one guard
channel, fractional adaptive scheme, adaptive scheme, and
guard channel scheme with two-guard channels. Figure 9
shows that handoff failure probability is lower than 0.015 for
all the schemes in lower loads. However, at higher loads only
adaptive, fractional adaptive, and guard channel scheme with
two-guard channels can keep the handoff failure probability
below 0.015. We can see from Figure 9 that the handoff
failure probability can be kept quite close to 0.015 by adaptive
scheme at higher loads. On the other hand, fractional
adaptive scheme keeps the handoff failure probability almost
equal to 0.015. It is clear that at higher loads adaptive and
fractional adaptive schemes better control handoff failure
probability than the guard channel scheme, and fractional
adaptive scheme is better than adaptive scheme in controlling
the handoff failure probability to a threshold value.

5. CONCLUSION

In this paper, steady-state analysis of guard channel scheme
is performed for two-cell system. It is shown that the
assumption of exponentially or hyperexponentially dis-
tributed handoff interarrival time is not justified. We propose
an adaptive call admission control scheme for the two-cell
system which provides a guarantee with some probability
that if a user is admitted the call will be completed
irrespective of its movement in the two-cell system. The
advantage of our scheme is that the computations are
performed offline. We extend the adaptive scheme for the
two-cell wireless network to develop the adaptive call admis-
sion control scheme for multiple-cell wireless network. We
develop fractional adaptive scheme for multiple-cell wireless
system—a variant of our adaptive scheme for multiple-
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Figure 9: Simulation results of handoff call failure probability for
nineteen-cell wrap around structure.

cell system. Our adaptive and fractional adaptive schemes
are found to better control the handoff failure probability
than the guard channel scheme. Our next directions are to
develop the adaptive scheme for multiple class traffic. We will
also study the sensitivity of adaptive and fractional adaptive
schemes to the value of T .
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