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We present a codeword adaptation algorithm for collaborative multibase wireless systems. The system is modeled with multiple
inputs and multiple outputs (MIMO) in which information is transmitted using multicode CDMA, and codewords are adapted
based on greedy maximization of the signal-to-interference-plus-noise ratio. The procedure monotonically increases the sum
capacity and, when repeated iteratively for all codewords in the system, converges to a fixed point. Fixed-point properties and a
connection with sum capacity maximization, along with a discussion of simulations that corroborate the basic analytic results, are

included in the paper.
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1. INTRODUCTION

Code division multiple access (CDMA) schemes have been
proposed for use in future generation wireless systems due
to the fact that they enable efficient utilization of commu-
nication resources like available spectrum and transmitted
power, and have received increased attention from the wire-
less research community lately. In particular, the problem of
optimizing CDMA codewords has been addressed by several
researchers which have established algorithms that yield opti-
mal codeword ensembles for CDMA systems [1, 2, 3, 4, 5, 6].
Recently, optimal codeword ensembles for CDMA systems
have also been obtained by application of interference avoid-
ance methods (7, 8, 9, 10, 11, 12] which provide distributed
algorithms for codeword optimization in CDMA systems by
which users independently adjust codewords in response to
changing patterns of interference.

Optimal codewords provide all users in a CDMA system
with uniform signal-to-interference-plus-noise ratio (SINR),
and imply that the optimal linear receiver is a matched filter
for each codeword [6]. In addition, optimal codeword en-
sembles also maximize sum capacity [4]. We note that code-
word optimization algorithms available in the literature have
been defined in the context of single-cell CDMA systems in
which all users communicate with a single base station which
knows codewords for all users in the system and uses them

to decode the transmitted information symbols. In general,
wireless systems consist of a collection of users and base sta-
tions dispersed over a given geographical area, in which in-
dividual users are interested in sending information to a par-
ticular base station and each base cares only about decod-
ing the users assigned to it. When no cooperation among
users/bases is assumed, the problem of decoding one user at
its associated base station under interference generated by all
the other users in the system is an instance of the interference
channel [13, Chapter 14], and is still a mostly open research
problem.

We consider a wireless communication system with mul-
tiple transmitters and receivers geographically distributed
over some area as described schematically in Figure 1. We as-
sume that the available spectrum is shared by all users and
bases, as is the case in unlicensed bands, and make the sim-
plifying assumption that receivers are allowed to share in-
formation. This implies that the system under consideration
can be regarded as a system with multiple inputs and mul-
tiple outputs (MIMO), unlike the usual cellular scenario in
which users are assigned to bases based on a quality of service
criterion (like, e.g., the SINR). We note that such a collabo-
rative scenario may provide upper bounds on various mea-
sures of interest as one can do no better than jointly decode,
and has been considered by researchers in previous works
dealing with systems with multiple transmitters and receivers
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FIGURE 1: A multibase system with B receiving bases and L transmit-
ting locations, with each location k using M signatures. Triangles
denote receivers and circles denote transmitters/users.

(14, 15, 16, 17]. We also note that, while unusual in the con-
text of current multiple-base cellular communications sys-
tems where, in general, bases do not share information, the
availability of relatively low-cost high-speed terrestrial links
makes collaboration possibly practicable in future generation
wireless systems.

We assume that a multicode CDMA approach is used
for transmitting information by users in the collaborative
multi-base system, in which users transmit frames of data
by assigning each symbol in a given user’s frame a distinct
codeword for transmission, and we present a greedy algo-
rithm for codeword adaptation based on selfish optimiza-
tion of individual SINRs. We note that this is different from
[18] which deals with optimization of transmit covariance
matrices in multiuser MIMO systems, and from [19] which
presents joint transmitter-receiver optimization algorithms
for multiuser MIMO systems.

In addition to maximizing SINRs at each step, the pro-
posed algorithm also monotonically increases the sum ca-
pacity, which is a global criterion. Fixed-point properties of
the proposed algorithm are investigated, and the connection
with sum capacity maximization is made. We note that the
optimal fixed point of the algorithm corresponds to a max-
imum sum capacity, and optimal codeword ensembles sat-
isfy a simultaneous water-filling solution [20]. However, the
algorithm is not a water-filling procedure, but a codeword
adaptation one, and in the most general scenario, replace-
ment of one codeword of one user is followed by replacement
of another codeword of a different user. In fact, when the
number of codewords assigned to users is such that the trans-
mit covariance matrices do not have full rank, then water-
filling schemes may not even be applicable, as maximization
of the sum capacity under trace and rank constraints on user
transmit covariance matrices is no longer a convex optimiza-
tion problem and does not enjoy global convergence proper-
ties [21].

We have also performed simulations to corroborate our
analytical results, and discuss their results in the paper.

User ¢
symbols Serial to
parallel
(Frame)

FIGURE 2: Multicode CDMA approach for sending frames of infor-
mation.

2. SYSTEM MODEL AND PROBLEM STATEMENT

The system model is depicted in Figure 1 and consists of B
base stations that are situated in a given geographical area,
and L users transmitting from various locations within the
same region. We assume a common signal space represen-
tation of dimension N for all users/bases implied by finite
bandwidth and finite signaling interval constraints [22]. In
this signal space setting, we assume that during each signal-
ing interval of duration, T users transmit “frames” of data
using a multicode CDMA approach in which each symbol
in a given user’s frame is assigned a distinct signature (code-
word), and the transmitted signal is a superposition of all the
codewords scaled by their corresponding information sym-
bols, as described schematically in Figure 2. Thus, each user
¢ at a given location transmits the signal

Xe = %S%)bfﬁ)=58be ve=1,...,L, (1)
m=1
where
| | |

is the N X M, codeword matrix corresponding to user ¢, and
b, = [bﬁ” ce bﬁéi]T is the vector containing the informa-
tion symbols transmitted by user ¢ that are assumed uncor-
related, with zero mean and unit variance. We note that the
model is general and allows coexistence of users with differ-
ent data rates, since the number of symbols in a frame trans-
mitted during a signaling interval of duration 7' may not be
the same for all users. All signature sequences are assumed
to have unit energy, ||S£S)|| =1l,m=1,....Mp, £ =1,...,L,
and the user transmit power, which is the same for all sym-
bols in the frame and should appear as a scalar multiplying
the codeword matrix, is incorporated in the N X N gain ma-
trix Gg; which characterizes the vector channel between user
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¢ and base station j. In general, this gain matrix incorporates
channel attenuation and multipath [20].

We assume complete synchronization at all bases among
all users, which may be justified by assuming sufficiently long
signaling intervals relative to the communication bandwidth
alloted. Under this assumption, the received signal at base
station j is

L
rj = > GgSebe+w; Vj=1,..,B, (3)
=1

where w; is an additive Gaussian noise term with co-
variance matrix W;. Assuming collaboration, the informa-
tion received at all base stations is pooled, forming a BN-
dimensional received vector

I . Gy wi
=2 ¢ [Sebet] (4)
r5| | Ges A
r Ge w
with correlation matrix
L
R=E[rr"] = > R(¢) + W, (5)
e=1

where matrix R(€) represents user £’s contribution to R and
is expressed in terms of its codeword and corresponding gain
matrices as

R(€) = G,S¢S; G}, (6)

and W is the covariance matrix of the resulting noise vector
w. Thus we have

L
R =D G;S:S;G] + W. (7)
=1

Under Gaussian signaling and noise assumptions, the
sum capacity for the considered multibase system with col-
laboration in (4) is given by [5, 20]

1 1
Csum = 5log IR| — Elog [W|. (8)

We note that the sum capacity expression in (8) has been
used in the context of previous works on multiuser MIMO
systems [19, 23, 24].

Our objective is to define a codeword adaptation algo-
rithm for the system described by (4) which iteratively up-
dates codewords of all users until an optimal ensemble of
codewords is obtained. Forestalling the formal definition of
the proposed algorithm which is given in the following sec-
tion, we note that it is an interference avoidance algorithm
based on greedy SINR maximization for individual code-
words, which monotonically increases the sum capacity and
leads the system toward the socially optimal ensemble corre-
sponding to maximum sum capacity.

3. GREEDY SINR MAXIMIZATION THROUGH
DISTRIBUTED CODEWORD ADAPTATION

For the MIMO system in (4), we assume that linear receivers
are used, and would like to adjust codewords in the system,
one at a time, so that their SINR is maximized. This is a two-
step process in which we first derive the expression of the
linear receiver which yields the maximum SINR for a given
codeword, and then look to replace the considered code-
word with a new one which will increase the SINR. A similar
approach was used for a single-base system in [12]. How-
ever, the algorithm in [12] updates codewords by replacing
them with the current maximum SINR receiver, as opposed
to choosing a codeword and a receiver which absolutely max-
imize the SINR as we are doing here.

We simplify our notation and express the covariance ma-
trix in (7) in terms of individual codewords s;, rather than
user codeword matrices, as

M M
R=>Gis;s] G/ +W=>yy] +W, 9)
i1 i=1
Yi
where M = S5_, M, is the total number of codewords in
the ensemble, and the gain matrix G; will be equal for all the
codewords of a given user under the multicode assumption.
This is because in the most general scenario, one may replace
one codeword of a given user and follow it by the replace-
ment of one codeword of a different user. Thus, it is not the
user index which is relevant in the update process, but the
codeword index in the ensemble.
We denote by ¢; the NB-dimensional linear receiver asso-
ciated with the received vector y; = G;s; which implies that
the SINR for codeword s; is

. (c/y)’
Sk (cye)* +E[ (T n)’ ]

_ qyyic
¢ [R-yiy/ i

(10)
_clyiyic
C,TRI'CZ' ’

where R; = R —yyy;.

Since R; is positive definite,! we can consider an eigen-
decomposition R; = ®;A;®;, and define a new vector z; =
A)?®] ¢; such that ¢; = ®A;"?z;. This implies that the SINR
for codeword s; can be rewritten as

TA-124T T -1/2
_zZi A Ty @A Tz
2] z;

(11)

i

which represents the Rayleigh quotient of a rank-one ma-
trix and is maximized when z; = A; >®]y;. Thus, the SINR
maximizing linear receiver ¢; is

¢ = R;lyi = R;IGI'SI‘ (12)

IR; contains the noise covariance matrix W which is positive definite;
otherwise, the capacity will be infinite.
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which is an MMSE-type receiver [25]. We note that MMSE
receivers have been previously used for transmitter and re-
ceiver optimization in MIMO systems with multiple users
[18, 19]. For the MMSE receiver in (12), the SINR value is

yi = ¥/ R'yi = s G/R;'Gs; (13)

and is maximized when s; is the eigenvector x; correspond-
ing to the maximum eigenvalue (maximum eigenvector for
short) of G/ R} 1G;. Thus, replacement of codeword s; by x;
maximizes the SINR of codeword i which becomes
)/1, = X;G?R;IG,‘XZ' = Yi. (14)
Applying this procedure iteratively for all codewords
in the ensemble defines a codeword adaptation algorithm
which is formally stated below.

Greedy SINR Maximization Algorithm
(1) Initialize codewords {s;} and gain matrices G;.
(2) For each codeword in the ensemble i = 1,..., M, do.
(i) Replace codeword s; with the maximum eigen-
vector of matrix G/ R;''G;
(3) Repeat step (2) until a fixed point is reached.

Numerically, a fixed point of the algorithm is defined
with respect to a stopping criterion. That is, we say that a
fixed point is reached when the difference between two con-
secutive values of the stopping criterion is within a speci-
fied tolerance €. The stopping criterion can be an individual
one, like the codeword SINR or the Euclidean distance be-
tween codewords and their corresponding replacements, or
a global one like the sum capacity. We note that in the case
of individual stopping criteria, all values corresponding to all
codewords must be within the specified tolerance for the al-
gorithm to stop.

Mathematically, convergence of the greedy SINR maxi-
mization algorithm to a fixed point is ensured by the fact that
the algorithm monotonically increases the sum capacity, and
that the sum capacity is upper bounded. This does not neces-
sarily imply that the fixed point is unique, and theoretically,
many fixed points of this algorithm are possible. However,
extensive simulations have shown that the algorithm has al-
ways reached the maximum sum capacity point when start-
ing with randomly selected codewords, though we were not
able to prove this result in general.

In order to see that the proposed greedy SINR maximiza-
tion procedure monotonically increases the sum capacity, we
consider the determinant of R in the sum capacity expression
in (8) which we write in terms of codeword s; as

M
IRl = | > Gisksf G} + W+Gisis{ G/ | = |R;i +Gis;s] G/ |.
k#i
(15)
Since R; is invertible, it can be factored out:

R = R;[Ipy + R/ !G;s;s] G/ |, (16)

which implies that |R| can also be written as

IRl = |R;| [Isy + R 'Gisis/ G/ |
(17)
= |R;|(1+/G/R'Gis),

where the last equality follows from

[Ty +AB| = |I,+BA|, A€ Miym, B E Mysk.  (18)

From (14), we obtain
IR| = |Ri[ (1 +y) (19)

which shows that each iteration monotonically increases |R|.
This in turn implies a monotonic increase in the sum ca-
pacity, and because the sum capacity is upper bounded, this
proves our claim that the greedy SINR maximization algo-
rithm will reach a fixed point. Properties of this fixed point
as well as a connection with maximizing the sum capacity are
presented in the following sections.

To conclude this section, we note that the formal state-
ment of the greedy SINR maximization algorithm does not
impose a particular order of codeword adaptation, and in
the most general case, replacement of one codeword of one
user is followed by replacement of one codeword of a dif-
ferent user. We also note that the proposed SINR maximiza-
tion algorithm is a greedy interference avoidance algorithm
[11] since at each step, it greedily maximizes the SINR of an
individual codeword without paying attention to the conse-
quences that this action may have on the ensemble of code-
words. Different interference avoidance algorithms have been
previously derived for general multiaccess vector channels
[26] as well as for multiuser MIMO systems [8].

4. FIXED-POINT PROPERTIES OF THE GREEDY
SINR MAXIMIZATION ALGORITHM

Let {)L;} be the set of eigenvalues for the matrix G/ R;!G; in
decreasing order, )t’i > /13 > - > /\}'\,, with {xé} being the
corresponding eigenvectors. At a fixed point of the greedy
SINR maximization algorithm, any further change in user
codewords brings no improvement in the SINR values, which
will be equal to the maximum eigenvalues: y; = A}. The code-

words will be the maximum eigenvectors of G/ R} 1G;, that is,
s; = X}, and we can write

G;R;IG,‘S,' = /VIS,‘ = YiSi. (20)

In addition, any eigenvector of G; R; ' G; is also an eigenvec-
tor of G/ R™'G;. In order to see this, we start by writing

R=R;+Gis;s’ G =R, +Gixi (x1) ' G/ (21)

and using the matrix inversion lemma [27, page 19]

. , N
R!'=R! - R[lGix’l(l + (X’I)TG,TR{lGix’I) (x\) "G/ R/,
(22)



Greedy SINR Maximization in Multibase Wireless Systems

205

we get

(23)

LAY
) (Aj - 1+A}8lj)xj’

where §;; is the Kronecker delta operator which is 1 for i = j
and 0 for i # j.

Thus, at a fixed point, matrices G; R;!G; and G/ R™'G;
share the same set of eigenvectors. In addition, they have the
same eigenvalues with the exception of the one that corre-
sponds to s;, for which we have

Yi
1+)/,‘

GITR;IG,‘SI' = YiSi» G?RflG,‘S,‘ = Si. (24)

Using (24), we now note that at a fixed point of the al-
gorithm, all codewords of a given user ¢, which share the
same gain matrix G, must be orthogonal if they have dif-
ferent SINRs since they are eigenvectors of the same ma-
trix G, R™1G, corresponding to different eigenvalues. More

precisely, if st and s\ are two distinct codewords corre-

sponding to user ¢ but with different SINRs, yfﬁ) # yff), then
s 1 st Alternatively, when all codewords of a given user
have the same SINR at a fixed point, then user £’s codeword

matrix satisfies

G/R'G,S, = s 25
¢ ¢Se 1+)’e€ (25)

and y,/(1 + y,) is the maximum eigenvalue of G, R™!G;,.
To conclude this section, we note that empirically, we have
observed convergence of the algorithm from random initial
points to a fixed point in which all codewords of a given user
have the same SINR.

5. MAKING THE CONNECTION WITH
SUM CAPACITY MAXIMIZATION

We have seen in Section 3 that the greedy SINR maximiza-
tion algorithm for codeword adaptation monotonically in-
creases the sum capacity. We have also noted in Section 3
that the algorithm is a greedy interference avoidance algo-
rithm. Putting this observation together with the fact that
previously proposed interference avoidance algorithms con-
verge to a codeword ensemble that maximizes sum capacity
[9] makes us suspect that our proposed greedy SINR maxi-
mization algorithm for collaborative multibase systems also
yields sum-capacity-maximizing codeword ensembles. Thus,
in this section, we examine some properties of codeword en-
sembles which maximize the sum capacity and relate them to
the fixed-point properties of the proposed algorithm with the
goal of supporting the claim that the maximum sum capacity
point is among the fixed points of the algorithm.
Maximization of the sum capacity for a general multi-
access vector channel was solved in [20] as a spectral opti-
mization problem, where it has been shown that optimal user

transmit covariance matrices X, can be obtained as solution
of the following convex optimization problem:

¢=1,...,L
(26)

max Ceoum  subject to Trace [X,] = const,

If we assume that the noise is stationary with fixed covariance
matrix W, then (8) shows that maximizing the sum capac-
ity is equivalent to maximizing |R|. According to [20], this
implies that a water filling condition is satisfied for all users
simultaneously, for which eigenvectors of the interference-
plus-noise covariance matrix seen by a given user € align with
those of its transmit covariance matrix X, whose eigenval-
ues satisfy the well-known water-filling condition [13, page
253]. We note that optimal transmit covariance matrices may
be obtained through an iterative water-filling procedure [20],
and then subsequently used to construct optimal codeword
ensembles that maximize the sum capacity using established
algorithms [4, 5]. When additional rank constraints are im-
posed on user transmit covariance matrices, these can no
longer be obtained by solving a convex optimization problem
and using the iterative water-filling procedure, since maxi-
mizing the sum capacity subject to trace and rank constraints
on user transmit covariance matrices is currently an open
problem [21].

In our formulation, user transmit covariance matrices are
expressed in terms of codeword matrices as X, = S,S;, and
when users are assigned at least M, = N codewords for trans-
mission, then S,S; is not rank constrained and may span
the entire signal space. In this case, optimal S,S; must sat-
isfy a simultaneous water-filling condition as described in the
previous paragraph. When users are assigned M, < N code-
words for transmission, then S,S; is rank constrained. How-
ever, from the perspective of the simultaneous water-filling
solution [20] at the maximum sum capacity point, |R| will
be maximized when S,S; satisfies a water-filling condition
on a lower-dimension eigensubspace containing the smallest
eigenvalues of the interference-plus-noise covariance matrix
seen by user ¢. Regardless, in both cases, codewords which
maximize the sum capacity are eigenvectors of their corre-
sponding interference-plus-noise covariance matrix.

We will show that this feature is identical to that seen
for the fixed-point user codeword matrices obtained via the
SINR maximization described in Section 3. To begin, we
rewrite |R| using (5) and (6) as

IR = | Q¢ + GeSeS; Gy |, (27)

where Sp is a matrix of codewords with identical gain matri-
ces Gy corresponding to a given user £ and Q, = R — R(¢) is
the covariance matrix of the interference plus noise seen by
user £. This implies that

IR = | Qe [Ty + Q; "*GeSeS; G/ Q; V7 |
| Q[ | | IBN + H[SeS;H;— | (28)

= |Q¢| | Iy + H HeSeS; |,



206 EURASIP Journal on Wireless Communications and Networking

where Hy = Q;2G,. Using the singular value decomposi-
tion [28, page 443] for matrix Hy:

D
H, = U,D,V] = U, [ 01 vy, (29)
we define
-1
H, = U,D,V; = U, ["D(f } \'A (30)

such that H;I:Ie = I:I;Hg = IN. Also (H;Hz)(H;H(g) = IN
and we may then write

IRl = |Q¢| |H/H, | |H]He +S,S] | (31)

which can be rewritten using (29) and (30) as
Rl = |Q||6/Q7'Ge| [ (6/Qz'Ge) ' +8:87 | (32)

Each column of S; is an eigenvector of (G} Q,'G,)~! for
the sum-capacity-maximizing codeword ensemble, and the
water-filling solution dictates

[(GIQ;'Ge) ™" +8:5] |8e = ¢S, (33)

where ¢ denotes the corresponding “watermark.”

We now recall (25) and will show that this implies that
(33) is satisfied with ¢ = (1 + y¢)/y,. To show this, we rewrite
R as we did when we looked at its determinant in (27):

R= Qe + GgSeS;;rG;;r
— é/Z(IBN + Q;l/zGeSeS;QEI/Z)QéQ.

With H, defined as in (29), we then have

(34)

Iy + D;V;S,S; V., D 0
R=Q%w[N fresene T }Uzyzww
0 Iz-1)n
which implies that
R—l
s | DIVE(VeDAV] +8,87) VD0
= Qe Ue
0 Ig-1)n
X UeTQe—l/Z

(36)
in which we have used the matrix inversion lemma to com-

pute the inverse of the upper-left block in (35). Again using
the definition of H in (29) and applying it to (36), we obtain

-1
GIR'Ge = [(G{Q;'Ge) " +8¢8] | . (37)

Combining (37) and (25) which is satisfied at a fixed point
when all codewords of user £ have the same SINR, we obtain

1yl -1 e
[(rQr'G " +sisi] o= s (9)

which also implies that

_ 1+
[(G/Q;'Ge) ™" + 8687 [0 = —

Se (39)
Ye

which is identical to (33) in which ¢ = (1 + y,)/y,. How-
ever, before deciding that this is a water-filling solution, we
need to check that (1 + y,)/y, is the minimum eigenvalue
of (G} Q;'G,)™! + 8,8/, since water filling requires that all
the other eigenvalues be larger than c. This can be easily seen
from (25) which shows that if all codewords of a given user
have the same SINR y,, then ye/(1 + y¢) is the maximum
eigenvalue of G, R™!Gy, which implies that it is the mini-
mum eigenvalue of (G, R7!G;)!. Thus, the optimal point
which corresponds to the sum-capacity-maximizing code-
word ensembles is a fixed point of the proposed algorithm,
more precisely, that fixed point for which all codewords of a
given user have the same SINR. Empirically, we have always
observed convergence of the algorithm to this fixed point
from random initializations.

We conclude this section by noting that optimal code-
words which maximize the sum capacity could be found by
solving the constrained optimization problem

m(%szum subject to [|s9]|=1, m=1,...,M,, £=1,...,L,
{sm'}

(40)

having the same objective function as the one in (26), but
with different optimization variables and constraints. This is
a convex optimization problem only in the special case when
M, = N, but in general, convex optimization methods [29]
will not be applicable. From this perspective, the proposed al-
gorithm for greedy SINR maximization can also be regarded
as an attempt to provide a solution to the constrained opti-
mization problem in (40).

6. NUMERICAL RESULTS AND DISCUSSION

While we have not been able to prove that, in general, the
proposed algorithm for greedy SINR maximization con-
verges to optimal fixed points, we have performed exten-
sive simulations that corroborate our theoretical findings. To
keep the results general, we have not restricted the simula-
tions to particular modulation and propagation models, but
rather performed them in the arbitrary signal space with gain
matrices generated randomly. The noise covariance matrix
at each base station was also a randomly generated positive-
definite matrix.

6.1. Full codeword complement
(N codewords per user)

We first assumed that the number of codewords for each
user was equal to the number of signal space dimensions
(M = N). Numerical studies with signal space dimensions
ranging from 2 to 20 and different numbers of users indicate
that the proposed algorithm seems to reach the optimal point
corresponding to the maximum sum capacity from random
initial codeword ensembles without special assistance, and
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FiGure 3: Convergence of the sum capacity for the greedy SINR
maximization algorithm for a system with L = 8 users and B =
4 bases in a signal space of dimension N = 10 in 100 trials. One
ensemble iteration consists of 80 codeword updates.

no suboptimal fixed points were observed. That is, we have
invariably seen that the algorithm yielded ensembles where
all the codewords of any given user k are eigenvectors of
GxR™!Gy with identical eigenvalues yx/(1+yy). Furthermore,
at such fixed points, the remaining eigenvalues of GxR™!Gy
are smaller than yi/(1 + yx) which shows that a simultane-
ously water-filling solution is satisfied. In addition, the sum
capacity value at these points is identical to that obtained by
applying iterative water filling [20].

Experiments have shown rapid convergence of the algo-
rithm when the sum capacity was used as a global conver-
gence metric, usually within 3-5 iteration cycles. This is illus-
trated in Figure 3 which is typical for all the simulations. In
addition, codeword convergence was observed. That is, ex-
periments have shown that codewords converged to within
tight norm difference tolerances (|si(x + 1) — si(x)| < ¢€)
when starting from different random initializations. How-
ever, codeword convergence was much slower than conver-
gence in the sum capacity as can be seen from Figure 4 (> 30
ensemble iterations for ¢ = 1073).

6.2. One codeword per user

We have also investigated the effect of using fewer codewords
per user on the attainable sum capacity. The use of M, < N
codewords by users for transmission restricts transmit co-
variance matrices to lower-dimensional subspaces, and im-
poses additional rank constraints in the sum capacity maxi-
mization problem. As previously noted, maximizing the sum
capacity subject to rank constraints on transmit covariance
matrices is not a convex optimization problem and is still an
open research issue.

We have performed trials where each user’s power bud-
get could be applied to only a single codeword and cal-
culated the sum capacity achieved after application of the
greedy SINR maximization algorithm. In all cases, the sum

10!

100 &

log,, (norm difference)

107 : :I : : . : : . : : I:
0 20 40 60 80 100

Ensemble iterations

FiGure 4: Codeword convergence for the greedy SINR maximiza-
tion algorithm for a system with L = 8 users and B = 4 bases in a
signal space of dimension N = 10 in 100 trials.

capacity values obtained for given gain matrices and noise
covariance were identical even when starting from differ-
ent randomly chosen codeword ensembles. This might indi-
cate that the algorithm attains the sum capacity maximum
for this case and provides an analytic path for solution of
the reduced-rank sum capacity maximization problem. We
note that the final sum capacity value to which the algo-
rithm converges in this case is smaller than that obtained
when the available power budget is distributed equally to N
codewords as can be observed from Figure 5. We also note
an interesting trend: for a small number of users, the av-
erage penalty in the sum capacity associated with using a
single codeword was pronounced—about 76% for one user
per base with N = 10 dimensions and B = 4 bases. How-
ever, as the number of users was increased over 40, that is,
more than 10 users per base, the difference between the at-
tainable sum capacity and that achieved using single code-
words decreases to under 2% on average. Thus, the addi-
tion of users seems to enable the ensemble of user codewords
to get more closer to the maximum possible sum capacity,
and eventually approximate a simultaneously water-filling
solution.

7. CONCLUSIONS

We have proposed a codeword adaptation algorithm for
wireless systems with multiple bases which pool information
and jointly decode all users. The algorithm is based on greedy
SINR maximization and is an interference-avoidance-type
algorithm in which ensemble codewords are updated based
on a selfish optimization of an individual criterion rather
than on a socially optimal, global criterion. However, the
proposed algorithm also monotonically increases the sum
capacity, and usually converges to sum-capacity-maximiz-
ing codeword ensembles. While suboptimal ensembles of
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FIGURE 5: Sum capacity values achievable with one codeword per
user and with N codewords per user for various number of users in
the system for a system with L = 8 users and B = 4 bases in a signal
space of dimension N = 10.

codewords are theoretically possible, numerical experiments
have shown that these were never obtained when starting
from randomly chosen initial codewords, and the algorithm
has consistently yielded the sum-capacity-maximizing code-
word ensembles. This is consistent with similar observations
on related interference avoidance algorithms which showed
convergence to the socially optimal point that corresponds
to maximum sum capacity.

The algorithm requires knowledge of communication
channels between users and base stations, which are consid-
ered stationary for the duration of the transmission. The al-
gorithm is also applicable to fading channel scenarios [9, 30].
In such cases, the assumption of perfect channel knowledge
made in the paper can be relaxed, and one can assume that
the channel is either slowly varying, in which case channel es-
timates can be used for a relatively large number of transmis-
sion intervals, or that the average characteristics of the chan-
nel are known. These are reasonable assumptions for high
data rate systems and environments with reduced degrees of
mobility [31].

Our system model assumes that a multicode CDMA
transmission scheme is employed by users, and we have
also performed experiments which analyzed the penalty in
terms of sum capacity that is paid when users transmit us-
ing only one codeword versus multiple codewords. We note
that, when users are restricted to a single codeword and the
rank of the transmit covariance matrix is one, a significant
penalty in terms of sum capacity is paid when the num-
ber of users per base is small. However, increasing the num-
ber of users per base seems to allow the “full-codeword-
complement” sum capacity bound to be closely approached.

This suggests that for heavily loaded systems, each user need
not carry a full complement of codewords, thus reducing
modulation/demodulation complexity.
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