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Hexagonal multicarrier modulation (HMM) system is the technique of choice to overcome the impact of time-frequency dispersive
transmission channel. This paper examines the effects of insufficient synchronization (carrier frequency offset, timing offset) on
the amplitude and phase of the demodulated symbol by using a projection receiver in hexagonal multicarrier modulation systems.
Furthermore, effects of CFO, TO, and channel spread factor on the performance of signal-to-interference-plus-noise ratio (SINR)
in hexagonal multicarrier modulation systems are further discussed. The exact SINR expression versus insufficient synchronization
and channel spread factor is derived. Theoretical analysis shows that similar degradation on symbol amplitude and phase caused
by insufficient synchronization is incurred as in traditional cyclic prefix orthogonal frequency-division multiplexing (CP-OFDM)
transmission. Our theoretical analysis is confirmed by numerical simulations in a doubly dispersive (DD) channel with exponential
delay power profile and U-shape Doppler power spectrum, showing that HMM systems outperform traditional CP-OFDM systems
with respect to SINR against ISI/ICI caused by insufficient synchronization and doubly dispersive channel.
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1. Introduction

Multicarrier modulation (MCM) is a popular transmission
scheme in which the data stream is split into several sub-
streams and transmitted, in parallel, on different subcarriers.
We consider MCM over time-varying multipath propagation
channels which spread the MCM signal simultaneously
in both the time and frequency domains. This spreading
induces both intersymbol interference (ISI) and intercarrier
interference (ICI) which complicate data demodulation. We
will refer to channels that are time dispersive and frequency
dispersive as doubly dispersive (DD) channels.

Orthogonal frequency-division multiplexing (OFDM)
systems with guard time interval or cyclic prefix can prevent
ISI, but do not combat ICI because they are based on
rectangular-type pulses. In order to overcome the aforemen-
tioned drawbacks of OFDM systems, several pulse-shaping
OFDM systems were proposed [1–15]. Most works on pulse
design exclusively dealt with rectangular time-frequency

(TF) lattices. It is shown that transmission in rectangular
lattices is suboptimal for doubly dispersive channels [9]. By
using sphere covering theory, the authors have demonstrated
that lattice OFDM (LOFDM) systems, which are OFDM
systems based on hexagonal-type lattices, provide better
performance against ISI/ICI. However, LOFDM confines
the transmission pulses to a set of orthogonal ones. As
pointed out in [2, 10, 13, 16], these orthogonalized pulses
destroy the time-frequency (TF) concentration of the initial
pulses, hence lower the robustness to the time and frequency
dispersion caused by the propagation channel.

In [16], the authors abandoned the orthogonality con-
dition of the modulated pulses and proposed a multicar-
rier transmission scheme on hexagonal lattice named as
hexagonal multicarrier modulation (HMM) by regarding
signal transmission as tiling of the TF plane. To optimally
combat the impact of the propagation channels, the lattice
parameters and the pulse shape of modulation waveform are
jointly optimized to adapt to the channel scattering function.
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It is shown that the hexagonal multicarrier transmission
systems obtain lower energy perturbation, hence outperform
OFDM and LOFDM systems from the robustness against
channel dispersion point of view.

Synchronization is considered as a key factor of designing
multicarrier modulation system receiver. The synchroniza-
tion precision significantly affects the receiver performance
and usually depends on the precision of carrier frequency
offset estimation and symbol timing. A generalized frame-
work for the prediction of OFDM system performance in
the presence of carrier frequency offset (CFO) and timing
offset (TO), including the transmitter and receiver pulse
shapes as well as the channel, is presented in [17]. The
signal-to-interference-plus-noise ratio (SINR) performance
low bound on the effects of Doppler spread in OFDM system
is studied in [18].

In this paper, our attention is focused on the analysis
of the effects of CFO and TO on the amplitude and phase
of the demodulated symbol by using a straightforward but
suboptimum projection receiver [2, 9, 10, 12, 13] in hexag-
onal multicarrier modulation systems. Furthermore, effects
of CFO, TO, and channel spread factor on the performance
of SINR in hexagonal multicarrier modulation systems are
further discussed. The exact SINR expression versus CFO,
TO, and channel spread factor is derived. Both theoretical
analysis and simulation results show that similar degradation
on symbol amplitude and phase caused by insufficient syn-
chronization is incurred as in CP-OFDM transmission. Our
theoretical analysis is confirmed by numerical simulations,
showing that HMM systems outperform traditional CP-
OFDM systems with respect to SINR against ISI/ICI caused
by CFO, TO, and doubly dispersive channel.

2. Signal Transmission and TF Lattice

It is shown in [16, 19] that signal transmission can be
viewed as tiling of the TF plane. In practice, almost all
communication systems transmit the information symbols
in a regular way, and the underlying tiling forms a lattice
in the TF plane. In a nutshell, a lattice V in K-dimensional
Euclidean space RK is a set of points arranged in a highly
regular manner. Since we consider the signal transmission
in the TF plane in this correspondence, we only confine our
attention to two-dimensional (2D) case.

Specifically, in OFDM system with symbol period T
and subcarrier separation F, the transmission functions of
OFDM system consist of translations and modulations of a
single prototype g(t), which constitute a Weyl-Heisenberg
system and create a 2D rectangular lattice with generator
matrix

V =
[
T 0

0 F

]
. (1)

Conventional time-division multiplex (TDM) mode and
frequency-division multiplex (FDM) mode can be viewed as
transmission on a one-dimensional (1D) lattice along the

time axis and frequency axis, with generators
[
T 0

]T
and

[
F 0

]T
, respectively, where the superscript (·)T represents

the transpose.

The lattice density is given by ρ = 1/
√

det(VTV),
where det(·) denotes the determinant. The quantity ρ
corresponds to the symbol density in the TF plane, which
was known as signaling efficiency to represent the number of
symbols per second per hertz. For signal transmission with
general transmission pattern V, the transmitted signal can be
expressed as

s(t) =
∑
z

czg
(
t,Vz

)
, (2)

where cz is the data symbol indexed by z, which is usually
taken from a specific signal constellation and assumed to
be independent and identically distributed (i.i.d.) with zero
mean and average power σ2

c ; g(t,Vz) is the modulation pulse
associated with cz and z = [m,n]T, m ∈ M, n ∈ N , while
m and n can be regarded as the generalized time index and
subcarrier index, respectively. Moreover, M and N denote
the sets from which m, n can be taken.

It is well known that when a signal is transmitted over
mobile radio channel, the energy of one symbol data will
spread out to neighboring symbols due to the time and
frequency dispersion, which produces ISI/ICI and degrades
the system performance. In the view of signal transmission
on lattice in the TF plane, the system performance is mainly
determined by two factors:

(i) the time-frequency localization of pulse shape g(t);

(ii) the distance between adjacent time-frequency lattice
point.

A better TF-concentrated pulse would lead to more
robustness against the energy leakage. It is obvious that
the larger the distance, the less the perturbation among the
transmitted symbols.

3. Hexagonal Multicarrier Transmission
System [16]

It is well known that the Gaussian pulse

gσ(t) =
(

2
σ

)1/4

e−(π/σ)t2
(3)

has the best energy concentration in the sense that it
achieves the equality in the Heisenberg uncertainty principle
WtWf ≥ 1/4π, where W2

t and W2
f are the centralized

temporal and spectral second-order moments, respectively
[20]. By the Heisenberg uncertainty principle, any signal
cannot be arbitrarily concentrated in the time and frequency
directions simultaneously, which suggests that they must
occupy some area in the TF plane.

The product WtWf characterizes the energy concentra-
tion of a pulse in the TF plane. The smaller the value of
WtWf is, the more concentrated the pulse will be. Hence,
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the Gaussian pulse is the natural choice as modulation
waveform, in an attempt to achieve minimum energy pertur-
bation over TF dispersive channels. Note that the parameter
σ determines the energy distribution of the Gaussian pulse in
the time and frequency directions, respectively. To be more
specific, we have σ =Wt/Wf .

The ambiguity function of prototype is defined by

Agσ (τ, υ) =
∫∞
−∞

gσ(t)gσ∗(t − τ)e− j2πυt dt

= e−(π/2)((1/σ)τ2+σv2)e− jπτv,

(4)

where (·)∗ denotes the complex conjugate. It can be viewed
as the 2D correlation between g(t) and its shifted version by τ
in time and υ in frequency in the TF plane. We can conclude
from (4) that the ambiguity function of the Gaussian pulse is
an ellipse in the TF plane.

As pointed out in [16], for a given signaling efficiency, the
information-bearing pulses arranged on a hexagonal lattice
can be separated as sufficiently as possible in the TF plane.
An example of hexagonal transmission pattern

Vhex =

⎡
⎢⎢⎢⎣
T

2
0

F

2
F

⎤
⎥⎥⎥⎦ (5)

which is named as hexagonal multicarrier modulation is
illustrated in Figure 1.

For signal transmission with general transmission pat-
tern Vhex, the transmitted signal can be expressed as

s(t) =
∑
z

czg
σ
(
t,Vhexz

)

=
∑
m

∑
n

cm,ng
σ
(
t −m

T

2

)
e j2π(m+2n)(F/2)t,

(6)

where g(t,Vhexz) is the modulation pulse associated with
cz. The signaling efficiency can be easily calculated as ρ =
1/
√

det(VT
hexVhex) = 2/TF.

It is shown in [16] that the symbol energy perturbation
function is dependent on the channel scattering function and
the pulse shape. To optimally mitigate ISI/ICI caused by the
mobile radio channels, the choices of modulation pulse and
lattice generate matrix parameters should be matched to the
maximum multipath delay spread and Doppler shift. The
optimal system parameters for TF dispersive channels with
exponential-U scattering function can be chosen as [16]

σ = Wt

Wf
= α

τrms

fd
= √3

T

F
,

σ = Wt

Wf
= α

τrms

fd
= 1√

3
T

F
.

(7)

Time
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u
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T

Figure 1: Partition of the hexagonal lattice into a rectangular
sublattice Vrect1 (denoted by ) and its coset Vrect2 (denoted by ).

The baseband doubly dispersive channel can be modeled
as a random linear operator H :

H[s(t)] =
∫ τmax

0

∫ fd

− fd
H(τ, υ)s(t − τ)e j2πυt dτ dυ, (8)

where H(τ, υ) is called the delay-Doppler spread function,
which is the Fourier transform of the time-varying impulse
response of the channel h(t, τ) with respect to t. Moreover
τmax and fd are the maximum multipath delay spread and
the maximum Doppler frequency, respectively. In wide-sense
stationary uncorrelated scattering (WSSUS) assumption, the
channel is characterized by the second-order statistics:

E
[
H(τ, υ)H∗(τ1, υ1

)] = SH(τ, υ)δ
(
τ − τ1

)
δ
(
υ − υ1

)
, (9)

where E[·] denotes the expectation and SH(τ, υ) is called the
scattering function, which characterizes the statistics of the
WSSUS channel. We assume that E[H(τ, υ)] = 0. Without

loss of generality, we use
∫ τmax

0

∫ fd
− fd

SH(τ, υ)dτ dυ = 1, which
means that the channel has no overall path loss.

It is shown in Figure 1 that the original hexagonal lattice
can be expressed as the disjoint union of a rectangular
sublattice Vrect1 and its coset Vrect2. The transmitted signal
(6) can be expressed as

s(t)=
∑
m

∑
n

[
c1
m,n g(t −mT)e j2πnFt

+ c2
m,n g

(
t −

(
m +

1
2

)
T
)
e j2π(n+1/2)Ft

]

=
∑
m

∑
n

[
c1
m,n g

1
m,n(t) + c2

m,n g
2
m,n(t)

]
,

(10)

where c1
m,n and c2

m,n represent the symbols coming from Vrect1

and Vrect2, respectively.
The received signal is

r(t) = H[s(t)] + n(t), (11)
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where n(t) is the AWGN having variance σ2
n . To obtain the

data symbol ĉim,n, the receiver [2, 9, 10, 12, 13] projects on
gim,n(t), i = 1, 2, that is,

ĉim,n =
〈
r(t), gim,n(t)

〉
= 〈H[s(t)], gim,n(t)

〉
+
〈
n(t), gim,n(t)

〉
=
∑
j

∑
m′,n′

c
j
m′,n′

〈
H
[
g
j
m′,n′(t)

]
, gim,n(t)

〉
+
〈
n(t), gim,n(t)

〉
.

(12)

4. Effects of Nonideal Transmission Conditions

Without loss of generality, we assume a timing offset Δt
and carrier frequency offset Δ f ; the received data symbol
by using a projection receiver [2, 9, 10, 12, 13] can be
expressed as

ĉim,n =
〈
e j2πΔ f tr(t), gim,n(t − Δt)

〉
=
∑
m′,n′

cim′,n′
〈
e j2πΔ f tH

[
gim′,n′(t)

]
, gim,n(t − Δt)

〉

+
〈
n(t), gim,n(t − Δt)

〉
= cim,n

〈
e j2πΔ f tH

[
gim,n(t)

]
, gim,n(t − Δt)

〉

ξN+I ⇐=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

+
∑

m′ /=m, n′ /=n

cim′,n′
〈
e j2πΔ f tH

[
gim′,n′(t)

]
, gim,n(t−Δt)〉

+
∑

m′,n′, j /= i

c
j
m′,n′

〈
e j2πΔ f tH

[
g
j
m′,n′(t)

]
, gim,n(t−Δt)〉

+
〈
n(t), gim,n(t − Δt)

〉
= e− j2π(Δ f (m+(i−1)/2)T+(n+(i−1)/2)FΔt)

× cim,nAH
(
τmax, fd,Δt,Δ f

)
+ ξN+I ,

(13)

where

AH
(
τmax, fd,Δt,Δ f

)

=
∫ τmax

0

∫ fd

− fd
H(τ, υ)A∗g (τ + Δt, υ + Δ f )

· e j2πυ(m+(i−1)/2)Te− j2π(n+(i−1)/2)Fτ dτ dυ.
(14)

The demodulated signal now consists of a useful portion
and disturbances ξN+I caused by ISI, ICI, and AWGN.
Concerning the useful portion, the transmitted symbols cim,n
are attenuated by AH(τmax, fd,Δt,Δ f ) which is caused by
doubly dispersive channel, timing offset, and carrier fre-
quency offset. Meanwhile, the transmitted symbols rotated
by a time-variant phasor

φ = − j2π
(
Δ f
(
m +

(i− 1)
2

)
T +

(
n +

(i− 1)
2

)
FΔt

)
.

(15)

5. Effects of TO, CFO, and DD Channels
on SINR

The energy of received signal with TO and CFO over DD
channels can be expressed as

Er(Δt,Δ f ) =E

{∣∣∣∣∣
∑
m′,n′

cim′,n′
〈
e j2πΔ f tH

[
gim′,n′(t)

]
, gim,n(t−Δt)〉

+
〈
n(t), gim,n(t − Δt)

〉∣∣∣∣∣
2}

.

(16)

Using the assumption of transmitted symbols and the
WSSUS channel, we get from (16) that

Er(Δt,Δ f )

= σ2
c

∫
τ

∫
v
SH(τ, υ)

×
[∑
m,n

(∣∣Ag(mT + τ − Δt,nF + υ + Δ f )
∣∣2

+
∣∣∣∣Ag

((
m+

1
2

)
T+τ −Δt,

(
n+

1
2

)
F+υ+Δ f

)∣∣∣∣
2
)]

dτ dυ

+ σ2
n

∣∣Ag(0, 0)
∣∣.

(17)

Let Es(Δt,Δ f , τrms, fd) denote the signal energy

Es
(
Δt,Δ f , τrms, fd

)
= σ2

c

∫
τ

∫
v
SH(τ, υ)

∣∣Ag(τ−Δt, υ+Δ f )
∣∣2
dτ dυ.

(18)

Moreover, let EN(Δt,Δ f , τrms, fd) denote the interference-
plus-noise energy

EN
(
Δt,Δ f , τrms, fd

)
= σ2

c

∫
τ

∫
v
SH(τ, υ)

×

⎡
⎢⎣ ∑
z=[m,n]T

/= [0,0]T

(∣∣Ag(mT + τ − Δt,nF + υ + Δ f )
∣∣2

+
∣∣∣∣Ag

((
m +

1
2

)
T + τ−Δt,

(
n +

1
2

)
F

+υ+Δ f
)∣∣∣∣

2
)]

dτ dυ+σ2
n

∣∣Ag(0, 0)
∣∣.

(19)

We consider a DD channel with exponential delay power
profile and U-shape Doppler power spectrum; the scattering
function [21]

SH(τ, υ) = 1
√

1− (υ/ fd)2

(
τrms

)
e
−τ/τrms

(
1/π fd

) (20)

with τ ≥ 0, |υ| < fd, where τrms denotes the rms delay spread
and fddenotes the maximal Doppler spread.
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Figure 2: SINR for hexagonal multicarrier system for Δt ∈ [−0.5, 0.5].

Upon substituting the scattering function (20) into (18)
and (19), we have

Es
(
Δt,Δ f , τrms, fd

)

= σ2
c

πτrms fd

∫∞
0
e−τ/τrmse−(π/σ)(τ−Δt)2

dτ
∫ fd

− fd

e−σπ(υ+Δ f )2√
1− (υ/ fd)

2
dυ,

EN
(
Δt,Δ f , τrms, fd

)

= σ2
c

πτrms fd

{ ∑
(m,n) /= (0,0)

∫∞
0
e−τ/τrmse−π(mT+τ−Δt)2/σ dτ

×
∫ fd

− fd

e−σπ(nF+υ+Δ f )2√
1− (υ/ fd)2

dυ

+
∑

(m,n) /= (0,0)

∫∞
0
e−τ/τrmse−π((m+1/2)T+τ−Δt)2/σ dτ

×
∫ fd

− fd

e−σπ((n+1/2)F+υ+Δ f )2√
1−(υ/ fd)2

dυ

}
+σ2

n

∣∣Ag(0, 0)
∣∣.

(21)

SINR of received signal can be expressed as

RSIN
(
Δt,Δ f , τrms, fd

) = Es
(
Δt,Δ f , τrms, fd

)
EN
(
Δt,Δ f , τrms, fd

) . (22)

Plugging (21) into (22), we find

RSIN
(
Δt,Δ f , τrms, fd

)

= σ2
c

πτrms fd

∫∞
0
e−τ/τrms−((π/σ)(τ−Δt)2) dτ

∫ fd

− fd

e−σπ(υ+Δ f )2√
1−(υ/ fd)2

dυ

·
(

σ2
c

πτrms fd

{ ∑
(m,n) /= (0,0)

∫∞
0
e−τ/τrms−(π(mT+τ−Δt)2/σ) dτ

×
∫ fd

− fd

e−σπ(nF+υ+Δf)2√
1− (υ/ fd)2

dυ

+
∑

(m,n) /= (0,0)

∫∞
0
e−τ/τrms−(π((m+1/2)T+τ−Δt)2/σ)dτ

×
∫ fd

− fd

e−σπ((n+1/2)F+υ+Δ f )2√
1− (υ/ fd)2

dυ

}

+ σ2
n

∣∣Ag(0, 0)
∣∣)−1

.

(23)

Equation (23) indicates that RSIN(Δt,Δ f , τrms, fd) can be
modeled as a function of CFO, TO, and channel spread factor
τrms fd.
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Figure 3: SINR for hexagonal multicarrier system for Δ f ∈ [−0.5, 0.5].

6. Numerical Results and Disscussion

Here, we examine the SINR performance of hexagonal
multicarrier systems over a DD channel. All experiments
employed N = 80, σ = T/

√
3F hexagonal multicarrier

system, and τrms/ fd of DD channel is fixed. Obviously,
the hexagonal transmission pattern is fixed while the rms
delay spread and the maximal Doppler spread increase
simultaneously with the increasing of channel spread factor
τrms fd. The center carrier frequency is set to fc = 5 GHz
and the sampling intervals Ts = 10−6 s, F = 25 kHz, and
T = 1× 10−4 s. Δt in all simulation results are normalized to
T/2, and Δ f are normalized to F/2.

We fixed Δ f to 0 and the product τrms fd to 0.02, 0.01,
and 0.005. We repeat this simulation for a variety of values
SNR in the range of 10 dB∼ 30 dB. The result is shown in
Figure 2. We see that the power of the ISI and ICI caused
by TO strongly depends on the channel spread factor of
DD channel. The maximum SINR timing decreases with the
product τrms fd increasing, and the timing offset Δt increases
as the product τrms fd increases, that is, there is a delay
between the maximum SINR timing and the first tap of
DD channel from the SINR point of view. It can be seen
from Figure 2 that the aforementioned delay increases as
the product τrms fd increases. HMM does an excellent job of
maintaining high SINR. CP-OFDM with guard Ng = N/4
perfectly suppresses ISI caused by TO within cyclic prefix, but
does a poor job of combating the DD channel, and there is
an SINR gap between HMM and CP-OFDM about 4 ∼ 7 dB
at SNR = 30 dB.

In Figure 3, we fixed Δt to the maximum SINR timing
and the product τrms fd to 0.02, 0.01, and 0.005. It is seen
that the SINR depends on the channel spread factor of
DD channel and the SINR obtains its maximum value at
Δ f . Meanwhile, SINR decreases with the product τrms fd
increasing. From Figure 3, we see that HMM also does a
good job of ISI/ICI suppression, and there is also an SINR
gap between HMM and CP-OFDM about 4 ∼ 8 dB at
SNR = 30 dB and CFO in the range of −0.5 ∼ 0.5. Effects
of both CFO and TO on the SINR performance of hexagonal
multicarrier systems and CP-OFDM systems at SNR = 30 dB
are shown in Figure 4, τrms fd is set to 0.02.

The maximum SINR with the variety of SNR and τrms fd
is depicted in Figure 5. A lower bound (LB) on the effects
of Doppler spread in SINR performance of OFDM system
[18] is depicted for comparison. It can be seen that there is
a degradation of SINR with the increasing of τrms fd. There is
about 1 dB SINR loss of HMM system with τrms fd from 0.01
to 0.02 while OFDM SINR loss is about 3 dB. HMM system
does a good job of combating DD channel. The degradation
of SINR in CP-OFDM system increases as the channel spread
factor increases.

7. Conclusion

This paper examines the effects of insufficient synchroniza-
tion on the amplitude and phase of the demodulated symbol
by using a projection receiver in hexagonal multicarrier
modulation systems. Furthermore, effects of CFO, TO, and
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Figure 5: Effects of channel spread factor on SINR for hexagonal
multicarrier system.

channel spread factor on the performance of SINR in hexag-
onal multicarrier modulation systems are further discussed.
The exact SINR expression versus insufficient synchroniza-
tion and channel spread factor is derived. Both theoretical
analysis and simulation results show that similar degradation
on symbol amplitude and phase caused by insufficient syn-
chronization is incurred as in common OFDM transmission:
(1) CFO and TO introduce interference among subcarriers
and symbols; (2) the transmitted symbols experience an
amplitude reduction and a time variant phase shift due to
CFO; (3) the transmitted symbols are attenuated and rotated
by a phasor whose phase is proportional to the subcarrier

index and TO; (4) the SINR of received symbols decreases
as the channel spread factor increases. Our theoretical
analysis is confirmed by numerical simulations, showing that
HMM systems outperform traditional CP-OFDM systems
with respect to SINR against ISI/ICI caused by insufficient
synchronization and doubly dispersive channel.
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