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1. Introduction

Timing synchronization is an essential task of an orthog-
onal frequency division multiplex (OFDM) receiver, which
requires alignment of the discrete Fourier transform (DFT)
segments with OFDM symbol boundaries. Timing align-
ment errors may occur in cases where the DFT aperture
contains part of the guard interval that has been distorted
by intersymbol interference (ISI). This results in loss of
orthogonality due to spectral leakage [1], therefore, leading
to performance degradation.

Timing synchronization techniques proposed for OFDM
systems can be classified as either blind or data-aided. Blind
approaches exploit the inherent redundancy in the OFDM
signal structure due to, for example, cyclic prefix [2] or
windowing [3]. Radiometric detection and change-point
estimation principles may also be employed to estimate time-
of-arrival of a data frame in burst mode systems [4, 5]. Even
though blind techniques have the advantage of not requiring
extra overhead, their performance usually degrades when
the noise level is high or the channel distortion is severe,

therefore, their use is mostly limited to high signal-to-noise
ratio (SNR) applications [2].

Data-aided techniques offer the advantage of superior
performance in low SNR applications at the expense of
reduced spectral efficiency. These techniques benefit from the
correlation gain of a synchronization waveform embedded
into the transmitted signal, which can be maximized by a
judicious design of the waveform. In this scheme, the receiver
correlates a distorted received signal with its known replica
and marks the instant of maximum correlation as an estimate
of the timing synchronization point. High correlation gains
improve the detection of peaks buried under noise, therefore,
leading to better noise immunity.

One way of embedding a synchronization waveform
into a transmitted signal is to prefix it to the beginning
of the time-domain waveform in the form of a pream-
ble. Sequences with good autocorrelation properties are
commonly employed in this approach. There is extensive
literature on designing sequences with good autocorrelation
properties; see for example [6] for an overview. Chu
sequences, for instance, have perfect periodic autocorrelation
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properties, that is, their autocorrelation values are zero
except at zero lag [7]. Chu sequences belong to a class of
sequences called constant amplitude zero autocorrelation
(CAZAC) sequences and can be generated for arbitrary
lengths. Another useful class of sequences is the generalized
Barker sequences which have maximum aperiodic autocor-
relation sidelobe amplitudes of one [8]. Unlike CAZAC
sequences, there is no straightforward design scheme for
generalized Barker sequences and only sequences of length
up to 63 are known to date [9]. Even though, they have
favorable autocorrelation properties, neither CAZAC nor
Barker sequences have bandwidth restrictions. In bandlim-
ited systems, waveforms have to be spectrally shaped to meet
given bandwidth requirements to mitigate leakage to/from
neighboring channels. After spectral shaping, both CAZAC
and Barker sequences lose their optimal properties [10].

In addition to the time-domain embedding, synchro-
nization waveforms can also be embedded into the transmit-
ted signal in the frequency domain by allocating a number of
subcarriers for timing in OFDM systems. In this approach,
the transmitter encodes a number of pilot subcarriers with
known phases and amplitudes to create a signal for timing
synchronization. As the timing clock is spread over a number
of discrete tones in this approach [11], synchronization can
be achieved more effectively in selective fading channels [12].
Moreover, this approach facilitates the design of spectrally
limited synchronization waveforms because the transmitted
signal’s spectral characteristics can be easily controlled by
deactivating appropriate subcarriers.

In this paper, we address the autocorrelation properties
of synchronization waveforms created by embedded pilot
subcarriers in OFDM systems. The outline of the paper is as
follows: in Section 2, the problem definition is given and our
motivations are explained. A literature survey is presented
and our contributions are summarized. In Section 3, back-
ground information and mathematical definitions required
for derivations of the analytical expressions are given. In
Section 4, sidelobe behavior of both periodic and aperiodic
autocorrelation functions (ACFs) of the synchronization
waveforms are investigated and analytical expressions for the
sidelobe energies are derived. Some important properties of
ACFs resulted from analytical expressions are introduced.
In Section 5, minimization of the ACF sidelobe peak is
considered as a constrained nonlinear integer programming
problem and a suboptimal genetic search algorithm is
utilized. In Section 6, simulation results obtained for various
cases are presented. A summary and conclusions are given
in Section 7. For ease of exposition most of our proofs are
relegated to Appendices A, B, and C.

2. Preliminaries

2.1. Problem Definition. In this paper, we consider timing
synchronization waveforms that are created by summing
a number of orthogonal subcarriers called pilot tones.
Merits of such synchronization waveforms depend on the
selected parameters of the pilot tones such as locations,
amplitudes, and phases. Although pilot design could take
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Figure 1: Timing synchronization for noncontiguous OFDM-
based dynamic spectrum access poses challenges due to spectral
limitation requirements, see, for example, [13, 14]. A user may
decide to transmit in both vacant channels CH1 and CH3 without
interfering with the user(s) in channels CH2 and CH4. More
robust timing may be possible if the synchronization waveform is
spread over both CH1 and CH3, which can be achieved without
causing harmful interference to other user(s) by the pilot tone-
based synchronization scheme investigated in this paper.

into account the combinations of all three parameters, in
this work we narrow our focus to pilot locations only. We
also assume that the number of pilots that can be allocated
for synchronization is limited, that is, the number of pilot
tones is less than the total number of available OFDM
subcarriers. Thus, the problem addressed is manifested
as the selection of the best subcarrier locations for pilot
symbols such that the synchronization waveform has good
autocorrelation properties. A mathematical formulation and
a rigorous definition of the problem is presented in Section 4.

For most design problems, solutions require solving
constrained nonlinear integer programming problems, for
which analytical treatments are generally difficult. In this
paper, we focus our attention on special cases so that
we can derive analytical expressions to uncover the links
between pilot placement and the autocorrelation behavior
and discover some useful properties of the ACF to ease
waveform design process for more complex problems.

2.2. Motivation. Our motive for considering the defined
problem is three-fold. One reason is the overhead issue; if a
design requirement can be met by using only a small number
of pilot tones, then the remaining subcarriers can be used for
other purposes. Although the amount of overhead savings
is small in applications where the synchronization waveform
is needed only in the first frame of a long packet, savings
can be significant in systems that require synchronization
of each OFDM frame independently, as in the ALOHA
environment [12].

Our second motivation is the robustness of the reduced
pilot waveforms to deviations from their design specifica-
tions. It may be possible to design a waveform with higher
autocorrelation merit if all available subcarriers are utilized.
However, this waveform will experience every spectral notch
in the frequency-selective channel resulting in a deviation
in its merit from the designed value, depending on the
degree of selectivity of the channel. Although the merit
of a waveform designed using a reduced number of pilots
may be smaller than that of a waveform using all available
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subcarriers, a reduced pilot waveform may be preferable in
severely selective channels with multiple spectral notches, as
it is more likely to keep its designed merit.

Our last motivation for considering the presented scheme
is the increased demand for generating waveforms over
fragmented (noncontiguous) frequency bands. Noncontigu-
ous OFDM is being considered as a candidate solution
for dynamic spectrum access due to its flexibility and
adjustability to certain spectrum restrictions. More effective
synchronization waveforms conforming to such spectral
restrictions can be designed using the frequency domain
pilot allocation approach, see for example the case shown in
Figure 1. Therefore, the material presented in this paper can
be exploited in synchronization waveform design for agile
radios that are able to operate over fragmented frequency
bands.

2.3. Related Work. Embedded frequency domain pilot sub-
carriers have been utilized to ease several tasks such as chan-
nel estimation [15], peak-to-average power ratio reduction
[16], robust estimation of frequency offsets in frequency
selective fading channels [17] and suppression of out-of-
band radiation [18] in OFDM systems. Designing pilot tones
for specific purposes requires judicious selection of specific
parameters of the pilots such as locations, amplitudes and/or,
phases. For the purpose of channel estimation, for example,
the optimality condition stipulates equidistant pilots with
uniform amplitudes [19, 20]. Peak-to-average power ratio
reduction and sidelobe suppression problems, on the other
hand, can be solved by quadratic optimization of the pilot
amplitudes and phases [16, 18].

Pilot tone-assisted synchronization schemes have been
adopted by wireless communications standards such as
IEEE 802.11a [21] and Digital Radio Mondiale (DRM)
[22]. In the IEEE 802.11a standard, uniformly spaced pilot
tones modulated by a complex sequence are used to create
a periodic preamble waveform to ease frame detection
and timing synchronization. Periodic preambles facilitate
simple autocorrelation-based metrics for timing recovery;
however, a timing metric plateau inherent in these methods
causes large estimation errors. In [23–25], various periodic
preamble structures and metrics are proposed to improve
estimation performance by creating sharper correlation
peaks. In [26], performance of auto- and cross-correlation-
based metrics is compared in terms of synchronization
performance in an 802.11a system. The cross-correlation-
based metric utilizes the long preamble for synchronization,
which is created by modulating all useful subcarriers with
a binary sequence. In [10], instead of using a binary
sequence, the phases of all useful subcarriers are optimized
through a greedy search algorithm such that the resulting
time-domain waveform has good autocorrelation properties.
The authors show that such synchronization waveforms
outperform Barker and CAZAC sequences in a bandlimited
system.

Due to reasons stressed in Section 2.2, some applications
may obligate the use of a subset of all useful subcarriers.
In this case, waveform design requires optimal selection of

pilot tone locations as each selection results in a differ-
ent autocorrelation sidelobe pattern. Such an approach is
adopted in [12], in the context of an OFDM/FM system for
ALOHA environment in which each OFDM frame has to
be synchronized independently. Due to the limited available
spectrum, only a subset of subcarriers is reserved to keep
the overhead small. A suboptimal heuristic approach is used
to reduce the search time of the pilot location selection
process by dividing the search space into subgroups. A
brute-force search is then performed in a smaller subset
of subchannels and additional subchannels that provide
smaller sidelobes are added into the set. In [11], a pilot
tone-based synchronization scheme, inspired from a sonar
waveform design approach presented in [27], is proposed for
discrete multitone spread spectrum communication systems.
Nonuniformly spaced pilot tones are utilized to minimize
the harmonics of the autocorrelation function and reduce
high sidelobe peaks by spacing pilot tones at a prime number
or a Fibonacci series increment of the minimum frequency
spacing. Even though the proposed selections result in better
sidelobe behavior than the periodic placement, the proposed
pilot configurations are far from being optimal and their use
is limited due to particular spacing restrictions.

In the DRM standard [22], time reference subcarriers are
allocated to perform ambiguity resolution. Locations of a
predefined number of pilot cells are given in the standard;
however, the design process is not disclosed. In [28], a
suboptimal genetic search algorithm is proposed to yield
an effective solution for the pilot tone location selection
problem.

2.4. Contributions. Although the effect of pilot tone locations
on the characteristics of the ACF has been previously noted
and suboptimal search schemes have been proposed, neither
a detailed investigation nor an analytical treatment of the
problem has been presented in the literature.

In this paper, an in-depth discussion of pilot tone design
for timing synchronization in OFDM systems is presented.
Analytical expressions for both periodic and aperiodic ACF
sidelobe energy are derived and sufficient conditions for
obtaining minimum and maximum aperiodic ACF sidelobe
energy are presented. Some useful properties of the pilot
design problem such as invariance under transformations
and equivalence of complementary sets are demonstrated
analytically. Finally, the pilot tone design discussion is
expanded by including various examples and simulation
results obtained by using a genetic search algorithm.

3. Basic Definitions for Derivations

In this section, background information required for the
derivation of analytical expressions is presented along with
necessary definitions of merit measures that will be used in
the following to evaluate periodic and aperiodic ACFs.

3.1. Autocorrelation Function. Correlation gain of a syn-
chronization waveform is associated with its autocorrelation
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characteristics. The ACF measures self-similarity of a wave-
form at various time lags; therefore, it is a suitable tool for
estimating time of arrival of a known signal.

The ACF of a periodic discrete-time signal s(n) is defined
as

R(τ) =
N−1∑

n=0

s(n)s∗(n + τ), (1)

where τ is the integer time lag and N is the period of
s(n). R(τ) is also periodic with period N and is called the
periodic ACF. If s(n) is not periodic, then the aperiodic ACF
is employed, which is given by

C(τ) =
N−τ−1∑

n=0

s(n)s∗(n + τ), (2)

where 0 ≤ τ ≤ N − 1. Here, N is the length of the signal
sequence which is equal to single-sided autocorrelation
length.

3.2. Merit of Autocorrelation Functions. Merit of an ACF is
associated with its sidelobe pattern, that is, the off-peak
values of the correlation. A common approach to evaluate the
merit of an ACF is to measure a suitable norm of its sidelobes.
The pth-norm of the ACF sidelobe is defined as

Lp =
(N−1∑

τ=1

|ϕ(τ)|p
)1/p

, (3)

where ϕ can be either periodic or aperiodic ACF. The most
widely used norms in merit evaluations are Euclid (p = 2)
and Tchebychev (p = ∞) norms (also known as maximum
norm), which are used to define sidelobe energy and sidelobe
peak of the ACF as given in the following:

E = L2
2 =

N−1∑

τ=1

|ϕ(τ)|2,

Π = L∞ = max
τ /= 0

|ϕ(τ)|·
(4)

These norms are usually employed to calculate the merit
factor (MF) and peak-to-side-peak ratio (PSPR); they are
also defined as:

MF = ϕ(0)2

2E
,

PSPR = ϕ(0)
Π
·

(5)

MF and PSPR can be combined to develop new merit
measures as the minimization of one merit may not always
minimize the other. Selection of which norm to consider
usually depends on the specific problem; however, sidelobe
energy is often employed for analytical investigations as it is
more tractable than the maximum norm.

4. SynchronizationWaveform and
the Characteristics of Its ACF

Analytical treatment of pilot tone location selection problem
is difficult for most cases in which the maximum norm of
the ACF sidelobe is involved. In this section, we consider
the Euclidian norm due to its tractability and obtain some
analytical results for the ACF sidelobe energy.

4.1. Synchronization Waveform. An OFDM waveform is
composed of a sum of orthogonal subcarriers modulated by
data and/or pilot symbols. Let us assume that a subset of all
subcarriers is reserved for pilot symbols to achieve robust
timing synchronization and the remaining subcarriers are
modulated with data. The time waveform is given by the
IDFT of the modulated symbols

x(n) = 1
N

N−P∑

k=1

ake
jΩkn

︸ ︷︷ ︸
d(n)

+
1
N

P∑

k=1

bke
jwkn

︸ ︷︷ ︸
s(n)

, (6)

where Ωk = (2π/N)αk , wk = (2π/N)βk, αk ∈ Sd, k =
1, . . . ,N − P, βk ∈ Sp, k = 1, . . . ,P, and Sd and Sp are the
data and pilot tone sets, respectively. N is the DFT size, P
is the number of pilot subcarriers, ak and bk are the data
and pilot symbols, respectively. The signals d(n) and s(n)
are only a function of data and pilot symbols, respectively,
and these waveforms are orthogonal to each other (because
Sp ∩ Sd = ∅) when there is no frequency offset. In the
following, s(n) will refer to the synchronization waveform.

Suppose that P out of a total of N subcarriers of an
OFDM symbol are reserved for synchronization and all pilot
tones are modulated by unit amplitude zero phase symbols.
By fixing amplitudes and phases of the pilot symbols, we
focus our attention on pilot locations only for simplicity.
The corresponding time domain synchronization waveform
is given by

s(n) = 1
N

P∑

k=1

e jwkn. (7)

Our objective is to select Sp such that the ACF of s(n)
has a desirable sidelobe pattern. Both L2 and L∞ norms
are considered and analytical investigation of periodic and
aperiodic ACF sidelobe energy is presented in subsequent
sections.

4.2. Sidelobe Energy of the Periodic ACF

Theorem 1 (Periodic ACF sidelobe energy theorem). Side-
lobe energy of the periodic ACF of s(n) is given by

Ẽ = NP − P2

N2
· (8)

Proof. See Appendix A.

The sidelobe energy expression given in (8) can be
rewritten as

Ẽ = r(1− r), (9)
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Figure 2: Relation between periodic ACF sidelobe energy and the
number of pilot tones.

where r = P/N is the ratio of the number of pilot tones to
the total number of subcarriers. The expression (9) shows
that the sidelobe energy of periodic ACF is a function of
the ratio of the number of pilot tones to the total number
of subcarriers only, thus it is independent of pilot tone
locations.

Although the sidelobe energy expression given in (8) is
derived under a zero phase assumption of the pilots, the same
result holds when the pilot tones are modulated with nonzero
phase symbols. This is due to the Wiener-Khinchin theorem,
which relates the periodic ACF to the power spectral density
via the Fourier transform. Different selections of pilot phases
result in different synchronization waveforms; however, they
will have a common ACF as their power spectral density
functions are the same. Therefore, pilot phase selection will
not improve sidelobe energy characteristics of the periodic
ACF; however, proper selection of phases helps to reduce the
peak-to-average-power-ratio (PAPR) of the synchronization
waveform.

The relation between the number of pilot tones and the
sidelobe energy of the periodic ACF is plotted in Figure 2.
As seen from this figure, sidelobe energy increases with the
number of pilot tones until P = �N/2� and then reduces back
to zero when all subcarriers are used. However, in practice,
using all subcarriers may not be possible due to bandwidth
constraints. Hence, a synchronization waveform with perfect
autocorrelation cannot be designed. This result is a direct
consequence of the periodic ACF sidelobe energy theorem,
which is formulated in (8).

4.3. Sidelobe Energy of the Aperiodic ACF. If a periodic
correlation is employed for synchronization then at least two
periods of the waveform must be embedded in the transmit-
ted signal. If this is not feasible, due to overhead limitations,
one may opt to use aperiodic, instead of periodic, correlation.
In this section, aperiodic autocorrelation properties of the
synchronization waveform are investigated, the aperiodic

ACF sidelobe energy theorem is stated and some important
corollaries resulted from this theorem are presented.

Theorem 2 (Aperiodic ACF sidelobe energy theorem). Side-
lobe energy of the aperiodic ACF of s(n) is given by

Ê = P

3N
− P2

2N2
+

P

6N3
+

1
2N3

P∑

k=1

P∑

l=1, l /= k

csc2
(
wk −wl

2

)
·

(10)

Proof. See Appendix B.

Immediate results of this theorem follow.

Corollary 1. The sidelobe energy of the aperiodic ACF depends
on pilot tone locations.

Proof. See (10).

The aperiodic ACF sidelobe energy expression given in
(10) can be rewritten as a sum of two terms as follows:

Ê = κ + Δ, (11)

where

κ = P

3N
− P2

2N2
+

P

6N3
,

Δ = 1
2N3

P∑

k=1

P∑

l=1, l /= k

csc2
(
wk −wl

2

)
·

(12)

The term κ is a function of the number of pilot tones whereas
the term Δ is a function of subcarrier locations, therefore,
sidelobe energy depends on the number of pilot tones as well
as pilot locations.

Corollary 2 (Invariance property). The ACF sidelobe energy
remains unchanged under any transformation of pilot set that
does not change the relative distances of the pilot tones.

Proof. The sidelobe energy expression given in (10) is a func-
tion of the differences of pilot locations, that is, only relative
positions of the pilots determine the amount of sidelobe
energy. Thus any transformation such as translations, cyclic
shifts, or reversal of the pilot locations does not change the
merit of the original set.

The invariance property indicates the existence of mul-
tiple sets with identical ACF properties, which can be easily
obtained by simple transformations of the original set. This
property can be exploited in adaptive waveform design
applications in which waveform parameters are required
quickly adapt to changes in the RF environment.

The term Δ is a sum of sidelobe energy contributions due
to each pilot pair. Each pilot pair contributes to the sidelobe
energy with an amount depending on the separation between
two pilots. A plot showing the relation between pair distance
and corresponding sidelobe energy contribution is displayed
in Figure 3 for N = 64. As seen from the figure, sidelobe
energy contribution decreases with increasing pairwise pilot
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Figure 3: Relation between pairwise pilot distance and aperiodic
ACF sidelobe energy contribution for N = 64.

distance. This observation leads to some important results
of the aperiodic ACF sidelobe energy theorem, which are
summarized in the following two remarks.

Remark 1 (Maximum aperiodic ACF sidelobe energy). The
sidelobe energy of the aperiodic ACF is maximum when pilot
tones are placed adjacently.

As the sidelobe energy contribution of a pilot pair
decreases with the pilot separation, total sidelobe energy
is maximized when pilots are placed as closely as possible.
This condition is satisfied when pilot tones are adjacent (no
spacing between the pilots). The sidelobe energy value due
to this placement is the maximum among other possible
placements for the given number of pilot tones.

Remark 2 (Minimum aperiodic ACF sidelobe energy). The
sidelobe energy of the aperiodic ACF is minimum when pilot
tones are placed uniformly.

As the sidelobe energy contribution of a pilot pair
decreases with the pilot separation, total sidelobe energy is
minimized when pilots are placed maximally spaced. This
condition is satisfied when pilots are placed periodically
(equal spacing between the pilots). The energy value due
to this placement is the minimum possible sidelobe energy
value for the given number of pilot tones.

An example is provided in Figure 4 to explain Remark 2.
Assume that two pilot tones P1 and P2 are located at a
distance of 2Λ, and a third pilot P3 is placed between P1

and P2 such that the distances from P1 to P3 and P2 to P3

are equal. We name this placement scenario the equilibrium
state E0, (see Figure 3). Suppose the pilot P3 moves away
from P1 by an amount of λ, to reduce the sidelobe energy
contribution of the P1P3 pair by an amount of δE1. This
movement, however, decreases the P2P3 distance, therefore,
the energy contribution due to P2P3 pair increases by an

Λ Λ

P1 Λ + λ Λ− λ
P3 P3 P2

λ

Figure 4: If a pilot moves away from one pilot, it becomes closer to
another pilot in its neighborhood.

amount, δE2. It can be shown that the sidelobe energy
contribution f (x) = csc2(x) is a convex function of the
pairwise distance, therefore, δE2 is always greater than δE1.
This requires that the sidelobe energy be higher than in the
equilibrium state when the symmetry in pilot placement is
broken.

In order to place all P pilot tones at equal distances,
N/P must be an integer. Finding the minimum sidelobe
energy value and the corresponding pilot placement is not
straightforward if N/P is not an integer. However, optimal
pilot placements can be easily found for P = N − Q pilots if
N/Q is integer. Proving this statement requires the following
definition.

Definition 1 (Complementary pilot set). For any given pilot
set Sp of size P contained in the universal set of SN =
1, 2, . . . ,N , the complementary pilot set Sc of size N − P is
defined as the set of pilot locations not contained in Sp, that
is Sc = SN − Sp. Sp and Sc are called complementary sets.

Theorem 3 (Complementary set theorem). If C(τ) and
C′(τ) are the aperiodic ACFs of the synchronization and
complementary synchronization waveforms, respectively, then

C′(τ) = −C∗(N − τ). (13)

Proof. See Appendix C.

Corollary 3 (Equivalence of complementary sets). The ACF
sidelobe characteristics of the complementary sets are identical.

Proof. The ACF sidelobe characteristics depend on the
absolute value of the off-peak values of the ACF. Therefore,
the proof can be shown by taking the absolute value of both
the left and right sides of (13) and summing over τ values for
any P value:

(N−1∑

τ=1

∣∣C′(τ)
∣∣p
)1/p

=
(N−1∑

τ=1

∣∣C(N − τ)
∣∣p
)1/p

· (14)

This corollary shows how to construct a solution for a
pilot set of size N − P when a solution for a set size of
P is already available. Note that we have only shown that
the sidelobe behavior of the ACFs of synchronization and
complementary synchronization waveforms are identical.
However, waveforms may have different energies as they are
created with a different number of pilot tones; the energy
differences are contained in C(0) and C′(0) values.

Before concluding this section, we will now introduce a
trigonometric identity that is derived from the aperiodic ACF
sidelobe energy expression given in (10).
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Theorem 4 (Asymptotical value of Δ). .

lim
N→∞

1
2N3

N∑

k=1

N∑

l=1, l /= k

csc2
(
π(k − l)

N

)
= 1

6
· (15)

Proof. See Appendix D.

Equation (15) shows that the sum of sidelobe energy
contributions of pilot tones converges to 1/6 as the number
of subcarriers approaches infinity. This series converges quite
quickly; approximation error is less than 10−3 and 10−4 when
N > 16 and N > 40, respectively.

4.4. Sidelobe Peak of the ACF. In the previous section, it
was shown that equal spaced pilot placement meets the
minimum ACF sidelobe energy requirement.

In various applications, minimization of the ACF sidelobe
peak level may be required. A pilot sequence that minimizes
ACF sidelobe energy does not necessarily guarantee a low
sidelobe peak value. For example, equally spaced pilots,
which can achieve the optimal sidelobe energy value, gen-
erate secondary peaks with large amplitudes, that is, grating
lobes, in the ACF due to the periodicity of the waveform.
When N/P is integer and P pilots are equally spaced, the ACF
contains large peaks located at the integer multiples of N/P
and zeros elsewhere. The sidelobe energy is low due to the
existence of a large number of zeros, however, the amplitudes
of the secondary peaks become large. In this section, we
consider the minimization of the sidelobe peak level.

ACF sidelobe peak level expressions for periodic and
aperiodic ACFs are obtained from |R(τ)| and |C(τ)|, respec-
tively, and both can be shown to depend on pilot locations.
Finding the optimal pilot locations that minimize ACF
sidelobe peak level requires solving the following minimax
problem:

Sp = arg min
wk

max
τ /= 0

|ϕ(τ,wk)|, (16)

which is not tractable as the Tchebychev norm is not
differentiable. This problem can be reformulated as a
minimization of a differentiable Lp norm where p is taken
as a sequence of 4, 8, 12, 16, 32, 64. This approach (Pólya’s
algorithm) avoids many local minima, but unfortunately
there is no guarantee that the algorithm converges to a global
minimum [29].

The structure of the considered problem not only defies
an analytical solution but also prevents finding nontrivial
bounds for ACF sidelobe peak. The problem of obtain-
ing lower bounds for the modulus of certain classes of
trigonometrical sums has been considered in number theory
and harmonic analysis literature; see for example, [30–34].
Most studies in these fields consider total or truncated
sums of harmonics that are placed adjacently and they are
not directly applicable to the considered synchronization
waveform design problem in which the pilots are separated.

The problem of finding optimal pilot locations that
minimize ACF sidelobe peak can be considered as a non-
linear integer programming problem. This is because pilot
locations are only allowed to take integer values and the

cost function, that is, the ACF sidelobe norm expression is
nonlinear. Nonlinear integer programming problems can be
efficiently solved by using suitable search techniques. In the
following section, we utilize a genetic search algorithm as a
viable solution for the investigation of the ACF sidelobe peak
characteristics of the considered synchronization waveforms.
Note that similar to other approaches such as Pólya’s
algorithm, the genetic algorithm (GA) used in this work does
not necessarily converge to a global solution either.

5. Search for Lower ACF Sidelobe Peaks Using
Genetic Algorithm

In this section, a brief introduction to genetic algorithms
is given and basic terminology used in the genetic search
literature is presented. There is an extensive literature on
genetic algorithms and the interested reader is referred to
[35, 36] for an in-depth discussion of the topic.

5.1. Genetic Algorithms. GAs are stochastic search methods
inspired from the principles of biological evolution observed
in nature. Evolutionary algorithms operate on a population
of potential solutions by applying the principle of survival
of the fittest to produce better approximations to a solution.
The solution to a problem is called a chromosome. Each
chromosome is made up of a collection of alleles which
are the parameters to be optimized. A GA creates an initial
population (a collection of chromosomes), evaluates it, then
evolves the population through multiple generations in
search for a good solution of a problem using the so-called
genetic operators.

(i) Cross-over is a genetic operator that combines
(mates) two chromosomes (parents) to produce new
chromosomes (offspring).

(ii) Mutation is a genetic operator that alters one or more
gene values in a chromosome from its initial state.

(iii) Selection is a genetic operator that chooses a chro-
mosome from the current generation’s population
for inclusion in the next generation’s mating pool.
Several selection schemes can be used, such as the
roulette selection rule, in which the chance of a
chromosome getting selected is proportional to its
fitness.

GAs have been applied to a wide variety of optimization
problems including binary sequence search [37–39] and
antenna array thinning [40], which bear some similarities
with the pilot location selection problem considered in this
paper.

5.2. Pilot Location Search with Genetic Algorithms. A concise
description of the genetic search algorithm used for searching
pilot tone locations is described in what follows. Further
information regarding its convergence and its comparison to
a random search can be found in [28].

An initial population of M parent sequences is randomly
generated. Each parent sequence is a vector of length N ,
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Parent A

A1 A2

Split point

Offspring 1

A1B2

Pilot added

Cross-over

Mutation

Pilot removed

Offspring 2

B1A2

Split point

B1 B2

Parent B

Figure 5: An illustration of cross-over and mutation operations for
P = 5. Black circles show pilot locations.

and each element of a vector contains a binary zero or one
depending on the existence of a pilot tone at that location.
Time domain synchronization waveforms corresponding to
the parent sequences are computed by taking the IDFT
of each sequence in the population and their merits are
calculated. The GA is run to minimize sidelobe peak of the
aperiodic ACF.

The two sequences having the best merits (elite
sequences) are kept for the next generation and then
all sequences are crossed-over. The cross-over operation
naturally fits to the pilot location search problem as the merit
of a solution depends on the pairwise distances of pilots,
which is partly preserved and diversified under the cross-
over operation. At this stage, care is taken to ensure that the
resulting offspring sequences have P pilot tones only.

In order to prevent local minima, mutation is applied
by inverting randomly selected genes. When only one bit
is flipped the number of pilot tones is changed; therefore,
two random bits are flipped in order to keep the pilot tone
numbers fixed.

An illustration of the cross-over and mutation operations
is presented in Figure 5. Chromosomes from both parents
are split from a randomly chosen point and crossed-over
to generate new offspring. If an offspring has more than
the required pilot tones, then randomly chosen pilot(s)
is/are removed. If the offspring has less pilots than required,
pilot(s) is/are added randomly chosen locations.

The merits of all parent and offspring sequences are re-
evaluated after each cycle. Each sequence competes for the
next solution pool. The two elite sequence from the previous
generation replace the worst two solutions to increase the
probability of generating better sequences.

The cycle repeats a predetermined number of times or
until a solution with a predefined merit is achieved.

6. Simulation Examples

In this section, genetic search examples are presented to
gain insights into the ACF sidelobe peak behavior. In all
simulations, a DFT size of N = 64 is used and the search
algorithm runs to minimize the aperiodic ACF sidelobe peak.

the initial population size is determined to be 72, as the
optimal population size for problems coded as bit strings is
approximately the length of the string in bits for moderate
problem complexity [41]. Each member of the population is
crossed-over to double the initial size of 72, then the best 72
are chosen for the next iteration.

Mutation is applied in each iteration only to the
sequences that have the same merit [39]. Instead of running
a single long search, multiple shorter runs are employed. In
each case considered, 50 simulations starting from a different
initial solution pool are run for 1000 iterations.

Three cases are investigated in the simulations. In the
first example, no constraint on pilot locations is assumed;
therefore, the GA explores each DFT bin as a candidate pilot
location. Even though in practice some OFDM subcarriers
are typically reserved for various purposes, the uncon-
strained case serves as a benchmark for the investigations
of the ACF sidelobe peak behavior. In the second example,
practical bandwidth and DC level limitations are imposed
by excluding edge and zero subcarriers from the search
space. In the last example, we explore the relation between
pilot phases, the ACF sidelobe peak and the PAPR of
synchronization waveforms.

6.1. Unconstrained Pilot Locations. The genetic search algo-
rithm was run to obtain subcarrier locations for pilot set sizes
of 1 to 32. Subcarrier locations for pilot set sizes of 33 to
64 can be obtained without running a search by using the
complementary set theorem presented in Section 4.3.

Pilot locations extracted by the GA are shown in Figure 6.
In this figure, dark circles along the vertical axis mark the
locations of pilot subcarriers for a given number of pilot
tones, which is shown on the horizontal axis.

Sidelobe energy values of the waveforms constructed
from the pilot tone sets given in Figure 6 are shown in
Figure 7. Also shown in this figure are the lower and upper
sidelobe energy bounds, which can be calculated as described
in Section 4.3. As seen from this figure, waveforms with
low sidelobe peaks do not always have the minimal sidelobe
energy, that is, minimization of sidelobe peak does not
necessarily result in minimum sidelobe energy.

MF and PSPR values for the pilot sets given in Figure 6
are plotted in Figures 8 and 9, respectively. As seen from these
figures, both PSPR and MF increase monotonically with the
number of pilot tones when there are no constraints on pilot
locations.

6.2. Bandwidth and DC Subcarrier Restrictions. In practical
systems, transmitted waveforms must be bandlimited to
meet spectral masking requirements. Such waveform ban-
dlimiting can be accomplished in an OFDM system by deac-
tivating the subcarriers located at the edges of the spectrum.
Similarly, subcarrier zero is deactivated for receivers that
cannot handle DC offsets. For the case considered in this
example, the search algorithm runs in a constrained set,
which excludes subcarriers −31 to −27, 27 to 31 and 0, as
proposed in the IEEE 802.11a standard.
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Figure 6: Pilot locations that minimize the ACF sidelobe peak for
the unconstrained search. Pilot locations for P > 32 can be obtained
directly using this figure from the complementary set theorem.
For example, the configuration for P = 40 pilots is obtained by
interchanging black and white circles of the configuration for P =
24 (64− 40 = 24).

In the constrained case, trivial solutions for P values
greater than N/2 do not exist because the complementary set
theorem is not applicable due to the fact that some elements
of the complementary sets will exist in the constrained
region, so the GA is run for P = 1, 2, . . . , 52.

Pilot locations extracted by the search algorithm are
shown in Figure 10 whereas the corresponding MF and
PSPR curves are plotted in Figures 8 and 9, respectively.
Even though the MF of a waveform monotonically increases
with the number of pilot tones, the PSPR value does not
increase monotonically when there are constraints on the
pilot locations. For the considered example, the maximum
PSPR value is achieved when 40 out of 52 available pilots are
used, and a further increase in the number of pilots degrades
the PSPR.

6.3. Nonzero Pilot Phases. In the derivation of the analytical
expressions for the aperiodic sidelobe energy in Section 4,
pilot subcarriers are assumed to have zero phase to simplify
analytical treatment. However, the sum of subcarriers with
equal phases generates a waveform that has high PAPR,
which is not desirable as it results in inefficient use of power
amplifiers. The PAPR can be reduced if phase rotations are
introduced on the subcarriers; however, inappropriate phase
values may also increase the sidelobe peak of the ACF.

In order to explore the relations between pilot phases,
the aperiodic ACF sidelobe peak and the PAPR of the syn-
chronization waveform, PAPR and PSPR improving phases
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Figure 7: Aperiodic ACF sidelobe energy values of the waveforms
whose sidelobe peaks are minimized. Minimum and maximum
energy values are shown. (Minimum energy values for pilot num-
bers for which N/P is not an integer are obtained by interpolation
and plotted with dashed lines.)

−20

−15

−10

−5

0

5

10

15

20

M
F

(d
B

)

8 16 24 32 40 48 56 64

Number of pilot tones

Unconstrained
Constrained

Figure 8: MF values of the synchronization waveforms.

are introduced to the pilots. For PAPR reduction, we have
employed Schroeder’s phases [42]. These nonoptimal phases
are easy to implement and are known to provide significant
reduction in sidelobe peaks. For PSPR improvement, we have
modified the genetic algorithm as described below to obtain
proper phase values.

To generate an initial solution set, randomly drawn phase
values quantized into 1024 levels are used to modulate pilot
subcarriers. During the cross-over, parents swap the phases
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Figure 9: PSPR values of the synchronization waveforms. Note that
the PSPR value does not increase monotonically with the number
of pilot tones in the constrained case.
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Figure 10: Pilot locations that minimize the ACF sidelobe peak for
constrained search.

of the pilots without changing their locations. Similarly,
mutation is applied to the phase of a gene, which is modified
with a randomly selected value from the set of quantized
phase values.

PAPR reducing Schroeder’s phases and PSPR improving
phase values obtained from the modified GA are given in
Table 1 for P = 15. Note that these values are the principal
phase values normalized by π.

PAPR reducing Schroeder’s phases and PSPR improving
phase values are used to modulate pilot subcarriers. The
PSPR and PAPR of the resulting waveforms are shown in
Figures 11 and 12, respectively. As seen from these figures,
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Figure 11: PSPR comparison of waveforms generated by using zero,
PSPR, and PAPR reducing phases.
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Figure 12: PAPR comparison of waveforms generated using zero,
PSPR improving, and PAPR reducing phases.

PSPR improving phase values, which are not optimal for
PAPR reduction, achieves significant PAPR reduction in
addition to sidelobe peak suppression. On the other hand,
even though the PAPR gain of Schroeder’s phases is slightly
better than the PAPR gain of the PSPR phases, Schroeder’s
phases degrade the PSPR significantly.

It is observed from Figure 12 that, for some P values, such
as P = 12, 15, and 19, the PAPR values of the waveforms
resulting from the use of Schroeder’s phases are higher than
the PAPR values of the waveforms resulting from using
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Table 1: Schroeder’s phases (φ1) and PSPR improving phase values obtained from the modified GA (φ2) for P = 15.

k −21 −20 −18 −15 −13 −10 −5 −3 −1 6 8 12 19 20 26

φ1 1.34 0.88 1.56 0.06 1.44 1.03 0.44 1.06 0.22 1.72 0.56 1.59 0.69 0.91 1.00

φ2 1.93 0.31 1.58 0.21 0.25 1.99 1.62 1.85 1.56 1.38 1.45 1.41 0.12 0.12 1.79

the GA. We note that the Schroeder’s rule is a simple intuitive
rule for phase angle adjustment based on the assumption that
the number of harmonic components is large. Therefore, it is
not implausible to observe the behavior shown in Figure 12,
especially, when the number of subcarriers is small compared
to the total number of subcarriers. Its simplicity paired with
the fact that the Schroeder’s rule may produce substantially
lower peak values even when the assumption does not hold
are the main motivations to use Schroeder’s phases in the
PAPR comparison.

7. Conclusions

In this paper, synchronization waveforms composed of a
sum of orthogonal complex exponentials are considered for
timing synchronization of OFDM systems. Sidelobe energy
expressions for periodic and aperiodic ACF are derived. It is
shown that the periodic ACF sidelobe energy is independent
of the locations and phases of the subcarriers whereas the
aperiodic ACF sidelobe energy depends on the pilot loca-
tions; therefore, optimal waveform design requires judicious
selection of the pilot locations. Pilot configurations that
would result in maximum and minimum sidelobe energy
level for a given number of pilot tones are presented. Some
properties of the ACF are introduced to use in waveform
design process.

Finding pilot locations that minimize ACF sidelobe peak
is not trivial; therefore, we resort to a search algorithm.
Simulation results show that increasing the number of pilot
tones does not necessarily improve sidelobe peak behavior of
the ACF when the waveforms are spectrally constrained.

The aperiodic ACF sidelobe peak can be further reduced
by proper selection of the pilot phases. When subcarrier
phases are selected to further minimize the ACF sidelobe
peak, the resulting waveform has a significantly reduced
PAPR due to unequal pilot phases.

We have obtained the ACF sidelobe energy expressions
analytically and provided pilot placement requirements for
minimum and maximum aperiodic ACF sidelobe energy lev-
els. We also considered sidelobe peak level and we employed
a search algorithm for the minimization of sidelobe peak
level due to the intractability of the problem. Thus, obtaining
useful bounds for the aperiodic ACF sidelobe peak level
remains as an open problem.

In this paper, we assumed that pilot tones are modulated
by zero phase symbols in the derivation of the aperiodic ACF
sidelobe energy. An analytical investigation of the impact of
pilot phases on the aperiodic ACF sidelobe energy is a subject
for future work.

Appendices

A. Proof of the Periodic ACF Sidelobe Energy
Theorem (Derivation of Ẽ)

By substituting (7) into (1) we obtain

R(τ) = 1
N2

N−1∑

n=0

( P∑

k=1

e jwkn

)( P∑

l=1

e− jwl(n+τ)

)

= 1
N2

N−1∑

n=0

P∑

k=1

P∑

l=1

e− j(wl−wk)ne− jwlτ .

(A.1)

The sum terms can be split into two by grouping terms
for k = l and k /= l as shown in what follows:

R(τ)= 1
N2

⎡
⎢⎢⎢⎢⎣

N−1∑

n=0

P∑

l=1

e− jwlτ +
P∑

k=1

P∑

l=1, l /= k

e− jwlτ
N−1∑

n=0

e− j(wl−wk)n

︸ ︷︷ ︸
zero

⎤
⎥⎥⎥⎥⎦
.

(A.2)

The under braced term is equal to zero as the sum is carried
over a full period of the complex exponential. Therefore, we
have the following equation:

R(τ) = 1
N2

N
P∑

l=1

e− jwlτ = 1
N

P∑

l=1

e− jwlτ . (A.3)

If we substitute R(τ) in |R(τ)|2 = R(τ)R∗(τ), we obtain

|R(τ)|2 = 1
N2

P∑

k=1

P∑

l=1

e− j(wk−wl)τ

= 1
N2

[
P +

P∑

k=1

P∑

l=1, l /= k

e− j(wk−wl)τ

]
.

(A.4)

Using the Euler formula, the complex exponentials on the
right can be written as sums of cosine and sine terms yielding

|R(τ)|2 = 1
N2

[
P +

P∑

k=1

P∑

l=1, l /= k

cos
(
wk −wl

)
τ

]
, (A.5)

where we have used sin(−x) = − sin(x).
The total sidelobe energy of the periodic ACF, Ẽ, is given

by the sum of energies of the off-peak values:

Ẽ =
N−1∑

τ=1

|R(τ)|2· (A.6)
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By substituting (A.5) into (A.6), we obtain

Ẽ = 1
N2

N−1∑

τ=1

[
P +

P∑

k=1

P∑

l=1, l /= k

cos
(
wk −wl

)
τ

]

= 1
N2

[
P(N − 1) +

P∑

k=1

P∑

l=1, l /= k

N−1∑

τ=1

cos
(
wk −wl

)
τ

]

= 1
N2

[P(N − 1)− P(P − 1)] = NP − P2

N2
,

(A.7)

where we have used the fact that
∑N−1

τ=1 cos(wk −wl)τ = −1.

B. Proof of the Aperiodic ACF Sidelobe Energy
Theorem (Derivation of Ê)

By substituting (7) into (2) we obtain

C(τ) = 1
N2

N−τ−1∑

n=0

P∑

k=1

P∑

l=1

e− j(wl−wk)ne− jwlτ

= 1
N2

[
(N − τ)

P∑

l=1

e− jwlτ

+
P∑

k=1

P∑

l=1, l /= k

e− jwlτ
N−τ−1∑

n=0

e− j(wl−wk)n

]
.

(B.1)

Using geometric series expansion:

N−τ−1∑

n=0

e− j(wl−wk)n = 1− e j(wl−wk)τ

1− e− j(wl−wk) , (B.2)

we obtain

C(τ)=
(

1− τ

N

)
R(τ)

− 1
N2

P∑

k=1

P∑

l=1,l /= k

e− jwlτe j((wl−wk)/2)(τ+1) sin((wl−wk)/2)τ
sin((wl−wk)/2)

.

(B.3)

Applying standard trigonometric sum formulae we obtain

C(τ) =
(

1− τ

N

)
R(τ)− 1

N2
X(τ), (B.4)

where

X(τ) = j
P∑

k=1

P∑

l=1, l /= k

e− jwlτ cot
(
wl −wk

2

)
. (B.5)

The sidelobe energy of the aperiodic ACF is given by

Ê =
N−1∑

τ=1

∣∣C(τ)
∣∣2 =

N−1∑

τ=1

C(τ)C∗(τ)

=
N−1∑

τ=1

∣∣∣∣
(

1− τ

N

)
R(τ)

∣∣∣∣
2

+ φ1 + φ2,

(B.6)

where

φ1 = − 2
N2

N−1∑

τ=1

(
1− τ

N

)
R
{
R∗(τ)X(τ)

}
,

φ2 = 1
N4

N−1∑

τ=1

∣∣X(τ)
∣∣2
.

(B.7)

After tedious but rather straightforward calculations, one can
show that φ1 + φ2 = 0 by substituting R(τ) and X(τ) in (B.7)
and by using the following identities [43, pages 35–37]:

N−1∑

τ=1

sin(τx) = sin
(
N

2
x
)

sin(((N − 1)/2)x)
sin(x/2)

, (B.8)

N−1∑

τ=1

τ sin(τx) = sin(Nx)

4 sin2(x/2)
− N cos(((2N − 1)/2)x)

2 sin(x/2)
.

(B.9)

Therefore, we get the following equation:

Ê =
N−1∑

τ=1

∣∣∣∣
(

1− τ

N

)
R(τ)

∣∣∣∣
2

=
N−1∑

τ=1

∣∣R(τ)
∣∣2 − 2

N

N−1∑

τ=1

τ
∣∣R(τ)

∣∣2
+

1
N2

N−1∑

τ=1

τ2
∣∣R(τ)

∣∣2
.

(B.10)

The second term on the right-hand side can be shown to
cancel the first term by using the following trigonometric
identity [43, page 37]:

N−1∑

τ=1

τ cos(τx) = N sin(((2N − 1)/2)x)
2 sin(x/2)

− 1− cos(Nx)

4 sin2(x/2)
.

(B.11)

The sidelobe energy of the aperiodic ACF then reduces to

Ê = 1
N2

N−1∑

τ=1

τ2
∣∣R(τ)

∣∣2· (B.12)

This expression is calculated by substituting |R(τ)|2 given
in (A.5) into (B.12). This calculation requires the sum∑N−1

τ=1 τ
2 cos(τx), which can be obtained by differentiating

(B.9) with respect to x.
After straightforward calculations we obtain the ape-

riodic energy sidelobe energy expression as given in the
following:

Ê = P

3N
− P2

2N2
+

P

6N3
+

1
2N3

P∑

k=1

P∑

l=1, l /= k

csc2
(
wk −wl

2

)
·

(B.13)

C. Proof of the Complementary Set Theorem

If s(n) is the synchronization waveform composed using Sp,
then the complementary synchronization waveform s′(n) is
given by

s′(n) = 1
N

N−P∑

l=1

e jwln. (C.1)
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Since s(n) + s′(n) = δ(n), the aperiodic ACF of the
complementary synchronization waveform can be written as

C′(τ) =
N−τ−1∑

n=0

s′(n)
[
s′(n + τ)

]∗

=
N−τ−1∑

n=0

[
δ(n)− s(n)

][
δ(n + τ)− s(n + τ)

]∗
.

(C.2)

This reduces to

C′(τ) = C(τ)− s∗(τ) (C.3)

for τ /= 0. From (A.3) and (7), R(τ) = s∗(τ). If we substitute
R(τ) in (C.3) and use the well-known relation between the
periodic and aperiodic ACF:

R(τ) = C(τ) + C∗(N − τ), (C.4)

we obtain

C′(τ) = −C∗(N − τ). (C.5)

D. Asymptotical Value of Δ

The ACF of the synchronization waveform becomes an
impulse when all subcarriers, with unit amplitude and zero
phase, are used as pilots, therefore the sidelobe energy
becomes zero for P = N . Using this observation into (10),
we obtain

Ê = 0 =⇒ Δ = 1
2
− 1

3
− 1

6N2
. (D.1)

Asymptotical value of Δ is then obtained in the limit case
when the number of subcarriers approaches to infinity:

lim
N→∞

Δ = lim
N→∞

1
6
− 1

6N2
. (D.2)

Therefore, we get the following equation:

lim
N→∞

1
2N3

N∑

k=1

N∑

l=1, l /= k

csc2
(
π(k − l)

N

)
= 1

6
. (D.3)
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