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Through the analysis of the probability density function of the largest squared singular value of a complex Gaussian matrix
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transmission/maximum-ratio-combining (MRT/MRC) systems. One is the asymptotic error performance (in terms of SNR) in
a single-user system, and the other is the asymptotic system capacity (in terms of the number of users) in the multiuser scenario
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coding and selection combining. Our results reveal a simple connection with system parameters, providing good insights for the
design of MIMO diversity systems.
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1. INTRODUCTION

Multi-input multi-output (MIMO) systems can be exploited
for spatial multiplexing or diversity gains. For a MIMO di-
versity system, appropriate diversity combining techniques
are employed at the transmit and receive end to effectively
transform the MIMO channel into an equivalent single-
input single-output (SISO) one, with increased robustness.
Depending on whether the channel state information (CSI)
is required at the transmitter, MIMO diversity schemes can
be divided into two categories: open-loop and closed-loop.
Among the former is the scheme that employs well-known
space-time block coding at the transmitter and maximum
ratio combining at the receiver, coined as STBC/MRC. As
certain feedback often exists in a wireless network (e.g., in
use scheduling discussed below), closed-loop schemes are
also of great interest. This category includes simple selec-
tion combining on both ends (SC/SC), joint maximum ratio
transmission and maximum ratio combining (MRT/MRC),
and various hybrid selection combining schemes in be-
tween.

For diversity usage, MRT/MRC systems provide the op-
timal performance reference [1–5], but its analysis is also
more involved than others (see relevant distribution func-
tions in Section 2), which will be the focus of this paper.
With the assumption that the receive beamforming vector
is matched to the transmit one with unit modulus for all

entries, the average output signal-to-noise ratio (SNR) of
an MRT/MRC system is upper and lower bounded in [1],
based on which the average symbol error rate (SER) and di-
versity order for a BPSK system are approximately derived.
With the restricting assumptions in [1] removed, it is known
that (for white Gaussian noise) the optimal transmit and re-
ceive beamformer are given by the principal right and left
singular vector of the channel matrixH, respectively; and the
MIMO channel is transformed into a SISO link with equiva-
lent channel gain σmax, the largest singular value of H. For
Rayleigh fading channels, the distribution of σ2max, already
derived in [6], is revisited in [2] and expressed in an alterna-
tive form—a linear combination of Gamma functions. Based
on this expression, the exact system SER is derived for gen-
eral modulation schemes in [2]. The distribution of σ2max for
Ricean fading is obtained in [4]. Unfortunately, results in [2]
and [4] do not easily lead one to an insightful understanding
of the impact of the system parameters, including the num-
ber of transmit and receive antennas M and N , on perfor-
mance. For example, in [2], the authors make two observa-
tions on MIMO MRT/MRC systems through simulation re-
sults: one is that whenM+N keeps fixed, the antennas distri-
bution with |M−N|minimized will provide the lowest SER,
while the other is that when M × N is fixed, a distribution
with the largestM+N gives the best performance. But the au-
thors do not provide a rigorous justification for both obser-
vations. Some similar observations are also made in [4]. In a
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multiuser wireless network, there is another form of diversity
called multiuser diversity, which reflects the fact of indepen-
dent fluctuations of different users’ channels [7]. Multiuser
diversity can be exploited to increase the system throughput,
through intentionally transmitting to the user(s) with good
channels at each instant (opportunistic scheduling). There
exist some work on the joint spatial diversity and multiuser
diversity systems. In particular, the system capacity analysis
for Rayleigh fading channels is given in [8], and in [9] for
more general Nakagami fading channels. While these results
are accurate, simpler expressions are desired that can clearly
reveal the interaction between these two forms of diversity.

Aiming at obtaining succinct and insightful performance
evaluation for MIMO MRT/MRC systems (more general
MIMO diversity systems), we take a different approach in
this paper by conducting asymptotic analysis. Asymptotic
analysis is widely used in various areas of communications
and networking. Besides mathematical tractability, asymp-
totic analysis also helps reveal some fundamental relation-
ship of key system parameters, whichmay be concealed in the
finite case by random fluctuations and other transient prop-
erties of channel matrices. This paper comprises two sub-
topics: error performance in the single-user scenario and ca-
pacity scaling law in the multiuser scenario. While presenting
complementary aspects of MIMOMRT/MRC systems, these
two are threaded together through a common theme, the in-
vestigation of the approximate behavior of the distribution
of σ2max at the extremes, with the former at the origin and
the latter at the tail. The main contributions of this paper are
summarized below.

(1) By studying the behavior of the distribution function
of σ2max at the origin, we obtain the asymptotic average SER
(in terms of SNR) for MIMO MRT/MRC systems. As appli-
cations we verify the two observations made in [2].

(2) By studying the behavior of the distribution function
of σ2max at the tail, we obtain the asymptotic system capac-
ity (in terms of the number of users) for MIMO MRT/MRC
systems when multiuser diversity is exploited.

(3) Similar analysis is also carried out for two other repre-
sentative MIMO diversity schemes: STBC/MRC and SC/SC.
Comparison among them enables better understanding of
MIMO diversity and the interaction between spatial diversity
and multiuser diversity.

This paper is organized as follows. In Section 2, we give
our model for MIMO MRT/MRC systems. Then we pro-
vide our asymptotic analysis for the average SER and sys-
tem capacity in Sections 3 and 4, respectively, together with
some numerical results for illustration purpose. Conclusion
is given in Section 5.

2. SYSTEMMODEL

We assume a narrowband MIMOMRT/MRC system withM
transmit antennas and N receive antennas, modeled as

y = Hx + n = Hwtu + n, (1)

where y ∈ CN×1 is the received vector, H ∈ CN×M is the
channel matrix, wt ∈ CM×1 is a unit-norm transmit weight

vector, chosen as the principal right singular vector corre-
sponding to the largest singular value σmax of H, u is the
transmitted symbol with power PT , and n ∈ CN×1 is a zero-
mean circularly symmetric complex Gaussian noise vector
with variance σ2n/2 per real dimension. We define γt = PT/σ2n
as the average transmit SNR. For illustration purpose, inde-
pendent and identically distributed Rayleigh fading is con-
sidered for H, but our analysis can be readily extended to
other fading scenarios when appropriate distributions are
available. When multiple MIMO users are involved, their
channels are assumed independent. At the receiver side a
weight vector wr ∈ CN×1 is applied on y to obtain a deci-
sion statistic for u, chosen as the principal left singular vector
ofH here. Other diversity schemes can be equivalently repre-
sented with wt and wr appropriately defined.

The cumulative distribution function (CDF) of γ = σ2max
is given by [6]

FMRT/MRC
γ (x) =

∣
∣Ψc(x)

∣
∣

Πs
k=1Γ(t − k + 1)Γ(s− k + 1)

, x ∈ (0, +∞),

(2)

where s = min(M,N), t = max(M,N), and Ψc(x) is an
s × s Hankel matrix function with the (i, j)th entry given
by {Ψc(x)}i, j = γ(t − s + i + j − 1, x), for i, j = 1, 2, . . . , s.
Here γ(a,β) is the incomplete Gamma function defined as

γ(a,β) = ∫ β
0 e−tta−1dt, and Γ(a) is the Gamma function de-

fined as Γ(a) = γ(a, +∞). The probability density function
(PDF) of x can be derived as

f MRT/MRC
γ (x)

= FMRT/MRC
γ (x) tr

(

Ψ−1
c (x)Φc(x)

)

, x ∈ (0, +∞),
(3)

whereΦc(x) is an s× smatrix whose (i, j)th entry is given by
{Φc(x)}i, j = xt−s+i+ j−2e−x.

In the remainder of this paper, we adopt the following
notations for the limiting behaviors of two functions f (x)
and g(x) with limx→∞ or x→0 g(x)/ f (x) = c : g(x) = O( f (x))
for 0 < |c| < ∞ and specifically g(x) ∼ f (x) for c = 1;
g(x) = o( f (x)) for c = 0. When convergence of a sequence of
random variables is involved, shorthand notation “D” stands
for in distribution and “P” for in probability.

3. ASYMPTOTIC AVERAGE SER: SINGLE-USER
SCENARIO

In this section, we will derive a succinct expression for aver-
age SER at high SNR. The conditional SER for lattice-based
modulations can be represented as Ps(H) = MnQ(

√
κγtγ),

where Mn is the number of the nearest neighboring con-
stellation points, Q(·) is the Gaussian tail Q-function, and
κ is a positive fixed constant determined by the modula-
tion and coding schemes [5]. At high transmit SNR γt,
the system average SER Ps = E{Ps(H)} will be domi-
nated by the low-probability outage event that γ becomes
small [10]. Therefore, only the behavior of f MRT/MRC

γ (x) at
x → 0+ matters. To this end, the following result is cru-
cial.
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Lemma 1.

f MRT/MRC
γ (x) ∼

MN
∏s−1

k=0k!
∏s−1

k=0(t + k)!
xMN−1, as x −→ 0+. (4)

Proof. By Maclaurin series expansion
{

Ψc(x)
}

i, j = γ(t − s + i + j − 1, x)

= 1
t − s + i + j − 1

xt−s+i+ j−1 + o
(

xt−s+i+ j−1
)

,

(5)

we can obtain the approximation of |Ψc(x)| at x = 0+ after
some manipulation as

∣
∣Ψc(x)

∣
∣ = |Λ|xMN + o

(

xMN
)

, (6)

with {Λ}i, j = 1/(t − s + i + j − 1), for i, j = 1, 2, . . . , s. The
determinant of Λ can be obtained in a similar fashion as that
of a Hilbert matrix. After some algebra we get

|Λ| =
∏s−1

k=0(k!)2
(

(t − s + k)!
)2

∏2s−1
k=0 (t − s + k)!

, (7)

and it follows from (2) that

FMRT/MRC
γ (x) =

∏s−1
k=0k!

∏s−1
k=0(t + k)!

xMN + o
(

xMN
)

. (8)

With Lemma 1, we establish the following result for the
asymptotic average SER for MIMO MRT/MRC systems fol-
lowing [10, Proposition I].

Proposition 1. For MIMO MRT/MRC systems, the asymp-
totic average SER is given by

Ps = 2q
(MRT/MRC)

Mnα(MRT/MRC)Γ
(

q(MRT/MRC) + 3/2
)

√
π
(

q(MRT/MRC) + 1
)

× (κγt
)−(q(MRT/MRC)+1)

+ o
(

γ
−(q(MRT/MRC)+1)
t

)

,

(9)

where

α(MRT/MRC) = MN
∏s−1

k=0k!
∏s−1

k=0(t + k)!
, q(MRT/MRC) =MN − 1.

(10)

The validity of (9) is demonstrated in Figure 1 for un-
coded BPSK systems. Based on (9), one readily concludes
that the optimal diversity order for MIMO diversity systems
isM×N . Therefore, if we keepM+N fixed (a measure of sys-
tem cost), even distribution of the number of transmit and
receive antennas (more precisely a smallest |M − N|) maxi-
mizesM ×N , thus minimizing the system SER at high SNR.
On the other hand, when comparing twoMIMOMRT/MRC
systems with the same diversity order M × N , the one with
smaller α(MRT/MRC) yields larger coding gain and thus smaller
SER (in this case, q(MRT/MRC) is a constant). We can conclude
that in this scenario, the sum of transmit and receive anten-
nas should be made as large as possible, with the optimum
achieved at s = 1 and t = M × N . This conclusion is based
on the following result regarding α(MRT/MRC) as a function of
M and N (or equivalently of s and t).
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(1, 3) MRT/MRC asym. result
(1, 3) MRT/MRC simulation
(2, 2) MRT/MRC asym. result
(2, 2) MRT/MRC simulation
(2, 3) MRT/MRC asym. result
(2, 3) MRT/MRC simulation

Figure 1: Comparison between asymptotic and simulation results
for BPSK under different antennas configurations (the notation
(M,N) refers to MIMO systems withM transmit and N receive an-
tennas).

Lemma 2. Given four positive integers s1, t1, s2, t2, assume s1×
t1 = s2 × t2, s1 < t1 , s2 < t2, and s1 + t1 > s2 + t2, then
α(MRT/MRC)(s1, t1) < α(MRT/MRC)(s2, t2).

Proof. From s1 + t1 > s2 + t2, we can obtain s1 < s2 < t2 < t1.
As

α(MRT/MRC)(s1, t1
) =

∏s1−1
k=0 k!

∏s1−1
k=0

(

t1 + k
)

!

= 1
1× 2× · · · × t1

• 1
2× 3× · · · × (t1 + 1

)

• · · · 1
s1 × · · · ×

(

s1 + t1 − 1
) ,

(11)

α(MRT/MRC)(s2, t2
) =

∏s2−1
k=0 k!

∏s2−1
k=0

(

t2 + k
)

!

= 1
1× 2× · · · × t2

• 1
2× 3× · · · × (t2 + 1

)

• · · · 1
s2 × · · · ×

(

s2 + t2 − 1
) ,

(12)
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it is equivalent to show that
(

1× · · · × t1
)× · · · × (s1 × · · · ×

(

s1 + t1 − 1
))

>
(

1× · · · × t2
)

× · · · × (s2 × · · · ×
(

s2 + t2 − 1
))

.

(13)

The left-hand side of (13) can be rewritten as

1 f (1) × 2 f (2) × · · · × (s1 + t1 − 1
) f (s1+t1−1), (14)

with

f (i) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

i, 1 ≤ i ≤ s1,

s1, s1 + 1 ≤ i ≤ t1,

s1 + t1 − i, t1 + 1 ≤ i ≤ s1 + t1 − 1.

(15)

Similarly the right-hand side of (13) can be represented as

1g(1) × 2g(2) × · · · × (s2 + t2 − 1
)g(s2+t2−1), (16)

with

g(i) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

i, 1 ≤ i ≤ s2,

s2, s2 + 1 ≤ i ≤ t2,

s2 + t2 − i, t2 + 1 ≤ i ≤ s2 + t2 − 1.

(17)

It is not difficult to get
∑s1+t1−1

i=1 f (i) = s1 × t1 = s2 × t2 =
∑s2+t2−1

i=1 g(i). Therefore, after canceling out the same factors
in (14) and (16), we can see that (14) is surely larger than
(16).

From the asymptotic SER expression in (9), we have ver-
ified the two observations made in [2] rigorously at high
SNR. Below we will follow a similar approach to compute
the corresponding parameters for the coding gain and diver-
sity order for MIMO STBC/MRC and SC/SC systems (whose
asymptotic average SERs assume the same forms as (9)).

Without loss of generality, we assume that the adopted
space-time block coding scheme achieves the full rate and
the transmit power is equally allocated among the transmit
antennas. In this case, the normalized effective link SNR for
a generic user is given by γ = (1/M)

∑N
i=1
∑M

j=1 |hi, j|2, whose
PDF admits

f STBC/MRC
γ (x) = MMN

(MN − 1)!
xMN−1e−Mx, x ≥ 0. (18)

Similarly the corresponding parameters for the coding gain
and diversity order for MIMO STBC/MRC systems can be
obtained as

α(STBC/MRC) = MMN

(MN − 1)!
, q(STBC/MRC) =MN − 1.

(19)

For the SC/SC scheme, both the user and the base station
choose one optimal antenna such that the resultant channel
gain is maximized. Thus the normalized effective link SNR at
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Figure 2: Coding gain parameter α with the number of transmit
antennas for the same diversity orderM ×N .

the receiver is γ = max1≤i≤N , 1≤ j≤M(|hi, j|2), whose PDF can
be easily obtained as

f SC/SCγ (x) =MNe−x
(

1− e−x
)MN−1

, x ≥ 0. (20)

We can obtain the corresponding parameters for the coding
gain and diversity order for MIMO SC/SC systems as

α(SC/SC) =MN , q(SC/SC) =MN − 1. (21)

Comparing (10), (19), and (21) we can see that all
these MIMO diversity schemes achieve the same diver-
sity order. Nonetheless, their error performances could still
be dramatically different owing to different coding gains,
as exhibited in Figure 2. For example, when M = 6
and N = 1, our asymptotic results predict an SNR gap
of 4.7dB between MRT/MRC (α(MRT/MRC) = 1/120) and
SC/SC (α(SC/SC) = 6), and 7.8 dB between MRT/MRC and
STBC/MRC (α(STBC/MRC) = 388.8) for uncoded BPSK sys-
tems at high SNR, which agree well with simulation results
(see Figure 3 at SER 10−5). It is also observed that for the
same diversity order, the performance of STBC/MRC wors-
ens with the increase of the number of transmit antennas.

4. ASYMPTOTIC SYSTEM CAPACITY:
MULTIUSER SCENARIO

In this section, we consider a homogeneous downlink mul-
tiuser MIMO communication scenario, which is envisioned
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Figure 3: Symbol error rate of the three MIMO diversity schemes
for BPSK (M = 6,N = 1).

to be of crucial importance for emerging wireless networks.
We will explore how the average (ergodic) system capac-
ity of a multiuser MIMO MRT/MRC system scales with the
number of users K when opportunistic scheduling is em-
ployed, and how the number of antennas M and N come
into play. Assume the normalized effective link SNR for user
k is γk, whose PDF and CDF are denoted by fγ(x) and
Fγ(x), respectively (same for all users). In the opportunistic
scheduling scheme, the base station chooses the user k∗ =
argmaxk(γk)Kk=1. Thus the resultant normalized system SNR
seen by the base station is γk∗ with PDF

fγk∗ (x) = K fγ(x)FK−1
γ (x). (22)

Assuming that average transmit SNR is γt, average system ca-
pacity obtained by opportunistic scheduling can be expressed
as

E
(

log
(

1 + γt

(

max
1≤k≤K

γk

)))

=
∫ +∞

0
log
(

1 + γtx
)

fγk∗ (x)dx.

(23)

The closed-form expression for (23) is rather compli-
cated, especially for MIMO MRT/MRC systems. We there-
fore resort to the theory of order statistics for asymptotic
analysis [11, 12]. Some related pioneer study on spatial mul-
tiplexing systems can be found in [13]. To this end, the tail
behavior of f MRT/MRC

γ (x) is required, which we state below.

Lemma 3.

f MRT/MRC
γ (x)∼

1
(M − 1)!(N − 1)!

e−xxM+N−2, as x −→ +∞.

(24)

Proof. When x → +∞, FMRT/MRC
γ (x)→ 1, and

lim
x→∞

{

Ψc(x)
}

i, j = lim
x→∞ γ(t − s + i + j − 1, x)

= (t − s + i + j − 2)!.
(25)

Assume λ = t − s, thenΨc(+∞) is given by

Ψc(+∞) =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

λ! (λ + 1)! · · · (λ + s− 1)!
(λ + 1)!

...
...

...
...

(λ + s− 1)! · · · · · · (λ + 2s− 2)!

⎤

⎥
⎥
⎥
⎥
⎥
⎦

s×s

.

(26)

Since

Φc(x) =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

xλe−x xλ+1e−x · · · xλ+s−1e−x

xλ+1e−x
...

...
...

...
...

...
...

xλ+s+1e−x
...

... xλ+2s−2e−x

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 x · · · xs−1

x
...

...
...

...
...

...
...

xs−1
...

... x2s−2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

xλe−x,

(27)

the tail behavior of f MRT/MRC
γ (x) will be determined by that of

Φc(x), given by (where the coefficients {ai} come from linear
combinations of elements inΨ−1

c (+∞))

f MRT/MRC
γ (x) ∼ tr

(

Ψ−1
c (+∞)Φc(x)

)

= e−x
[

a1x
λ+2s−2 + a2x

λ+2s−3 + · · ·
+ a2s−2xλ+1 + a2s−1xλ

]

= e−xxλ+2s−2
[

a1 +O
(
1
x

)]

,

(28)

with

a1 =

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

λ! (λ + 1)! · · · (λ + s− 2)!

(λ + 1)! · · · · · · (λ + s− 1)!

...
...

...
...

(λ + s− 2)! · · · · · · (λ + 2s− 4)!

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

∣
∣Ψc(+∞)

∣
∣

=
∏s−1

k=1(t − k − 1)!(s− k − 1)!
∏s

k=1(t − k)!(s− k)!

= 1
(t − 1)!(s− 1)!

= 1
(M − 1)!(N − 1)!

.

(29)
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With Lemma 3, we derive the asymptotic system capacity
for multiuser MIMOMRT/MRC systems as follows.

Proposition 2. When multiuser diversity is exploited in a K-
user MIMOMRT/MRC system, the asymptotic average system

capacity C
(MRT/MRC)
K is given by

C
(MRT/MRC)
K = E

(

log
(

1 + γt
(

max
1≤k≤K

γ(MRT/MRC)
k

)))

−→ log
(

1 + γtb
(MRT/MRC)
K

)

, as K −→ ∞,
(30)

where b(MRT/MRC)
K is solved through F(MRT/MRC)

γ (bK ) = 1− 1/K
and is given by

b(MRT/MRC)
K = log

(
K

(M − 1)!(N − 1)!

)

+ (M +N − 2)log log
(

K

(M − 1)!(N − 1)!

)

+O(log log logK).
(31)

Proof. See the appendix.

Remark 1. The following result is often invoked to indicate
that max1≤k≤K γk “grows like” bK in a coarse sense, and is
widely used in the study of opportunistic communications
involving extreme values and order statistics (e.g., [7, 14]):

max1≤k≤K γk − bK
aK

D−→ Λ(x) = exp
(− e−x

)

, (32)

where aK = (K fγ(bK ))−1. This result can actually be
strengthened from existing literature [11, 12] if limx→∞((1−
Fγ(x))/ fγ(x)) = c = 0, max1≤k≤K γk − bK

P→ 0, otherwise if

limx→∞((1 − Fγ(x))/ fγ(x)) = c > 0 max1≤k≤K γk/bK
P→ 1.

Nonetheless, our result (30) is yet a stronger one, which is
concerned with the convergence of the expected values of
functions of max1≤k≤K γk.

In a similar fashion, we can obtain the asymptotic sys-
tem capacity for multiuser MIMO STBC/MRC and SC/SC
systems, which are dictated by

C
(STBC/MRC)
K −→ log

[

1+γt

(
1
M

log cK +
(

N − 1
M

)

log log(cK)

+O(log log logK)
)]

,

(33)

where

c = MMN−1

(MN − 1)!
, (34)

and1

C
(SC/SC)
K −→ log

[

1 + γt log(MNK)
]

, (35)

1 This is a rare accurate expression. Note that in this case, the growth in
transmit and receive antennas can be equivalently seen as an increase in
the number of users (due to the i.i.d. assumptions).
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Figure 4: Average system capacity of opportunistic scheduling
(γt = 0dB,M = N = 2).

asK →∞. From the asymptotic system capacities of the joint
spatial diversity andmultiuser diversity systems, we canmake
some interesting observations. From (33), a tradeoff between
transmit diversity and multiuser diversity for an open-loop
spatial diversity system is seen, which has also been observed
by other researchers (e.g., [14, 15]). But in our paper, a more
rigorous proof is provided and how the asymptotic system
capacity is related to key system parameters is revealed. For
example, our result does show the positive role of the num-
ber of receive antennas N , though in a second-order2 sense,
which is not clear from previous results in literature. It is also
observed that the detrimental effect of multiple transmit an-
tennas can be avoided with the closed-loop spatial diversity
schemes, as seen in (31) and (35)3. Also from (31) and (35),
we can infer that for the general hybrid selection combining
schemes, the scaling laws should only have differences in the
second-order approximations. Numerical results in Figure 4
verify that log(1+γtbK ) is a good approximation for the aver-
age capacity of the STBC/MRC, SC/SC, and MRT/MRC sys-
tems using the opportunistic scheduler.

5. CONCLUSIONS

In this paper, through the analysis of the distribution of the
squared largest singular value of a complex Gaussian matrix

2 We define the first-order approximation when truncated at logK , and the
second-order approximation when truncated at log logK .

3 The coefficient of K is not important when K becomes large. In this sense,
multiple antennas even help for the MRT/MRC scheme.
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at the origin and tail, we obtain two asymptotic results re-
lated to MIMO MRT/MRC systems. One is the asymptotic
error performance in the single-user scenario at high trans-
mit SNR, and the other is the asymptotic system capacity in
the multiuser scenario when multiuser diversity is exploited.
Our results are rigorous and succinct, which provide a per-
formance reference forMIMOdiversity systems and facilitate
various tradeoff studies in terms of system parameters and
designs.

APPENDIX

A. PROOF OF PROPOSITION 2

Proof. For the purpose of brevity, we will use F(x) and f (x)
to denote FMRT/MRC

γ (x) and f MRT/MRC
γ (x), respectively, in the

following proof, and bK for b(MRT/MRC)
K . Assume CK = log(1+

γt(max1≤k≤K γk)). Define the growth function g(x) = (1 −
F(x))/ f (x), with Lemma 3 we have

lim
x→+∞ g(x) = lim

x→+∞
− f (x)
f ′(x)

= 1. (A.1)

Clearly F(x) in (2) is less than 1 for all finite x and is twice
differentiable for all x. By (20) of [16], we can obtain the fol-
lowing expansion at bK :

log
[− logFK

(

bK + xg
(

bK
))]

= −x + x2

2!
g′
(

bK
)

+
x3

3!

[

g
(

bK
)

g(2)
(

bK
)− 2g′2

(

bK
)] · · · + · · ·

+
e−x + · · ·

2K
+
5e−2x+···

24K2
+ · · · − 1

8K3
e−3x

+ · · · + · · · ,

(A.2)

where bK is given by F(bK ) = 1− 1/K . Solving for bK we can
get (for some constant c1)

bK = log c1K + (M +N − 2) log log c1K

+O(log log logK) = O(logK).
(A.3)

A close examination of g′(x) using Lemma 3 reveals

g′(x) = O
(
1
x

)

, lim
K→∞

[

Kg′
(

bK
)] = +∞. (A.4)

Therefore, the terms in the second line of (A.2) starting
with the term e−x/2K can be ignored [16]. Further exploit-
ing (A.1), (A.3), and (A.4) in the first line of (A.2) with
x = ± log logK yields4

Pr
{

−log logK≤
(

max
1≤k≤K

γk

)

−bK≤ log logK
}

≥1−O
(

1
logK

)

.

(A.5)

4 It can be shown that (A.4) still holds for a more general condition g′(x) =
O(1/xδ) with δ > 0.

Appling Chebyshov’s inequality, we have

E
(

CK
) ≥ P

(

CK ≥ log
(

1 + γt
(

bK − log logK
)))

× log
(

1 + γt
(

bK − log logK
))

≥
(

1−O
(

1
logK

))

× log
(

1 + γt
(

bK − log logK
))

= log
(

1 + γt
(

bK − log logK
))−O

(
log logK
logK

)

= log
(

1 + γtbK
)− o(1).

(A.6)

On the other hand,

E
(

CK
) =

∫∞

0
P
(

CK > x
)

dx

=
∫ log(1+γtbK )

0
P
(

CK > x
)

dx+
∫ +∞

log(1+γtbK )
P
(

CK > x
)

dx

≤ log
(

1 + γtbK
)

+
∫ +∞

log(1+γtbK )
P
(

CK > x
)

dx,

(A.7)

with

P
(

CK > x
) = 1− P

(

CK ≤ x
) = 1− FK

(
ex − 1
γt

)

. (A.8)

We know limx→∞((1 − F(x))/ f (x)) = 1 > 0, therefore
when x is large enough, we can find a positive constant c2
and x0, such that 1− F(x) < c2 f (x), for any x > x0. Thus for
sufficiently large x

1− FK
(
ex − 1
γt

)

=
(

1− F
(
ex − 1
γt

))

×
(

1 + F
(
ex − 1
γt

)

+· · ·+ F(K−1)
(
ex − 1
γt

))

≤ Kc2 f
(
ex − 1
γt

)

.

(A.9)

Therefore when K is large enough, we have
∫ +∞

log(1+γtbK )
P
(

CK > x
)

dx

≤
∫ +∞

log(1+γtbK )
Kc2 f

(
ex − 1
γt

)

dx

=
∫ +∞

bK
Kc2 f (x)

γt
1 + xγt

dx

≤ c2γt
1 + γtbK

∫ +∞

bK
K f (x)dx

= O
(

1
logK

)

×
∫ +∞

bK
K f (x)dx

= O
(

1
logK

)

× K × (1− F
(

bK
))

= O
(

1
logK

)

,

(A.10)
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where the last equality uses the fact (1 − F(bK )) = 1/K . So
for sufficiently large K

E
(

CK
) ≤ log

(

1 + γtbK
)

+O
(

1
logK

)

. (A.11)

Based on (A.6) and (A.11) we can conclude that

lim
K→∞

{

E
(

log
(

1 + γt

(

max
1≤k≤K

γk

)))

− log
(

1 + γtbK
)
}

−→ 0.

(A.12)
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