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1. INTRODUCTION

In many modern group-oriented and distributed appli-
cations, such as distributed simulation, multiuser games,
and collaborative tools, scalable and reliable group com-
munication is one of the critical problems. Regardless of
the concrete applications environment, security services are
necessarily required to provide communication privacy and
integrity, which are impossible without secure and efficient
key distribution. A group key exchange (GKE) protocol
allows a group of participants to establish a common session
key which is used to protect the sensible information.

Among the existing authentication systems, asymmetric
technologies such as public key infrastructure (PKI) and
identity-based (ID-based) system are commonly adopted.
The concept of ID-based cryptosystem was firstly proposed
by Shamir [1]. Such a scheme has a unique property that a
user’s public key can be easily calculated from his identity,
while the private key can be calculated by a trusted authority
called key generation center (KGC). In a typical PKI system,
a user should apply for his public key certificate from a
certificate authority (CA) and other partners can use this
certificate to authenticate the user. In an ID-based system,
however, the partner only needs the public identity of the
user, such as email address. Thus, compared with certificate-

based PKI system, an ID-based system greatly simplifies the
procedure of key management.

Communication security is a very important issue when
we design a group key exchange protocol in peer group.
Only recently have Bresson, Chevassut, Pointcheval, and
Quisquater (BCPQ) given the first provably secure model
and protocol [2–4] for group key exchange setting. Their
protocol is based on the protocol of Steiner et al. [5], and
requires n rounds to establish a key among a group of n users.
The BCPQ model is an important step and very helpful in
analyzing and designing group key exchange protocols.

1.1. Relatedworks

1.1.1. Group key exchange

A number of studies [5–21] have considered the problem of
extending the two-party Diffie-Hellman (DH) protocol [22]
to the multiparty setting. A class of generic n-party DH pro-
tocols is defined in [5] and extended to provide implicit key
authentication in [17], and one practical protocol of which
is A-GDH.2. A tree-based DH group key exchange protocol
has been proposed by Kim et al. [16, 23] which is shown to
be secure against passive adversaries. Also several papers have
attempted to establish ID-based authenticated key exchange
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protocol. Joux presented a one-round tripartite key exchange
protocol [10] using pairings. But it is vulnerable to “man-
in-the-middle” attack. Zhang et al. [14] proposed a new
ID-based authenticated three-party key exchange protocol,
in which the authenticity is assured by a special signature
scheme from pairing. Recently, an ID-based group key
exchange protocol which uses the one-way function trees
and a pairing is proposed by Reddy and Nalla [7] with
informal security analysis. Barua et al. [6] introduced an ID-
based multiparty key exchange scheme which uses ternary
trees. But the protocols of Reddy and Barua have �log2n�
and �log3n� communications rounds, respectively, and are
not scalable. Wang and Wu [21] proposed an efficient ID-
based multicast scheme which needs a group controller.
However, in this paper, we will focus on the peer groups and
contributory key exchange.

There are two kinds of famous constant-round group
key agreement protocols, one is based on the BD scheme
which was proposed by Burmester and Desmedt [13], and
the other is based on secret sharing scheme. In PKC’04, Choi
et al. [8] presented an efficient ID-based group key exchange
schemes from bilinear pairings which is an authenticated
bilinear variant of BD scheme, but soon found to be flawed
by Zhang and Chen [24]. Tzeng and Pieprzyk and Li [25, 26]
have shown how secret sharing scheme can be exploited
as a building block in group key establishment. Bresson
and Catalano proposed a practical and simple group key
exchange scheme which combines the ElGamal encryption
scheme and the secret sharing technique [19]. Nevertheless,
in the protocol of Pieprzyk and Li [26], confidence in
fresh of the key depends on a random value supplied by
a trusted third party, and this protocol does not provide
forward secrecy. Also the scheme [25] of Tzeng lacks forward
secrecy.

1.1.2. Provable security for protocols

The basic idea of proving the security of a protocol in a
model in which the parties have a random oracle and then
instantiating that oracle with an appropriate cryptographic
primitive originates in [27, 28]. In 1993, Bellare and Rogaway
[29] proposed a formal model for proving security of
protocols in a two-party setting. A modular approach is
presented by Bellare et al. [30] to design and analyze key
exchange protocols. The modularity is achieved by applying
an authenticator to protocols which have been proven secure
in a much simplified adversarial setting where authentication
of communication links is not required. Based on these
works, Bresson et al. (BCPQ) defined a sound formalization
[3] for the authenticated group DH key exchange and pro-
vided provably secure protocols within this model. We refer
to protocols secure in BCPQmodel as AKE-secure. But AKE-
secure does not take into account any notion of protection
against “insider attack,” and AKE-secure protocols may be
completely insecure against attacks by malicious insiders.
Katz and Shin [31] proposed a solution within the universally
composability (UC) framework [32, 33] which can guarantee
the security of a protocol when it runs concurrently with
other protocols.

1.2. Our contribution

The purpose of this paper is to present a method of
constructing UC-secure constant-round ID-based group key
exchange protocols. The resultant protocol is round efficient
and only needs three rounds. It allows the batch verification
of messages signed by all other group participants, which
greatly improves computational efficiency. In addition, the
protocol is a contributory key exchange, hence it does
not impose a heavy computational burden on a particular
party. The most important is that the new protocol is UC-
secure and most secret sharing schemes could be adopted to
construct our protocol.

2. PRELIMINARIES

2.1. Admissible bilinearmap [34]

Let G1 be a cyclic additive group of prime order q and
G2 be a cyclic multiplicative group of same order q. Let P
be an arbitrary generator of G1. We assume that discrete
logarithm problem in both G1 and G2 are intractable. A map
e: G1 × G1→G2 satisfying the following properties is called
an admissible bilinear map:

(i) bilinearity: e(aP, bQ) = e(P,Q)ab ∀P,Q ∈ G1 and
a, b ∈ Z∗q ,

(ii) nondegeneracy: if P is a generator of G1, then e(P,P)
is a generator of G2, that is, e(P,P) /= 1,

(iii) computability: there exists an efficient algorithm to
compute e(P,Q) ∀P,Q ∈ G1.

2.2. Computational DH (CDH) problem inG1

Input: (P, aP, bP) for some a, b ∈ Z∗q .
Output: abP.
The success probability of any probabilistic polynomial

time adversary A in solving CDH problem in G1 is defined to
be:

SuccCDHA,G1
= Pr ob

[
A(P, aP, bP, abP) = 1 : a, b ∈ Z∗q

]
.

(1)

CDH assumption

There exists no algorithm running in expected polynomial
time, which can solve the CDH problem with nonnegligible
probability. Namely, for any probabilistic polynomial time
(PPT) adversary A, SuccCDHA,G1

is negligible.

2.3. Aggregate signature

In the construction of our authenticated protocol, we use
the bilinear aggregate signature scheme firstly introduced by
Boneh et al. [35]. But the base signature scheme is the ID-
based bilinear signature scheme proposed by Hess [36].

An aggregate signature scheme is a digital signature that
supports aggregation. Concretely, given n signatures on n
distinct messages from n distinct participants, it is possible



Chunjie Cao et al. 3

to aggregate all these signatures into a single short signature.
This single signature and the n original messages will con-
vince the verifier that participant ui indeed signed message
mi. The aggregate signature scheme is formally denoted as
Λ = {G,K , Sig, Ver,ASig,AVer}, where {G,K , Sig, Ver} is a
standard digital signature scheme, which is called the base
signature scheme. HereG is a randomized system parameters
generator algorithm, K is a randomized key generation
algorithm, Sig is a randomized signing algorithm, and
Ver is a deterministic algorithm. The aggregation signature
algorithm and the aggregation verification algorithm are,
respectively, ASig and AVer. The aggregate signature is
generated as follows:

δ = ASig
(
δ1, δ2, . . . , δn

)
, (2)

where δi is the signature of message mi relative to public key
PKi and δ is the single aggregate signature. The verification
is done by checking whether

Aver
(
PK1, PK2, . . . , PKi;m1,m2, . . . ,mn;

ASig
(
δ1, δ2, . . . , δn

)) = 1.
(3)

Note that we set the co-GDH gap groups are equivalent, so
the computational co-DH and decisional co-DH problems
[37] reduce to the standard CDH and DDH problems [35].

3. THEMODEL

The model described in this section is a static group security
model extended from one of Bresson et al. [4] which follows
the approach of Bellare and Rogaway [29, 38, 39].

3.1. Adversarial model

Let U = {U1,U2, . . . ,Un} and ID = {ID1, ID2, . . . , IDn}
be a set of n users and their identities, respectively. Each
user Ui has a unique identity IDi, which is known to all the
other users, and all these identities are distinct. Each user can
execute the protocol multiple times with different partners:
this is modeled by allowing each user an unlimited number
of instances with which to execute the protocol. We denote
instance t of Ui, called an oracle, as

∏t
i for an integer t ∈ N .

3.1.1. Initialization

In this phase, each user Ui ∈ U gets his long-term public
and private keys. ID-based protocol requires the following
initialization phase:

(1) the KGC randomly chooses a secret key s ∈ Zq as
master key, then computes, and publishes Ppub = sP,

(2) when each user with identity ID wants to obtain
public/private key pair, the KGC uses its master secret
key s to compute the corresponding private key SID
and transmits it to the user through a secure channel.

3.1.2. Queries

Normally, the security of a protocol is related to the
adversary’s ability, which is formally modeled by queries
issued by the adversary. We assume that a probabilistic
polynomial time adversary A can completely control the
communications and make queries to any instance. We now
explain the capability that each kind of query captures.

(i) Extract (IDi): this query allows the adversary to
get the long-term private key corresponding to IDi,
where IDi /∈ ID.

(ii) Send (
∏t

i , M): this query allows the adversary to
make the user IDi run the protocol normally and send
messageM to instance

∏t
i which will return a reply.

(iii) Reveal (
∏t

i): this query models the adversary’s ability
to find session group keys. If an oracle has accepted,
holding a session key K, then K is returned to the
adversary. Note that we say that an oracle accepts
when it has enough information to compute a session
key. At any time, an oracle can accept and it accepts
at most once in executing an operation. As soon as an
oracle accepts in executing an operation, the session
key is defined.

(iv) Corrupt (IDi): this query models the attacks revealing
the long-term private key Si. This does not output any
internal data of IDi.

(v) Test (
∏t

i): this query models the semantic security of
a session key. This query is allowed only once by the
adversary. A random bit b is chosen, if b = 1, then the
session key is returned, otherwise a random value is
returned.

In this model, we consider two types of adversaries
according to their attack types. The attack types are sim-
ulated by the queries issued by the adversaries. A passive
adversary is allowed to issue “Reveal,” “Corrupt,” and “Test”
queries, while an active adversary is additionally allowed to
issue “Send” and “Extract” queries.

3.2. Security notions

Definition 1 (partner IDS). Partner identities for instance
∏t

i

which consist of the users (including IDi himself) with whom∏t
i intends to establish a session key. Partner identities of

instance
∏t

i are denoted by pid (
∏t

i).

Definition 2 (session IDS). The session ID is the unique
identity of a session, which is denoted by sid (

∏t
i). To achieve

the goal of UC-security, we follow [30, 33] in assuming that
sid is provided by some higher-level protocol when the GKE
protocol is first initiated.

Definition 3 (freshness). An oracle is called fresh (or holds a
fresh key) if the following two conditions are satisfied. First,
nobody inU has ever been asked for a “Corrupt” query from
the beginning of the game. Second, in the current operation
execution,

∏t
i has accepted and neither Ui nor his partners

have been asked for a “Reveal” query.
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FSS-GKE proceeds as follows, running on security parameter k, with players U1, . . . ,Un, and an ideal adversary S.

Initialization: upon receiving (sid, pid, new-session) from player Ui for the first time (where pid is a set of at least two distinct user
identities containing Ui), record (sid, pid, Ui), and send this to S. In addition, if there are already |pid| − 1 recorded tuples (sid, pid,
Uj) for Uj ∈ pid \ {Ui}, then store (sid, pid, Initialized) and send this to S.

Secret Distribution: upon receiving a message (Share, sid, pid, Ui) fromUi, where there is a recorded tuple (sid, pid, Initialized), do
the following:
(i) if all U ∈ pid are uncorrupted, choose ki ← {0, 1}k and compute Pi = g(ki), where g is a function that can generate |pid| − 1
secret shares. Afterward record (shared, sid, pid, Ui, Pi) and send it to all players and S. If there are already |pid| − 1 recorded tuples
(shared, sid, pid, Ui, Pi,) then store (sid, pid, SecretDistributed) and send this to S,

(ii) if Ui is corrupted, wait for S to send k′i , P
′
i and then record (shared, sid, pid, Ui, P′i ).

Key Generation: upon receiving a message (KeyGeneration) from S where there is a recorded tuple (sid, pid, SecretDistributed), do
the following:
(i) if all U ∈ pid are uncorrupted, compute key = f (k1, k2, . . . , k|pid|−1), finally, store (sid, pid, key),

(ii) if any of theU ∈ pid are corrupted, send the corresponding secret ki to S, wait for S to send a message (SecretKey, key′) and then
store (sid, pid, key′).

Key Delivery: if S sends a message (deliverKey, Ui), where there is a recorded tuple (sid, pid, key) and Ui ∈ pid, then send (sid, pid,
key) to player Ui.

Player Corruption: if S corrupts Ui ∈ pid where there is a recorded tuple (sid, pid, key) and message (sid, pid, key) has not yet been
sent to Ui, then the adversary is given key. Otherwise, S is given nothing.

Algorithm 1: Secret sharing-based GKE ideal functionality FSS-GKE.

Let F be a collision-resistant pseudorandom function, and assume that v0, v1 ← {0, 1}k are publicly known and v0 /= v1.

Initialization Phase: each player Ui generates long-term verification/signing keys (PKi; SKi) (in addition to any keys needed for π).

The Protocol: players run protocol π. If Ui would terminate without accepting in π, then it terminates without accepting in π′.
Otherwise, if Ui would accept in protocol π with output (sidi, pidi, keyi), this player performs the following additional steps:

(i) Ui computes acki = F(keyi, v0) and ski = F(keyi, v1). Next, Ui erases all its local state except for acki; ski, sidi, and pidi. Then, Ui

computes a signature σi = Sign(SKi, (Ui; sidi, pidi, acki)) and sends the message (Ui; σi) to all players in pidi,

(ii) upon receipt of |pidi| − 1 messages (Uj ; σj) from all other players Uj ∈ pidi \ {Ui}, Ui checks that Verify (PK j ,
(Uj ; sid j , pid j , ack j), σj) = 1 ∀Uj ∈ pidi. If all verifications are successful, then Ui accepts and erases its internal state, and outputs

(sidi, pidi, ski). Otherwise, Ui terminates without accepting.

Algorithm 2: AKE→ UC compiler.

Definition 4 (authenticated key exchange security (AKE
security)). We say that event Succ occurs if the adversary
issues “Test” query to a fresh oracle and correctly guesses
the bit b (distinguishing the key from a random string). The
advantage of an adversaryA in attacking protocol P is defined
as AdvPA(k) = |2Pr[Succ]− 1|.

A protocol P is AKE secure, if the following two proper-
ties are satisfied:

(i) consistency: in the presence of an adversary, all part-
ner oracles accept the same key,

(ii) Secrecy: for any PPT adversary A, AdvPA(k) is negligi-
ble.

Definition 5 (perfect forward secrecy). A protocol provides
perfect forward secrecy if an adversary does not get nonneg-
ligible knowledge information about session keys previously
established when making “Corrupt” queries to all group

members.We define AdvPA(t, qs, qh) to be themaximal advan-
tage of any active adversary attacking protocol P, running in
time t and making qs “Send” queries and qh “Hash” queries.

Note that we do not define any notion of explicit authen-
tication or, equivalently, confirmation that the other mem-
bers of the group have computed the common key. However,
explicit authentication in our protocol can be achieved at
little additional cost. Previous work [4] shows how to achieve
explicit authentication for any group authenticated key
exchange protocol using one additional round and minimal
extra computation.

4. UNIVERSAL COMPOSABLE GKE PROTOCOLS
VIA SECRET SHARING

In this section, we introduce the ideal functionality for group
key exchange protocol via secret sharing within the UC
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Round 1. Initialization: each participant Ui picks randomly ri, r′i ∈ Z∗q , computes, and broadcasts (sid,Oi = riP,O′
i = r′i P).

Round 2. Secret Distribution: on receiving Oj with the correct sid, each participant Ui picks randomly Ki ∈ Zq and computes a
polynomial fi(x) = Ki + ai1x + ai2x

2 + · · · + ain−1x
n−1 passing points ( j,H3(riOj)), 1 ≤ j ≤ n, j /= i and (0,Ki). Then computes

Pij = fi(n + j), 1 ≤ j ≤ n, j /= i;

Pi = Pi1‖Pi2‖ · · · ‖Pin; O = O1‖O2‖ · · · ‖On,

O′ = O′
1‖O′

2‖ · · · ‖O′
n;

hi = H2(Pi‖O‖O′‖Ki‖sid‖pid);
δi = riPpub + hiSi

and broadcasts (sid,Pi, δi).

Round 3. Key Confirmation
On receiving (Pjl, δl) with correct sid, 1 ≤ l ≤ n, l /= j /= i, each participantUi computes polynomial f ′j (x) of degree n that passes
(n + l,Pjl) and (i,H3(riOj)). Then Ui computes Kij = f ′j (0) and checks

e

( n∑

j=1
δj ,P

)

= e

( n∑

j=1

(
Oj + hjQj

)
,Ppub

)

.

If the above aggregate signature is verified successfully, Ui computes

keyi == H4(K1 + K2 + · · · + Kn); acki = H4(keyi, v0); ski = H4(keyi, v1),

h′i = H2(IDi‖acki‖sid‖pid); δ′i = r′i Ppub + h′i Si

and broadcasts (sid, IDi, δ′i ).

When receiving |pid| − 1 messages from other participants, Ui verifies the aggregate signature as above. If the verification is
successful, Ui accepts with (sid, pid, ski).

Algorithm 3: The UC-secure GKE protocol ID-SS.

framework [32, 33]. Then, we show that an AKE-secure GKE
protocol based on secret sharing can be compiled to be a
UC-secure protocol by applying the compiler (depicted in
Algorithm 2 proposed by Katz and Shin [31]. Our secret
sharing-based GKE ideal functionality FSS-GKE is depicted
in Algorithm 1. In the following, we assume that (1) the
underlying group communication system is resistant to fail-
stop failures, which means that the system should provide
a consistent membership view to all group members and
reliable and causally ordered multicasts; (2) unicast and
multicast are reliable. We assume that any user can broadcast
messages to others in the broadcast network.

In ACM CCS 2005, Katz and Shin proposed a compiler
and [31] for GKE protocol, where an AKE-secure GKE
protocol π can be compiled to be a UC-secure protocol
π′. To construct our UC-secure and constant-round GKE
protocol via secret sharing, this compiler is involved in our
protocol and is a key component. The compiler is depicted
in Algorithm 2.

Theorem 1 (see [31]). If π is an AKE-secure GKE protocol,
then applying the AKE → UC compiler to π results in a UC-
secure protocol π′.

From Theorem 1, we can get the following corollary.

Corollary 1. If π is an AKE-secure GKE protocol based on
secret sharing, then applying the AKE → UC compiler to π
results in a UC-secure protocol π′.

5. THE PROTOCOL ID-SS

To construct the UC-secure ID-based GKE protocol via
secret sharing, we are motivated by the scheme of Shamir [1].
The resultant protocol is denoted as ID-SS. We assume that
there exists an authenticated secure channel between the user
and KGC for the distribution of the long-term private key.

System setup

Given the security parameter q, the KGC chooses groups
G1 and G2 of prime order q, a generator P of G1, and
a bilinear map e: G1 × G2 → G2. Let H1: {0, 1}∗ → G1 be
a map-to-point hash function, H2: G1 × Zq × {0, 1}∗ ×
{0, 1}∗ → Zq, H3: G1 → Zq be other two hash functions,
and H4 be a key derivation function. H1, H2, H3, and H4

are considered as random oracles. Also the KGC randomly
selects v0, v1 ← {0, 1}q, the master secret key s ∈ Zq and
computes Ppub = sP ∈ G1 that is made public. Then KGC
publishes the following system parameters:

{
e,G1,G2, q,P, Ppub,H1,H2,H3,H4, v0, v1

}
. (4)

Extract

Given a public identity ID ∈ {0, 1}∗, the KGC computes
QID = H1(ID) ∈ G1 and associated private key SID = sQID ∈
G1 that is transmitted to the user.
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Let U = {U1,U2, . . . ,Un} be a set of users who want to
establish a common session key and IDi be the identity ofUi.
Then the public and private key pair of Ui is (IDi, Si = sQi).
Now we describe the protocol in Algorithm 3.

6. SECURITY ANALYSIS OF THE PROTOCOL ID-SS

Theorem2. Suppose that the hash functionsH1, H2, H3, and
H4 are random oracles. Then the protocol ID-SS is an AKE-
secure protocol providing perfect forward secrecy under the
CDH assumption. Concretely,

AdvID-SSA

(
t, qs, qh)≤2·n·SuccForgeryΛΓ (t

)
+2·l·qh·SuccCDHΨ (t).

(5)

Proof. Firstly, we prove the correctness of the protocol. In
other words, if all users follow the process of the protocol,
they can compute a common group key. Because of riOj =
rir jP = r jOi, user Ui can compute the polynomial f j(x)
passing (n + l,Pjl), 1 ≤ l ≤ n and (i, riOj) according to the
messages related to user Uj . Then Ui computes Kj = f j(0).
By verifying aggregate signature δ, Ui can check whether
Kj is correct or not. So all participants can derive the same
group key K = H4(K1 + K2 + · · · + Kn).

Secondly, we prove that the protocol is a GK secure
protocol in the presence of an adversary A,

(1) assuming that A modifies the flows, then we build a
forger Γ,

(2) assuming that A does not modify the flows, then we
build a CDH-solver Ψ.

Forger Γ

Assume that A breaks the protocol ID-SS by forging a
signature at least with the probability ϕ. We can construct a
forger Γ that generates a valid message pair (ID,m, δ) from
A. Γ receives ID as the input and accesses a (public) signing
oracle. Γ randomly picks i ∈ [1,n] and honestly generates
all other public and private keys for the system. However, for
user Ui, Γ sets ID as Ui’s public key. Then Γ starts running A
as a subroutine and answers the oracle queries made by A as
follows:

(i) when A makes “Send (∗, m)” queries, Γ responds
in a straightforward way. When A makes “Send (∗,
m, δ)” queries, Γ responds in a straightforward way
using long-term keys to sing the flows except if A

makes the query of the form “Send (
∏t

j ,m, δ).” If this
occurs, Γ goes through the signing oracle and stores
the response in a variable α,

(ii) when A makes a “Reveal” query, Γ gives the session
key to A,

(iii) when A makes a “Corrupt” query, Γ answers in a
straightforward way except if A makes the query of
“Corrupt (ID)”. If this occurs, Γ stops and outputs
“Fail,”

(iv) whenAmakes a “Hash” query, Γ answers as a random
oracle in a straightforward way,

(v) when A makes a “Test” query, since all the accepted
session keys are known from “Reveal” queries, the
query can be answered with the correct session key.

If A has already issued the query of “Send (
∏t

j ,m, δ),”
where δ is a valid signature on m with respect to ID and
(m, δ) /∈ α, then Γ stops and outputs (m, δ) as a forgery.

Otherwise, Γ simply aborts. So the probability Succ
ForgeryΛ
Γ (t)

of Γ outputting a forgery is the product of the probability
that A generates a valid signature and the probability that A
correctly guesses the value of i:

Succ
ForgeryΛ
Γ (t) ≥ ϕ

n
. (6)

CDH-attackerΨ

Next, we assume that A breaks the protocol ID-SS without
generating a forgery of signature. Thus from A, we can
construct a CDH-attacker Ψ that breaks the protocol by
solving an instance of the CDH problem.

Let l be an upper bound on the number of sessions
invoked by A, then Ψ randomly chooses and γ ∈ [1, l]
representing a guess that as to which query of A activates the
instance for which A will ask its “Test” query.

Ψ receives an instance (P, aP, and bP) of the CDH
problem as input and randomly selects i, j ∈ [1,n].

Then Ψ starts running A as a subroutine and answers the
oracle queries made by A. We now describe the simulation of
the oracle queries of A in detail.

(i) When A makes a “Send (∗, m)” query, Ψ proceeds
as in protocol ID-SS using a random value except
if the query is “Send (Πi,m)” or “Send (Π j ,m)”
query in the γth session. If this occurs, Ψ sets Oi =
aP, Oj = bp. When A makes “Send (∗, m, δ)”
queries, Ψ responds in a straightforward way using
long-term keys to sing the flows except if the query
is “Send (Πi,m, δ)” or “Send (Π j ,m, δ)” query in the
γth session. If this occurs,Ψ responds using a random
value and long-term keys to sing the flows,

(ii) when Amakes a “Corrupt query,”Ψ answers with the
corresponding long-term private key in a straightfor-
ward way,

(iii) when A makes a “Reveal query,” Ψ answers in a
straightforward way except if the session key is of the
γth session. In the latter case, Ψ stops and outputs
“Fail,”

(iv) when A makes a “Hash query,” Ψ answers as a ran-
dom oracle in a straightforward way,

(v) when A makes a “Test query,” Ψ answers with a ran-
dom string.

Since Ψ knows all the keys except for one execution of
ID-SS, this simulation is perfectly indistinguishable from an
execution of the real protocol ID-SS.

At some stage, A completes and returns a value b′. The
probability that Ψ correctly guesses on which session key A
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will make the “Test query” is the probability that Ψ correctly
guesses the value γ. That is μ = 1/l.

Let ask H be the event that A makes a “Hash query” on
(K1 + K2 + · · · + Kn) and Forge be the event that A forges a
signature with regard to some participant’s long-term public
key. We emphasize that, in the random oracle model, A
cannot get any advantage on a random value without asking
for it. The success probability of Ψ is the probability that A
asks the correct value to the hash oracle multiplied by the
probability that Ψ correctly chooses the “Hash query” and
multiplied by the probability that Ψ correctly guesses the
value γ. That is:

SuccCDHΨ (t) ≥ Pr[ask H]
qH·l

. (7)

Finally, we have:

Pr
[
b = b′

]

= Pr
[
b = b′ | Forge]Pr[Forge]

+ Pr
[
b = b′ | ¬Forge]Pr[¬Forge]

≤ Pr
[
b = b′ | Forge]

+ Pr
[
b = b′ | ¬Forge]Pr[¬Forge]

≤ ϕ + Pr
[
b = b′ | ¬Forge]Pr[¬Forge]

≤ ϕ+Pr[¬Forge∧ ask H] Pr
[
b=b′ |¬Forge∧ ask H

]

+Pr[¬Forge∧¬ask H] Pr
[
b=b′ |¬Forge∧¬ask H

]

=ϕ+Pr
[
b=b′ |¬Forge∧ask H

]
Pr[¬Forge∧ask H]+

1
2

≤ ϕ + Pr[¬Forge∧ ask H] +
1
2

≤ ϕPr[ask H] +
1
2
.

(8)

Then from the definition AdvPA(k) =
∣
∣2Pr[Succ] − 1

∣
∣

and above three equations, we can get the result as follows:

AdvID-SSA

(
t, qs, qh

)≤2·n·SuccForgeryΛΓ (t
)
+2·l·qh·SuccCDHΨ (t).

(9)

We next show that the authentication scheme Λ is secure
against existential forgery on adaptively chosen ID attack.

Lemma 1. Let G1 be an additive group with order q and the
map-to-point hash functionH1 be a random oracle. We assume
that the PPT forger A breaks the bilinear aggregate signature
scheme Λ for an adaptively chosen ID with advantage ε0 and
running time t0. Suppose that A makes at most qH1 queries to
the hash function H1. Then from A, we can construct a PPT

forger B for a given ID with advantage ε0 ≤ ε1(1 − 1/q)/qH1

and running time t1 ≤ t0.

Lemma 2. Let the hash function H1, H2 be random oracles.
Suppose that B is a PPT forger for a given ID with advantage
ε1 ≥ 10qH1 (qs+qH2 )/(q−1) and running time t1. Suppose that
B makes at most qH1 , qH2 , qs, and qex queries to the H1, H2,
“Send” and “Extract” oracles, respectively. Then from B, we can
construct a PPT attacker C that can solve the CDH problem
within time t2 ≤ 120686qH2 t1/ε1.

The security analysis of Lemmas 1 and 2 is similar to that
of [8], for space limitation, we omit the proof of them. Then,
we can directly obtain the following theorem from the above
two lemmas.

Theorem 3. Let H1, H2 be random oracles. Then the bilinear
aggregate signature schemeΛ onG1 is secure against existential
forgery on adaptively chosen ID attack under the CDH
assumption.

Then from Theorem 2 and Corollary 1, we deduce the
following theorem.

Theorem4. Suppose that the hash functionsH1, H2, H3, and
H4 are random oracles. Then the protocol ID-SS is UC-secure.

7. CONCLUSION

In this paper, a method of constructing UC secure and
constant-round GKE protocol was presented. It allows
modular design and analysis of the GKE protocol and
the resultant protocol only needs three communication
rounds to compute a common group key. Moreover, most
secret sharing schemes could be adopted to construct UC
secure and constant-round GKE protocol according to our
method.

The efficiency of protocols with UC security is usually
low for their high security rank. As future work, we plan to
formally examine the possibility of extending this security
model to improve the performance of protocols by analyzing
the relation between security and efficiency under UC
framework.
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