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derive a new union bound on the bit-error probability based on the code’s transfer function. The proposed bound is general to
any coding scheme with a known weight distribution such as convolutional and trellis codes. Results show that the new bound is
tight to simulation results for wide ranges of diversity order, Nakagami fading parameter, and signal-to-noise ratio (SNR).
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1. INTRODUCTION

Diversity is an effective method to mitigate multipath fading
in wireless communication systems. Diversity improves the
performance of communication systems by providing a
receiver with M independently faded copies of the trans-
mitted signal such that the probability that all these copies
are in a deep fade is low. The diversity gain is obtained
by combining the received copies at the receiver. The most
general diversity combining scheme is the generalized selec-
tion combining (GSC), which provides a tradeoff between
the high complexity of maximal-ratio combining (MRC)
and the poor performance of selection combining (SC). In
GSC, the largest M, branches out of M diversity branches
are combined using MRC. The resulting signal-to-noise ratio
(SNR) at the output of the combiner is the sum of the SNRs
of the largest M, branches.

A general statistical model for multipath fading is the
Nakagami distribution [1]. The error probability and the
cutoff rate of GSC over Rayleigh fading channels was
analyzed in [2, 3], respectively. In [4], the performance of
some special cases of GSC systems over Nakagami fading
channels was analyzed. A more general framework to the
analysis of GSC systems over Nakagami fading channels was
presented in [5] and more recently in [6]. In [7], the cutoff
rate and a union bound on the bit-error probability of coded
SC systems over Nakagami fading channels were derived.

The derivation is based on the transfer function of the code.
To the best of our knowledge, no analytical results on the
performance of coded GSC systems over Nakagami fading
channels exit yet.

In [8], a new approach to analyzing the performance
of GSC over Nakagami fading channels was presented.
The approach is based on converting the multidimensional
integral that appears in the error probability of GSC into a
single integral that can be evaluated efficiently. In this paper,
we generalize this approach to derive the cutoff rate and
a union bound on the bit-error probability of coded GSC
over Nakagami fading channels. The bound is based on the
transfer function of the code and is simple to evaluate using
the Gauss-Leguerre integration (GLI) rule [9]. Results show
that the proposed union bound is tight to simulation results
for a wide range of Nakagami parameter, SNR values, and
diversity orders.

The paper is organized as follows. The coded GSC system
is described in Section 2. In Section 3, the cutoff rate of coded
GSC systems is derived. In Section 4, the proposed union
bound on the bit-error probability is derived, and results are
discussed therein. Conclusions are discussed in Section 5.

2. SYSTEM MODEL

The transmitter in a coded system is generally composed of
an encoder, interleaver, and a modulator. The encoder might
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be convolutional, turbo, trellis-coded modulation (TCM), or
any other coding scheme. The encoder encodes a block of K
information bits into a codeword of L symbols. The code rate
is defined as R, = K/L. For the Ith symbol in the codeword,
the matched filter output of the ith diversity branch is given
by

Vi = \/Eiaz,i s+ 2, (1)

where E; is the received signal energy per diversity branch
and a; = {al,,-}f\ﬁ] are the fading amplitudes affecting the M
diversity branches, modeled as independent and identi-
cally distributed (i.i.d) Nakagami random variables. Here,
we assume ideal interleaving and independent diversity
branches. The noise samples z; = {2}, are i.i.d complex
Gaussian random variables with zero-mean and a variance
of Ny/2 per dimension.

Signals received at different diversity branches are com-
bined such that the performance is improved. In MRC, the
received signals at different diversity branch are weighted
by the corresponding channel gain. The resulting SNR for
symbol I'in the codeword is given by y; E;/Ny, where y; =
M a ai;. In GSC, the receiver selects the largest M, dlver51ty
branches among the M branches and combines them using
MRC. If we arrange the fading amplitudes aj,;,...,a;y in a
descending order a;1) = aj2) = - - - = am), then the SNR
at the output of the GSC receiver is given by [31E /No, where

B = 1‘11 ()"

3. CUTOFF RATE

The cutoff rate Ry has been generally referred to as the
practical channel capacity. Reliable communication beyond
this rate would become very expensive to achieve. Even after
the discovery of near-Shannon limit achieving codes such
as turbo and LDPC codes [10, 11], the required large block
size and inherent delays would make the cutoff rate a valid
figure-of-merit to compare different modulation schemes.
The cutoff rate for discrete-alphabet modulation schemes
[12] is defined as

R0—210g2|/8|—10g2<z Z C(Si;sj)>> (2)
SiESs;ES

where || is the size of the modulation alphabet § and
C(si,s;) is the Chernoff factor defined as

C(si,s;) = Eg[e™P], (3)

where 8 = Zf\i‘laé) and d = E[s; — sj|*/4Ny. Recognizing (3)
as the moment generating function (MGF) of the random
variable 8 and using the result of [8], the Chernoff factor can
be written as

C(S,‘,Sj)
- M, <M> Jw e £ () [Far ()] [ a2 (d, )™ i,
Mc 0
(4)

where f2(x) and Fp(x) are, respectively, the probability
density function (pdf) and cumulative distribution function
(CDF) of the SNR of each diversity branch, and ¢, (d, x) is
the marginal MGF [8] defined as

bo(d,x) = j £ (1)t (5)

For Nakagami fading channels, the pdf and CDF are given,
respectively, by

) — m m—1 _—mx
far () F(m)x e ™ x>0,m=0.5, (6)
Fp(x) = y(m,mx), x=0, m=0.5, (7)
where y(a,y) = (1/T(a))[] e *t* 'dt is the incomplete

Gamma function and I'(-) is the Gamma function. The
marginal MGF for Nakagami fading [8] is given by

1

Par(dyx) = r(m) (1+d/m)"

=1 —y(m,mx(1+d/m))].
(8)

Substituting (6)—(8) into (4), we obtain

M mm 1
C i»dj) = M
(s55) = M (M> T(m)™ (1 + d/m)" M=

X J exp (—mx(1+d/m))x™"
0

M-M,

y(m, mx)]

x[1 = y(m,mx(1+ d/m)) 1™ dx.
9)

Making the change of variable y = mx(1l + d/m) and

simplifying, (9) can be written as

M M
C i»9j) = £ I d >
(5o5)) < )[F(m)(l+d/m)] I ey gy
(10)

where g(y) is given by

e =[(m )] sl a

Using the GLI rule from [9], the integral in (10) can be
evaluated efficiently as

j: e y"lg(y)dy ~ P> wu(p) gym(p)),  (12)
p:l

where {w,,(p)} are the weights of the GLI rule for a specific
m and y,,(p) is the pth abscissa. Both {w,,(p)} and {y,(p)}
are computed according to the GLI rule as in [9]. It was
found through our simulations that P = 20 is enough to get
the required accuracy in the bound.

The cutoff rate of GSC systems with M = 4 over
Nakagami fading channels with m = 2 is shown in Figure 1.
In the figure, GSC systems employing 8PSK, QPSK, and
BPSK are considered. We observe in the figure that as the
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FiGure 1: Cutoff rate of coded GSC with M = 4 and different
number of selected diversity branches in Nakagami fading with
m=2.

number of combined diversity branches increases, the cutoff
rate increases. This is expected since combining more diver-
sity branches increases the reliability of the communication
system allowing higher transmission rate at the same SNR.
Figure 2 shows the cutoff rates of an 8PSK GSC system with
different combinations of M and M,. Note that the proposed
evaluation method of the cutoff rate is very simple and
efficient as compared with the integral method of [5].

4. BIT-ERROR PROBABILITY

The conditional pairwise error probability (PEP) for coded
GSC can be written as

P(S— S |A)
- M, 2 2

= P(Z > (I —awws = [ yo-ams]*) 20| A>a
=1

(13)

where yj ;) is the matched filter output corresponding to the
diversity branch with fading gain a;;), S and S are the length-
L vectors representing the correct and decoded codewords,
respectively, and A is an L X M matrix containing the fading
amplitudes affecting a codeword. The conditional PEP [12]
can be simplified as

M,

&

>

I=1i=1

pis—81m) - (23 Sy la-al' 14), (9

where & is a zero-mean Gaussian random variable with
variance 2LE,> ], Zﬁ”lalz’(i)lsl — 5|2, This probability [12]

can be further simplified as
L
Q(y2, fid), (15)

P(S—S|A) =

GSC(4,4)
GSC(4,3)

GSC (4,2)

Es/Ny (dB)

F1GURE 2: Cutoff rate of 8PSK-coded GSC with different number of
diversity orders in Nakagami fading with m = 4.

where d; = Els; — §|?/4Ny and B; = Z?ﬁ‘lai(i) is the
normalized SNR at the output of the GSC combiner for
symbol [ in the codeword. Using the the integral expression
of the Q-function, Q(x) = (1/7) [J* e(=*"/%n"0) 4@ [13], the
unconditional PEP is written as

n/2 L
P(S —8) = j ]_[Eﬁ i) g, (16)

where a9 = 1/sin’0, and the product is due to the
independence of the fading variables affecting different
symbols. Note that the expectation in (16) is the same as (3).
Thus starting from (9), and making the change of variable
y = mx(1+Baps/m), the unconditional PEP can be simplified
to

P(S — 9S)

a[mGHT”
o I(m)™e

J‘T[/Z L"{ 1
oy Latdym)™ ™) (1+ dyog/m) "™

X J e y’”‘h(y)dy}d@,
0
(17)
where h(y) is given by
M-M, M—1
3 ¥ |1, y(1+di/m)
h(y)_ [)/<M,1+d/m>] [l y<m’ (1+d1(x9/m) ’
(18)

and L, = || represents the minimum time diversity of the
code, where n = {l : s; # §}. Using the transfer function
of the code, the union bound on the bit-error probability is
finally given by

P [ MUY [+ for LD
"Taltm™ | Jo ol

}de,
I=1,D=¢"Es/No
(19)
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FIGURE 3: Bit-error probability of convolutionally coded GSC with
M = 4 in Nakagami fading with m = 2 (solid: bound, dashed:
simulation).

where D is a variable whose exponent represents the distance
from the all-zero codewords, I is a variable whose exponent
represents the number of information bits to the encoder,
and T(D(0),1) is the transfer function of the code evaluated
at D(0) that is given by

1
(1 +di/m)™ ™ V(1 + djag/m)"™

x j e y"h(y)dy,
0

W|D:efﬁs/4wo =
(20)

where h(y) is defined in (18). The expression in (20) is
evaluated using the GLI rule defined in (12) with P = 20,
as discussed in Section 3. Once (20) is evaluated for every
value of the argument 6, (19) is evaluated using a simple
trapezoidal numerical integration [9] since it is a definite
integral. It was found that 10 steps are enough to evaluate
(19) with a good accuracy.

The proposed bound was evaluated for a rate-1/2 (5,
7) convolutional code and an 8-state 8PSK TCM system
presented in [12, Section 5.3]. Nevertheless, the bound is
applicable to any coding scheme with a known transfer
function such as turbo codes and product codes. Figures 3—-5
show the simulation and analytical results for convolution-
ally and 8PSK TCM-coded systems over different Nakagami
fading channels and with different selected diversity branches
out of M = 4. We observe that the bound is tight to
simulation results for a wide range of SNR values, diversity
orders, and Nakagami parameters. It is also noted that the
bound is appropriate for Nakagami fading channels with
noninteger fading parameters. In addition, we note that the
bound is simple to evaluate using the GLI rule. Figures 6
and 7 show the performance of convolutional and 8PSK
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FIGURE 4: Bit-error probability of convolutionally coded GSC with
M = 4 in Nakagami fading with m = 0.75 (solid: bound, dashed:
simulation).
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FIGURE 5: Bit-error probability of 8PSK TCM-coded GSC with
M = 4 in Nakagami fading with m = 4 (solid: bound, dashed:
simulation).

TCM with SC over Nakagami fading channels, respectively.
From the figures, we observe that the bound is tight to
simulation results for a wide range of Nakagami parameters
and diversity orders. It is worth noting that the union bound
becomes less tight to simulation results as the SNR decreases,
which is a well-known property of the union bounding
technique [12].
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FIGURE 6: Bit-error probability of convolutionally coded SC with
different number of diversity branches in Nakagami fading wih m =
2 (solid: bound, dashed: simulation).
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FIGURE 7: Bit-error probability of 8PSK TCM-coded SC with
different number of diversity branches in Nakagami fading wih
m = 4 (solid: bound, dashed: simulation).

5. CONCLUSIONS

In this paper, we presented a new evaluation method for
the cutoff rate of coded GSC systems. In addition, we
derived a new union bound on the error probability of
coded coherent GSC systems over Nakagami fading channels.
Results show that the new bound is tight to simulation
results. Furthermore, the bound is general to any coded
system with a known transfer function, Nakagami fading

with a general Nakagami parameter m and any combinations
of diversity order, M, and selected diversity branches, M,.
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