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1. INTRODUCTION

In time-of-arrival (ToA)-based ranging, the range accuracy
depends heavily on how well the ToA of a signal is estimated.
Identifying multipath components and finding the leading
path is crucial to decrease ranging errors. With its fractional
bandwidth of 20%, or at least 500MHz bandwidth, an ultra-
wideband (UWB) signal provides high time resolution mea-
sured in nanoseconds, and UWB helps to separate individual
multipath components better than narrowband signals [1].

In UWB ranging, tracking of the leading edge is challeng-
ing due to a vast number of multipaths and the fact that the
line-of-sight (LoS) path may not have the highest amplitude.
Traditionally, UWB approaches based on coherent reception
require many rake fingers in order to combine energy from
the received signal [2]. However, there is a strong desire to
drive down UWB radio cost. This has led to an increased in-
terest in alternative receiver techniques for UWB that do not
require the hardware complexity of coherent rake receptions.

One intuitive approach is a trade-off between high per-
formance coherent receivers and low-complexity noncoher-
ent receivers [3]. However, one of the major drawbacks of
a noncoherent receiver is its performance in the presence of
multiuser interference (MUI). In a multiuser network, sig-
nals from multiple devices may interfere with a desired sig-
nal and deteriorate the range error drastically. This is because
interference suppression techniques such as CDMA are not
readily applicable to simple noncoherent receivers. Typically,
processing gain is obtained by coherently combining received

signal energy according to transmitted time hopping or DS
patterns [4]. However, in coherent energy combining, even
a small amount of interference energy may be construed as a
leading edge. Therefore, prior to coherent energy combining,
it is prudent to remove as much MUI energy as possible.

In this paper, our scope is to make ranging via nonco-
herent radios resilient to MUI. We focus on simple energy
detectors, and propose a MUImitigation technique for time-
hopping impulse radio (TH-IR) [5] and direct sequence im-
pulse radio (DS-IR) UWB systems to sustain submeter range
accuracy when MUI is present.

The remainder of this paper is organized as follows. In
Section 2, the literature on UWB ranging is reviewed. In
Section 3, the TH-IR and DS-IR UWB signal models are
given and then the proposed receiver architecture is de-
scribed. In Section 4, MUI mitigation via nonlinear energy
filtering is explained. Section 5 is allocated to the discus-
sion of simulation results. Finally, the paper concludes in
Section 6 with a summary of our future work.

2. TOA-BASED UWB RANGING

Acquisition of a signal can be achieved by locking onto the
strongest multipath component, which results in a coarse
ToA estimate [6–11]. However, precise ToA estimation re-
quires identification of the leading path, which may not be
the strongest. In [12], a generalized maximum likelihood
(GML) approach is proposed to estimate the leading path
by testing the paths prior to the strongest. A stopping rule
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Figure 1: Illustration of transmitted waveforms and simulation parameters for (a) DS-IR and (b) TH-IR.

is determined based on the statistics of the amplitude ra-
tio and the delay between the strongest and the leading
paths. However, the method requires very high sampling
rates on the order of the Nyquist rate. In [13], the authors
relax the sampling rate requirements and propose a simpler
threshold-based detection technique. In [14], the problem
is approached as a break-point estimation for signal pres-
ence, where temporal correlation arising from the transmit-
ted pulse is used to accurately partition the received signal.

Acquisition and ToA estimation can generally be
achieved by using various transceiver types; for example,
matched filters (or stored-reference receivers), transmitted
reference receivers, and energy detectors (ED) [6, 15]. The
use of energy detectors for synchronization and ToA estima-
tion in UWB systems has been investigated in [15–17]. ED
receivers using threshold-based ToA estimation techniques
are discussed in [18–20], a multiscale product approach that
improves the ranging accuracy was investigated in [21], and
likelihood-based techniques are proposed in [15]. Two-step
hybrid ToA estimation via ED and matched filters is also
studied in [22, 23], where the energy-detection step provides
a coarse ToA estimate, and the matched-filtering step refines
the estimate. In [24], a matched-filter receiver’s ability to dif-
ferentiate between the desired user signal and interference for
TH-IR UWB during synchronization is analyzed.

Our literature survey indicates that the ToA estimation
problem for IR-UWB has been analyzed without consider-
ation of MUI. Note that although MUI mitigation is inves-
tigated extensively for IR-UWB systems for symbol detec-
tion [25–28], to the best of our knowledge, there is no ref-
erence that addresses interference mitigation for ToA estima-
tion with noncoherent UWB radios. This work is intended to
fill that gap.

3. RANGING SIGNALWAVEFORMS AND
RECEIVER FRONT-END

In [19], four different waveforms were compared from the
ranging perspective. We adopt two of these: DS-IR and
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Figure 2: Illustration of the energy imaging ranging receiver while
processing ED outputs.

TH-IR (see Figure 1), which are currently under consider-
ation for standardization in the IEEE 802.15.4a Task Group.

Each IEEE 802.15.4a packet contains a preamble that
consists of multiple repetition of a base symbol waveform;
the preamble is used for acquisition/syncronization and
ranging. We adopt the IEEE 802.15.4a terminology and use

the following notations in the sequel: E(k)
s denotes the symbol

energy from the kth user, Nsym is the number of symbol rep-
etition within the preamble, ω is the transmitted pulse shape
with unit energy, Tsym is the symbol duration, Tp is the pulse
duration, εk is the TOA of the kth user’s signal and η is the
zero-mean AWGN with variance σ2n = N0/2. Lk denotes the
total number of multipath components for the kth user, γl,k
and τl,k represent the amplitude and delay of the lth multi-
path component for the kth user, respectively, and Ns is the
total number of pulses per symbol.

A receiver can process the preamble by either template
matching (coherent) or energy detection (ED). Although co-
herent ranging is superior, the ED receiver offers advantages
such as simplicity, operability at sub-Nyquist sampling rates
(which determines the range resolution), and low cost. They
are also more resilient to pulse-shape distortion.

The ED receiver we study in this paper is illustrated in
Figure 2. It first feeds the received signal (after a bandpass fil-
ter) into a square-law device, integrates its output, and then
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samples periodically. We denote these generated energy sam-
ples as z[n], and the sampling interval and the number of
samples per symbol as ts and nb = Tsym/ts, respectively. The
z[n] are then regrouped into a 2D matrix.

Once a matrix is formed, it is passed through a nonlinear
filter to enhance desired signal energy parts and remove the
MUI. Afterwards, the matrix is converted back to 1D time
series to locate the leading edge, by means of adaptive search-
back and threshold techniques. In what follows, we present
signal models for DS-IR and TH-IR systems.

3.1. DS-IR

In DS-IR, a symbol interval is divided into two halves. A
group of closely spaced pulses called burst is transmitted ei-
ther in the first or the second half in a pseudorandom pat-
tern.With such an orthogonal burst positioning, ranging can
be performed in the presence of multiple simultaneously op-
erating devices. The received DS-IR symbol waveform from
user k can be written as

ω(ds)
mp,k(t) =

√√√√E(k)
s

Ns

Lk∑
l=1

γl,k

Ns∑
j=1

d(ds)j,k

× ω
(
t − ( j − 1)T(ds)

c − τl,k − εk
)
,

(1)

where d(ds)j,k ∈ {±1} are the binary sequences for the kth user,

and T(ds)
c is the chip duration (pulse repetition interval) such

thatT(ds)
c ≥ Tp. The polarities of the pulses in a burst are used

to convey data for coherent reception. Therefore, the spacing
between the pulses enables coherent receivers to demodulate
the data.

If there are K simultaneously transmitting users, the re-
ceived signal would be

r(ds)(t) =
K∑
k=1

Nsym∑
λ=1

ω(ds)
mp,k

(
t − λTsym − bλ,kTppm

)
+ η(t), (2)

where bλ,k ∈ {0, 1} is the λth symbol of kth user, and Tppm

is the modulation index (i.e., delay) for pulse-burst position
modulation (PPM). Note that varying Tppm would change
the interburst interval. Hence, multiple orthogonal wave-
forms can be generated, and each can be assigned to users
of different networks.

The ED output samples at the desired receiver with the
DS-IR waveforms is

z(ds)[n] =
∫ nts

(n−1)ts

∣∣r(ds)(t)∣∣2dt, (3)

where n = 1, 2, . . . ,Nb, and Nb = Nsymnb.

3.2. TH-IR

In TH-IR, a symbol is divided into virtual time intervals Tf

called frames, which is further decomposed into smaller time

slots T(th)
c called chips. A single pulse is transmitted in each

frame on a chip location specified by a user-specific pseudo-
random time-hopping code. The received TH-IR signal from

user k is

ω(th)
mp,k(t) =

√√√√E(k)
s

Ns

Lk∑
l=1

γl,k

Ns∑
j=1

dj,k

× ω
(
t − ( j − 1)Tf − cj,kTc − τl,k − εk

)
,

(4)

where cj,k and dj,k are the TH codes and polarity scrambling
codes of user k, respectively. If K users are transmitting Nsym

symbols simultaneously, each with a unique TH code, the re-
ceived signal by the desired user becomes

r(th)(t) =
K∑
k=1

Nsym∑
λ=1

ω(th)
mp,k

(
t − λTsym

)
+ η(t). (5)

The collected energy samples at the ED receiver would be

z(th)[n] =
∫ nts

(n−1)ts

∣∣r(th)(t)∣∣2dt. (6)

3.3. Conventional energy combining (Conv)

A conventional receiver coherently combines the energies
over Nsym symbols to improve the signal-to-noise ratio
(SNR) using the bit sequence of the desired user in the DS-
IR case,1 and overNsym×Ns pulse positions using the TH se-
quences of the desired user in the TH-IR case. Then, a search-
back algorithm is applied to locate the leading signal energy.

In this paper, we adopt the searchback scheme presented
in [19]. With the assumption that the receiver is perfectly
synchronized to the strongest energy sample, the algorithm
tries to identify the leading edge by searching the samples
backward within a predetermined window starting from the
strongest sample. In non-LoS environments, the strongest
path may arrive as much as 60 ns after the first path [29]. At
4 ns sampling period, this would correspond to 15 samples.
Therefore, in the searchback algorithm (see Algorithm 1), it
would be sufficient to haveW = 15.

Each sample within the searchback window is compared
to a threshold. Even if it is smaller than the threshold, the
algorithm does not terminate; and it allows up to wcls con-
secutive noise-only samples. This is because clustering of the
multipath components yields noise-only regions between the
clusters. The threshold ξ that corresponds to a fixed Pfa is
given by2 [19]

ξ = σedQ
−1(1− (1− Pfa

)1/wcls
)
+ μed, (7)

where μed and σed are the mean and the variance of noise-
only samples. The optimal threshold is a function of wcls.

1 For DS-IR, we assume that we do not combine energies from different
pulses within the same symbol in order to avoid weakening the leading
edge due to multipath effects [19].

2 We define Pfa to be the probability of identifying a noise-only sample as a
signal sample.
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nmax : the index of the strongest energy sample,
nle := the index of the first signal energy sample,
W : the searchback window length,
ξ := noise-based threshold,
Let i = nmax,wcls = 2,
while i ≥ nmax −W
if z[i] ≥ ξ or z[i− 1] ≥ ξ or z[i− 2] ≥ ξ, i = i− 1,
else
break,

endif
endwhile
Return nle = i + 1.

Algorithm 1: Pseudocode for the adaptive searchback algorithm
to locate the leading signal energy.

4. ENERGYMATRIX FORMATION

SNR is one of the parameters that range estimation accu-
racy heavily depends on. Although the SNR can be improved
via processing gain by coherently combining received signal
energy samples [22], Figure 3 illustrates poor ranging per-
formance after coherent energy combining in the presence
of MUI. In the given TH-IR example, the symbol consists
of four frames with signal energy integrated and sampled at
a period that produces four samples in each frame and 16
samples in total per symbol. The TH code of the desired sig-
nal is {0, 4, 4, 3}, and that of the interference is {0, 4, 5, 4}.
Coherent combining requires energy samples z[n] of the re-
ceived signal to be combined in accordance with the matched
TH code. Figure 3 produces the combined energy values E[n]
such that E[n] = z[n+0]+z[n+4]+z[n+4+4]+z[n+4+4+3],
where 0 ≤ n ≤ 3, assuming that TOA ambiguity is as much
as the frame duration. If there is no interference, E[1] = 4A
and E[n] = 0 for n /= 1 and the TOA index is 1. In the pres-
ence of interference, the time of arrival information is very
likely impacted, and it is easy to see in the example that TOA
index becomes 0 because E[0] = 2A (see Figure 3(d)).

We have now illustrated that signal design itself and co-
herent energy combining is not sufficient to deal with the
detrimental impact of interference. A solution simply lies
in considering the collected energy samples from a different
view: a two-dimensional energy matrix. Let us create a so-
called energy matrix Z of sizeM×N , whereM is the number
of frames processed and N the number of energy samples
collected from each frame. Referring to the previous exam-
ple, the size of Z would be 4× 4 and populated as follows:

Z =

⎛⎜⎜⎜⎝
z[0 + 11] z[1 + 11] z[2 + 11] z[3 + 11]
z[0 + 8] z[1 + 8] z[2 + 8] z[3 + 8]
z[0 + 4] z[1 + 4] z[2 + 4] z[3 + 4]
z[0 + 0] z[1 + 0] z[2 + 0] z[3 + 0]

⎞⎟⎟⎟⎠ . (8)

Filling out each column of Z with samples grouped accord-
ing to the received signal’s TH pattern forms vertical lines
whenever signal energy is present in all of those samples
(Figure 3(e)). The detection of the left-most vertical line
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Figure 3: Illustration of coherent energy combining in 1D (a) en-
ergy samples from TH-IR desired user, (b) energy samples from
TH-IR interference, (c) coherent combining of energy samples
without interference, (d) coherent combining of energy samples
with interference, (e) energy image of the desired signal, Z, and (f)
energy image of the interference.

gives the time index of the first arriving signal energy. If the
interference follows a different TH pattern, intuitively the en-
ergy matrix of the interference does not form a vertical line
(Figure 3(f)).

Conv does not account for the MUI, and it directly ag-
gregates the energy samples. This is equivalent to summing
the rows of Z along each column, yielding an energy vector.
Note that the column sum of the matrix in Figure 3(e) gen-
erates the energy vector in Figure 3(c), and column-sum of
(e) + ( f ) results in Figure 3(d).

Applying conventional leading edge detection techniques
on the energy vector in Figure 3(d) causes erroneous rang-
ing due to interference. It is clear from the illustrations that
the energy matrix provides an insight into the presence and
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Figure 4: Energy image for the DS-IR (E(des)
b /N0 = 16 dB, E(int)

b /
N0 = 10 dB, tc = 4 ns, Ns = 4, Tsym = 512 ns, Tppm = 256 ns, nb =
128). The row index corresponds to symbols and the column index
corresponds to the samples within a symbol interval.

whereabout of interference energy, and nonlinear filters can
be applied onto the matrix to mitigate this interference. The
following subsections explain how to form an energy matrix
from DS-IR and TH-IR waveforms.

4.1. Energymatrix of DS-IR

Let λ denote the row index (which is also the symbol index),
and κ denote the column index of the matrix. Then, the sam-
ples in (3) can be used to populate the matrix as follows:

Z(ds)[λ, κ] = z(ds)
[
κ + (λ− 1)nb + bλ,1

Tppm

ts

]
, (9)

where 1 ≤ λ ≤ Nsym and 1 ≤ κ ≤ nb.
A typical energy matrix of a DS-IR signal after passing

through an IEEE 802.15.4a CM1 channel is given in Figure 4
while the Eb/N0 is 16 dB for the desired received signal and
10 dB for the interference. Clearly, the desired signal forms
a vertical line indicating multipath components, whereas the
interference pattern is intermittent.

Self-interference may also be present in the energy ma-
trix. This occurs when only some of the samples of a column
actually overlap with the energy from bursts.

The energy vector z̃ (ds) that the Conv receiver generates is
equivalent to the column-sum of Z(ds),

z̃ (ds) = 1NsymZ
(ds), (10)

where 1Nsym is a row vector of all ones.

4.2. Energymatrix of TH-IR

In TH-IR, energy samples given in (6) are grouped together
according to the transmitted TH code, and samples of the
same group are used to populate a column of the energy
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Figure 5: Energy image for the TH-IR (E(des)
b /N0 = 16 dB, E(int)

b /
N0 = 10 dB, tc = 4 ns, Ns = 4, Tsym = 512 ns, Tf = 128 ns, nb =
128).

matrix Z(th). As a result, there are Ns ×Nsym rows,

Z(th)[λ( j), κ] = z(th)
[
κ + (λ− 1)nb + j

T f

ts
+ cj,1

Tc

ts

]
,

(11)

where λ( j) = Ns(λ−1)+ j, and j ∈ {1, 2, . . . ,Ns}. We assume
that Tc is an integer multiple of ts to allow the collection of
the energies over integer number of pulses.

A typical energy matrix of a TH-IR signal after passing
through an IEEE 802.15.4a CM1 channel is given in Figure 5.
The Eb/N0 is 16 dB for the desired received signal and 10 dB
for the interference. Note that MUI and self-interference
causes short discrete lines. The actual ToA corresponds to the
left-most continuous vertical line in Z(th).

A cause of the self-interference is the imperfect autocor-
relation of the TH codes. Note that the energy samples of a
column are grouped according to the desired user’s TH code.
It is possible that only some of the grouped samples contain
energy from the received signal due to a partial overlap with
the signal’s TH pattern. Especially if the uncertainty region
for the ToA is larger than Tf , the energy collection process
would cause more self-interference. Nonlinear filters would
not be able to distinguish self-interference from MUI.

Furthermore, to suppress noise Nimg matrices can be su-
perposed, relying on the assumption that the statistics of in-
terference and noise are stationary. The Conv would column-
sum Z(th) and would perform edge detection on z̃ (th),

z̃ (th) = 1NsNsymZ
(th). (12)

5. NONLINEARMATRIX FILTERING

In this section, we consider two nonlinear filters for inter-
ference mitigation: minimum filter and median filter. In the
following discussion, without losing generality, we drop the
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superscript of the energy matrix for DS-IR and TH-IR, and
refer to it as Z.

5.1. Minimumfilter: min

To remove outliers in Z, which are most likely due to inter-
ference, we apply length W minimum filter along each col-
umn. Theminimumfilter replaces the center sample with the
minimum of the samples within the filter window. Then, the
elements of the new energy matrix Z(min) become

Z(min)[λ, κ]
= min

{
Z
[
λ, κ
]
,Z
[
λ + 1, κ

]
, . . . ,Z

[
λ +W − 1, κ

]}
,

(13)

where λ ∈ {1, 2, . . . ,Nsym − W + 1} for DS-IR and λ ∈
{1, 2, . . . ,NsNsym−W+1} for TH-IR. Once the interference is
removed, Z(min) is converted to a vector by the column-sum
operation,

z̃ (ds,min) = 1Nsym−W+1Z(ds,min),

z̃ (th,min) = 1NsNsym−W+1Z(th,min),
(14)

where Z(ds,min) indicates Min filtered matrix for the DS-IR
and Z(th,min) for the TH-IR. Note that while it significantly
removes the interference, theMin filter may also degrade the
desired signal.

5.2. Median filter: median

Median filters are special cases of stack filters that have been
widely used in digital image and signal processing [30, 31]
to remove singularities caused by noise. A median filter re-
places the center value in a given data set with the median
of the set. A longer median filter makes output noise more
colored and is less effective to mitigate interference because
any unsuppressed interference energy may propagate onto its
neighboring samples. We use a length 3 median filter in our
simulations and refer to it asMedian. One way to prevent col-
oring of output noise is to apply themedian filter in nonover-
lapping windows. In the appendix, we quantify the impact of
nonoverlapping median filtering on detection performance
of DC signals in white Gaussian noise to provide some in-
sight into more complex detection problems. In (15), Z(med)

is the energy matrix at the output of the median filter,

Z(med)[λ, κ]
= median

{
Z
[
λ, κ
]
,Z
[
λ + 1, κ

]
, . . . ,Z

[
λ +W − 1, κ

]}
.

(15)

After converting Z(med) into an energy vector, we have

z̃ (ds,med) = 1Nsym−W+1Z(ds,med),

z̃ (th,med) = 1NsNsym−W+1Z(th,med).
(16)

The leading edge search is performed on z̃ (ds,med) for DS-IR
waveforms and on z̃ (th,med) for TH-IR waveforms.

Note that both minimum and median filtering add to
the (low) complexity of an energy-detection receiver. As-
sume that z[n] are provided by a 16- bit ADC. Then, the
memory requirement for storing Z of size M × N would
be 2MN bytes. It is known that sorting W numerals has an
inherent computational complexity of O(W logW). Thus,
the overall complexity of applying Median or Min would be
M(N −W + 1)O(W logW).

6. SIMULATION RESULTS

The DS-IR and TH-IR signals are transmitted over IEEE
802.15.4a CM1 (residential line-of-sight) channels. For per-
formance comparison, we use mean absolute error (MAE)
of ToA estimations over 1000 realizations. DS-IR and TH-IR
symbol waveforms of length 512 ns are considered; the other
simulation settings are as follows: Tsym = 512 ns, Tppm =
256 ns, Tf = 128 ns, Tp = 4 ns, wcls = 2, and Tc = 4 ns
for TH-IR and 6 ns for DS-IR, and the integration interval is
4 ns. Energy images are obtained using 80 symbols (yielding
80 rows for DS-IR, and 320 rows for TH-IR), and the images
are further assumed to be averaged over 250 realizations.3

For TH-IR, the time-hopping sequence for the desired user is
cj,1 = [1, 1, 4, 2], and for the interfering user cj,2 = [1, 4, 2, 1],
where there are Tf /Tc = 64 chip positions per frame.4

We compare the ranging accuracy of the searchback al-
gorithm described in Algorithm 1 under different interfer-
ence levels. Let E(1) and E(2) denote the symbol energies re-
ceived from the desired user and the interfering user, re-
spectively (we also use Eb for the desired user’s bit en-
ergy). Then, we simulate the interference levels, where E(2)/
N0 ∈ {−∞, 0, 5, 10} dB. Energy matrices are constructed,
and MAEs before (Conv) and after nonlinear filtering (Min,
Median) are obtained for all cases using a nonlinear filter
window length of 3.

6.1. DS-IR

The MAE results in Figure 6(a) show that in the absence of
MUI, the Conv and Median outperforms Min by achieving
MAE as low as 2 ns at Eb/N0 values less than 14 dB. This
makes sense intuitively, because when noise is the dominant
term,Min penalizes the signal.

However, at higher Eb/N0, the MAE ofMin is better than
those of both Conv and Median, because at high Eb/N0, self-
interference becomes the dominant factor, and (for certain
channel realizations) the multipath components from a pre-
vious symbol may extend into the searchback window and
still degrade the ranging accuracy of Conv and Median (see
Figure 4). Minimum filtering remains effective to mitigate
self-interference at high SNRs.

3 We assume that the bit sequences used in DS-IR repeat at every 80 sym-
bols; the total preamble length considered for ranging purposes is there-
fore 512× 80× 250 ≈ 10ms.

4 These sequences are obtained using a brute-force computer search so that
they have a zero correlation zone larger than 100 ns.
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Figure 6: MAEs for DS-IR: (a) no interference, and (b) E(2)
b /N0 =

0 dB (wcls = 2).

The MAEs of the three approaches at E(2)/N0 ∈ {0, 5,
10}dB are presented in Figures 6(b), 7(a), and 7(b), respec-
tively. The MAE error floors of Conv and Median are ap-
proximately 5 ns, 7 ns, and 9 ns at interference levels of 0 dB,
5 dB, and 10 dB, respectively. Whereas,Min provides a much
smaller error floor. When E(2)/N0 = 0 dB and E(1)/N0 is
higher than 9 dB, Min can achieve the MAE of 3 ns (subme-
ter range accuracy). Min requires at least E(1)/N0 = 10 dB at
E(2)/N0 = 5 dB to keep the MAE below 3 ns, and E(1)/N0 =
16 dB at E(2)/N0 = 10 dB.

6.2. TH-IR

In general, the TH-IR waveform yields higher MAEs when
compared to the DS-IR for the simulated set of parameters.
This can be explained by higher self-interference from auto-
correlation sidelobes of TH-IR waveforms; although TH se-
quences with a large zero correlation zones are used in our
simulations, for the channels with large maximum excess de-
lays, the performance is degraded. In the DS-IR case, Min
effectively suppresses self-interference even at high Eb/N0.

An interesting observation with TH-IR waveforms is that
there exists an optimum Eb/N0 and the MAE starts increas-
ing beyond the optimum even if there is no MUI, because
increasing the Eb/N0 also increases the energy of autocorrela-
tion sidelobes; since threshold is set based only on the noise
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Figure 7: MAEs for DS-IR: (a) E(2)
b /N0 = 5 dB, and (b) E(2)

b /N0 =
10 dB (wcls = 2).

level, stronger self-interference starts degrading the perfor-
mance after the optimum SNR level.5

In the presence of interference, the MAEs of the three ap-
proaches at E(2)/N0 ∈ {0, 5, 10}dB are presented in Figures
8(b), 9(a), and 9(b), respectively.

The presence of interference at levels of E(2)/N0 = 0 dB or
higher drastically impacts the performance of Conv andMe-
dian and as a result their MAE never falls below 6 ns, whereas
the MAE of Min remains the same as the no-interference
case when E(2)/N0 = {0, 5}dB. Even when E(2)/N0 = 10 dB,
the MAE floor of the Min approaches 5 ns at very high SNR
(E(1)/N0 = 18 dB).

These results suggest that better searchback and thresh-
old techniques need to be developed for the TH-IR case to
obtain more accurate ranging. Also, the energy matrix with
minimum filtering proves to be effective to deal with inter-
ference in the TH-IR case.

7. CONCLUSION

In this paper, we introduce a ranging method that uses a
matrix of received energy samples from a square-law device,

5 The searchback algorithm in Algorithm 1 continues to iterate due to mul-
tipath interference rather than terminating at the leading edge.
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Figure 8: MAEs for TH-IR: (a) no interference, and (b) E(2)
b /N0 =

0 dB (wcls = 2).

and applies nonlinear filtering to the matrix to remove out-
liers caused by interference. The nonlinear minimum filter
is recommended based on our simulation results. After the
nonlinear filtering, energy values along each column of the
matrix are aggregated. Hence, the two-dimensional data are
converted into an energy vector. Then, a searchback algo-
rithm is run on the energy vector to locate the leading signal
energy.

The effectiveness of this approach is proven by simula-
tions conducted using IEEE 802.15.4a channel models. Non-
linear filtering changes noise and signal characteristics. Due
to space limitations, the impact of nonlinear filtering on the
receiver detection performance will be studied in a separate
article.

This study reveals the following.

(i) Ranging is quite sensitive to interference, since the
leading edge sample may be very weak compared to
interference samples.

(ii) A single interference energy sample may prolong the
searchback process, and increase ranging error.

(iii) In addition to multiuser interference, the searchback
algorithm must handle self-interference.

Finally, we present a framework and provide practical
algorithms to mitigate multiuser interference in ToA esti-
mation via noncoherent ultra-wideband systems. Our fu-
ture work includes development of adaptive algorithms (e.g.,
minimum and median filters with adaptive window size) for
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Figure 9: MAEs for TH-IR: (a) E(2)
b /N0 = 5 dB, and (b) E(2)

b /N0 =
10 dB (wcls = 2).

enhanced ranging accuracy under varying levels of interfer-
ence, and quantification of the impact of nonlinear filtering
on detection performance.

APPENDIX

Consider the problem of detecting a DC level in a known
Gaussian noise source, and assume that the noise distribu-
tion has zero mean and variance σ2. Assume that there are
N i.i.d. observations of the test data z[n]. When there is no
signal, the data set belongs to a noise only hypothesisH0, and
when signal is present it belongs to hypothesis H1,

H0 : z[n] = w[n], n = 1, 2, . . . N ,

H1 : z[n] = A +w[n], n = 1, 2, . . . N.
(A.1)

The probability of detection, PD, with the Neyman-Pearson
detector for this problem is given in [32] as

PD = Q
(
Q−1

(
PFA
)−√NA2

σ2n

)
. (A.2)

Note that after length W median filtering with nonover-
lapping windows, the new observation set would have only
N/W samples and the noise variance would be scaled by
f (W), where f (·) indicates a function. Since the input distri-
bution is Gaussian, the output would approximate to Gaus-
sian with the same mean, but lower variance [33].
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Figure 10: Degradation in probability of detection after length 3
median filtering for “DC level detection in Gaussian noise” prob-
lem. Here W = 3, f (3) = 0.44. Note that median filtering with
nonoverlapping windows degrades detection performance.

Theoretically, the output density of the length 3 median
filter is

p2(y) = 6Qz(y)
(
1−Qz(y)

)
pz(y), (A.3)

where Qz is the complementary cumulative distribution
function and pz(y) is the density of the input data. Our nu-
merical analysis indicates that f (3) = 0.44 providing a close
approximation to (A.3). The Kolmogorov-Smirnow test to
compare the approximated density function and (A.3) results
in the significance level of 0.1%. Then, in consideration of the
approximation, the probability of detection Pm

D after median
filtering becomes

Pm
D = Q

(
Q−1(PFA

)−√ (N/W)A2

f (W)× σ2n

)
. (A.4)

Here, the problem of detecting a DC level in Gaussian
noise is addressed for its simplicity, and Figure 10 shows that
median filtering in nonoverlapping windows would lower
the probability of detection. If the length 3 median filter is
applied with two-sample overlapping windows, the output
noise would be a colored Gaussian, but the size of the ob-
servation set would remain N. It may be possible to observe
an increase in detection performance. Quantification of the
impacts of median filtering with overlapping windows on the
detection performance of noncoherent receivers will be stud-
ied in detail in our future work.
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