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Abstract

This article draws a general retrospective view on the first 10 years of cognitive radio (CR). More specifically, we
explore in this article decision making and learning for CR from an equipment perspective. Thus, this article depicts
the main decision making problems addressed by the community as general dynamic configuration adaptation
(DCA) problems and discuss the suggested solution proposed in the literature to tackle them. Within this
framework dynamic spectrum management is briefly introduced as a specific instantiation of DCA problems. We
identified, in our analysis study, three dimensions of constrains: the environment’s, the equipment’s and the user’s
related constrains. Moreover, we define and use the notion of a priori knowledge, to show that the tackled
challenges by the radio community during first 10 years of CR to solve decision making problems have often the
same design space, however they differ by the a priori knowledge they assume available. Consequently, we
suggest in this article, the “a priori knowledge” as a classification criteria to discriminate the main proposed
techniques in the literature to solve configuration adaptation decision making problems. We finally discuss the
impact of sensing errors on the decision making process as a prospective analysis.

Keywords: cognitive radio, decision making problems, dynamic configuration adaptation, design space, a priori
knowledge

1. Introduction
The increase of computational capacity associated with
(rather) cheap flexible hardware technologies (such as pro-
grammable logic devices, digital signal processors and cen-
tral processing units) offer a glimpse into new ways to
designing and managing future non military communica-
tion systems.a As a matter of fact in 1991, Joseph Mitola
III argued that in a few years, at least in theory, software
design of communication systems should be possible. The
term coined by Joseph Mitola to present such technologies
is software defined radio (SDR) [1]. For illustration pur-
poses, today’s radio devices need a specific dedicated elec-
tronic chain for each standard, switching from one
standard to another when needed (known as the Velcro
approach [2]). With the growth of the number of these
standards (GSM, EDGE, Wi-Fi, Bluetooth, LTE, etc.) in
one equipment, the design and development of these radio
devices has become a real challenge and the practical need
for more flexibility became urgent. Recent hardware

advances have offered the possibility to design, at least
partially, software solutions to problems which were
requiring in the past hardware signal processing devices: a
step closer to SDR systems.
In specific, several possible definitions exist–and are

still a matter of debate in the community–to define SDR
systems. For consistency reasons, we briefly describe
software related radio concepts as agreed on by the SDR
Forum [3]. This matter is further discussed in [4]. The
SDR Forum defines SDR as radio in which some or all
of the physical layer functions are software defined
where physical layer and software defined terms are
respectively described as:

• Physical layer: The layer within the wireless protocol
in which processing of radio frequency, intermediate
frequency, or baseband signals including channel cod-
ing occurs. It is the lowest layer of the ISO seven-layer
model as adapted for wireless transmission and
reception.
• Software defined: Software defined refers to the use
of software processing within the radio system or
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device to implement operating (but not control)
functions.

Thus, SDR systems are defined only from the design and
the implementation perspectives. Consequently it appears
as a simple evolution from the usual hardwired radio sys-
tems. However, with the added software layer, it is techni-
cally possible with current technology to control a large set
of parameters in order to adapt on the fly radio equipment
to their communication environment (e.g., bandwidth,
modulation, protocol, power level adaptation to name a
few). Nevertheless the control and optimization of reconfi-
gurable radio devices need the definition of optimization
criteria related to the equipment hardware capabilities, the
users’ needs as well as the regulators’ rules. Introducing
autonomous optimization capabilities in radio terminals
and networks is the basis of cognitive radio (CR), term also
suggested and coined by Joseph Mitola III [5,6].
Mitola [6] defined CR, in his Ph.D dissertation as fol-

lows: The term CR identifies the point at which wireless
personal digital assistant (PDAs) and the related networks
are sufficiently computationally intelligent about radio
resources and related computer to computer communica-
tion to:

(1) Detect user communication needs as a function of
use context, and
(2) Provide radio resources and wireless services most
appropriate to these needs.

Thus, the purpose of this new concept is to autono-
mously meet the user’s expectations, i.e., maximizing his
profit (in terms of QoS, throughput or power efficiency to
name a few) without compromising the efficiency of the
network. Hence, the needed intelligence to operate effi-
ciently must be distributed in both the network and the
radio device.
In this article, we suggest to provide a brief discussion

on the decision making problems seen from CR equip-
ment’s perspective and discussed in the literature as well
as the main solutions suggested to tackle these problems.
For that purpose, we revisit in Section 2 the rise of CR
paradigm from which we discuss a basic definition. Then,
in order to objectively compare the techniques intro-
duces to address CR related decision making problem,
we describe a conceptual object referred to as design
space in Section 3. This conceptual object was introduced
in the literature [7] to suggest that the CR design pro-
blem, from the decision making perspective, is better
defined by a set of constrains rather than by a set of
degrees of freedom. Thus, this section reminds us of the
three considered dimensions of constrains viz., the envir-
onment’s constraint, the equipment’s limits and the
user’s needs. Moreover, in Section 4, we define and use

the notion of a priori knowledge, to show that the tackled
challenges by the radio community to solve configuration
adaptation decision making problems have often the
same design space, however they differ by the a priori
knowledge they assume available on this design space.
Consequently, in Section 4, we suggest the a priori
knowledge as a classification criteria to discriminate the
main proposed techniques in the literature to solve con-
figuration adaptation decision making problems. Section
5, extends previous classification by adding the impact of
observation accuracy and the benefit of learning techni-
ques in such contexts. Section 6 concludes this analysis.

2. Cognitive radio
2.1. The rise of CR
To fulfill the requirements to enable smart and autono-
mous equipment, Mitola and Maguire introduced the
notion of cognitive cycle as described in Figure 1, [5,6],
where the cognitive cycle presupposes the capacity to col-
lect information from the surrounding environment (per-
ception), to digest it (i.e., learning, decision making, and
predicting tools) and to act in the best possible way by
considering several constraints and the available informa-
tion. The reconfiguration of radio equipment is not dis-
cussed in depth, however, it is generally accepted that SDR
in an enabling to technology support CR [4].
As illustrated in Figure 1, a full cognitive cycleb demands

at every iteration five steps: observe, orient, plan, decide,
and act. The observe step deals with internal as well as
external metrics. It aims at capturing the characteristics of
the environment of the communication device (e.g., chan-
nel state, interference level or battery level to name a
few.). This information is then processed by the three fol-
lowing steps: orient, plan, and decide steps, where priori-
ties are set, schedules are planed according to the systems
constraints, and decisions are made. Finally an appropriate
action is taken during the act step (such as send a message,
reconfigure, modify power level to name a few). In order to
complete the cognitive cycle, a last and final step is needed
to enhance the decision making engine of the communica-
tion device: the learn step. As a matter of fact, learning
abilities enable communication equipment to evaluate the
quality of their past actions. Thus, the decision making
engine learns from its past successes and failures to tune
its parameters and adapt its decision rules to its specific
environment. Learning can consequently help the decision
making engine to improve the quality of future decisions.
As far as we can track the emergence of a CR literature

and to the best of authors’ knowledge, the today’s pletho-
ric publications started with three major contributions: On
the one hand, the federal communication commission
(FCC) pointed out in 2002 the inefficiency of static fre-
quency bands’ allocation to specific wireless applications,
and suggested CR as a possible paradigm to mitigate the
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resulting spectrum scarcity [8,9]. Then, Haykin in article
[10] in 2005, suggested a simplified cognitive cycle to
represent CR decision making engines as illustrated in
Figure 2. Haykin’s model tackled the particular dynamic
spectrum management problem and discussed different
possible models to design future CR networks. Article [10]
inspired many studies on CR application fields such as
theory based cognitive networks. Eventually, this two sub-
jects led to two very actives research fields as illustrated in
this recent surveys [11-13]. On the other hand, while the
two contributions [8,10] focus on spectral efficiency, Rie-
ser suggested, through various publications, synthesized in
his Ph.D. dissertation, [14] in 2004, a biologically inspired
CR engine that relies on genetic algorithms (GA). To the
best of authors’ knowledge, it was the first suggested and
partially implemented CR engine presented to the
community.
In this article although we cannot avoid mentioning

CR applications from spectrum management perspec-
tive, we focus on the decision making and learning
mechanisms designed to deal with broader frameworks,
i.e., configuration adaptation problems. Thus, spectrum
management problems are, from the equipment point of
view, but a subset of configuration adaptation problems.

2.2. Basic cognitive cycle
Since the original definition suggested by Joseph Mitola
III, several other definitions were proposed to define the
edges of CR [4,8-10,15-17]. However, defining cognition
is, in general, a harsh task. In the context of CR, basic
cognitive abilities are considered:

• environment perception (or observation)
• and reasoning (or analysis/decision).

Based on these cognitive abilities, a CR needs to take
appropriate actions to adapt itself to its surrounding
environment.
Once again these notions know several possible defini-

tions that we do not explicit in this article. However, the
basic cognitive cycle considers three macro-steps as illu-
strated in Figure 3 and that we can define as follows:

(1) Observation: Through its sensors the CR gathers
information on its environment. Raw data and pre-
processed information helps the agent to build a
knowledge base. In this context, the term environ-
ment is used in a broad sense referring to any
source of information that could improve the CR’s

Figure 1 Cognitive radio decision making context: the CR cycle as introduced by Joseph Mitola III [6].
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Figure 2 Cognitive radio decision making context: simplified cognitive cycle as introduced by Haykin [10].

Figure 3 Illustration of the basic cognitive cycle [35,81]. As illustrated, an agent, usually referred to as CA faces an environment in a broad
sense. The CA repeats the cognitive cycle where he observes the environment, analyzes the collected information and decides the next action to
take. Notice that the arrow action could suggest always an action on the environment. This is possible in order to evaluate the reaction on the
environment to given stimuli. However, the arrow also suggests an action on the CR in order to adapt to the environment.
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behavior (internal state, interference level, regulators’
rules and enforcement policies, to name a few).
(2) Analysis/decision: This macro-step, presented as
a black box in this case, includes all needed opera-
tions before given specific orders to the actuators (i.
e., before reconfiguration in CR contexts). Depend-
ing on the level of sophistication, this step can deal
with metric analysis, performance optimization,
scheduling, and learning.
(3) Action: Mainly parameter reconfiguration and
waveform transmission. A reconfiguration manage-
ment architecture needs to be implemented to
ensure efficient and quick reconfigurations [18].

This definition is quite general. It can incorporate
simple designs as well as complex ones. Most of the
published articles deal however with a restricted pro-
blem: spectrum management. In such context, the term
environment finds more specific definitions such as the
followings to name a few: Environment:

• Geolocation [19-22].
• Spectrum occupation [23-27].
• Interference level (or interference temperature
[10]).
• Noise level uncertainty [28-30].
• Regulatory rules (that define the open opportu-
nities [11] for instance).

Thus, depending on the considered environment, spe-
cific sensors are to be designed [4,31,32]. The captured
-and/or computed- metrics by the sensors are then pro-
cessed by the decision making engine. The kind of pro-
cess highly depends on the quality of the metrics (level
of uncertainty on the captured numerical value for
instance) as well as the global information held by the
CR. Finally, the made decisions are translated into
appropriate bandwidth occupation and power allocation
actions.

3. Decision making problems for CR
Within the basic cognitive cycle, we focus in this section
on the analysis step, and more specifically on learning
and decision making. We mainly find, in the literature
two approaches. On the one hand, some of the articles
focus on implementing smart behavior into radio
devices to enable more adequate configurations, adapted
to their environment, than those imposed by radio stan-
dards. As a matter of fact, standard configurations are
usually over dimensioned to meet the requirements of
various critical communication scenarios. This approach
mainly focuses on one equipment, ignoring the rest of
the network. We refer to the problem related to the first
approach as dynamic configuration adaptation (DCA)

problem. On the other hand due to a more pressing
matter, most of CR related articles focus on spectrum
management. These latter articles aim at enabling a
more efficient use of the frequency resources because of
its scarcity. This second problem is usually referred as
dynamic spectrum access problem (DSA).

3.1. Design space and DCA problem
In this section, we discuss some of the limits related to
the idealized CR concept before introducing the so called
DCA problem. Several questions arise when designing a
CR engine. We summarize our conceptual approach, pre-
sented in article [7], to dimension the decision making
and learning abilities of a cognitive engine. Thus, we
introduce the notion of design space as a conceptual
object that defines a set of CR decision making problems
by their constraints rather than by their degrees of free-
dom. We identified, in our analysis study, three dimen-
sions of constrains: the environment’s, the equipment’s,
and the user’s related constrains.
Ideally speaking, CR concept–supported by an SDR

platform–opens the way to infinite possibilities. Autono-
mous and aware of its surrounding environment as well
as of it own behavior (and thus of its own abilities), any
part of the radio chain could be probed and tested to
evaluate its impact on the device’s performance. This
however implies that the equipment is also able, in its
reasoning process, to validate its own choices. Namely,
it must self-reference its cognition components [33].
Unfortunately, this class of reasoning is well known in
the theory of computing to be a potential black hole for
computational resources. Specifically, any turing-capable
(TC) computational entity that reasons about itself can
enter a Göel-turingc loop from which it cannot recover
[33].
To mitigate this paradox, time limited reasoning has

been suggested by Mitola. As a matter of fact, radio sys-
tems need to observe, decide, and act within a limited
amount of time: The timer and related computationally
indivisible control construct is equivalent to the compu-
ter-theoretic construct of a step-counting function over
“finite minimalization.” It has been proved that compu-
tations that are limited with reliable watchdog timers
can avoid the Gödel-turing paradox to the reliability of
the timer. This proof is a fundamental theorem for prac-
tical self-modifying systems [33].
Realistic CR frameworks need to take into account a

large set of possible configurations, however, as men-
tioned hereabove through the Gödel-paradox, the deci-
sion making engine also needs to be constrained in
order to avoid the system to crash. We argue in the rest
of this paragraph that, in general, CR decision making
problems are better defined by their constraints rather
than by their degrees of freedom.
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When designing such CR equipments the main chal-
lenge is to find an appropriate way to correctly dimen-
sion its cognitive abilities according to its environment
as well as to its purpose (i.e., providing a certain service
to the user). Several articles in the literature have
already been concerned by this matter however their
description of the problem usually remained fuzzy (e.g.,
[6,14,34-36]). We summarize their analysis by defining
three “constraints” on which the design of a CR equip-
ment depends: First, the constraints imposed by the sur-
rounding environment, then the constraints related to
the user’s expectations and finally, the constraints inher-
ent to the equipment. We argue that these constraints
help dimensioning the CR decision making engine. Con-
sequently, an a priori formulation of these elements
helps the designer to implement the right tools in order
to obtain a flexible and adequate CR.

• The environment constraints: since a CR is a wire-
less device that operates in a surrounding communi-
cating environment, it shall respect its rules: those
imposed by regulation for instance (e.g., allocated fre-
quency bands, tolerated interference, etc.) as well as
its physical reality (propagation, multi-path and fad-
ing to name a few) and network conditions (channel
load or surrounding users’ activities for instance).
Thus the behavior of CR equipments is highly coordi-
nated by the constraints imposed by the environment.
As a matter of fact, if the environment allows no
degree of freedom to the equipments, this latter has
no choice but to obey and thus looses all cognitive
behavior. On the other side, if no constraints are
imposed by the environment, the CR will still be con-
strained by its own operational abilities and the
expectations of the user.
• User’s expectations: when using his wireless device
for a particular application (voice communication,
data, streaming and so on), the user is expecting a
certain quality of service. Depending on the awaited
quality of service, the CR can identify several criteria
to optimize, such as, minimizing the bit error rate,
minimizing energy consumption, maximizing spectral
efficiency, etc. If the user is too greedy and imposes
too many objectives, the designing problem to solve
might become intractable because of the constraints
imposed by the surrounding environment and the
platform of the CR. However if the user is expecting
nothing, then again there is no need for a flexible CR.
Usually it is assumed that the user is reasonable in a
sense that he accepts the best he could get with a
minimum cost as long as the quality of service pro-
vided is above a certain level.d

• Equipment’s operational abilities: These limitations
are perhaps the most obvious since one cannot ask

the CR equipment to adapt itself more than what it
can perform (sense and/or act). It is usually assumed
in the CR literature that the equipment is an ideal
software radio, and thus, that it has all the needed
flexibility for the designed framework. On a real
application the efficiency of CR equipments depends
of course on the degrees of freedom (or equivalently
the constraints) inherent to the wireless platform
used to communicate. As examples of commonly
analyzed degrees of freedom one can find: modula-
tion, pulse shape, symbol rate, transmit power,
equalization to name a few. In all cases, a CR is
designed to target and support given scenarios. We
do not consider that CR can be designed to answer
all scenarios or concepts [18].

The interaction between all three constraints is further
emphasized through the notion of design space. We
denote by CR design space an abstract three dimensional
space that characterizes the CR decision making engine
as shown in Figure 4. It is indeed abstract since it does
not have any rigorous mathematical meaning but it is
only used to visually and conceptually illustrate the
dependencies of the CR decision making engine to the
“design dimensions": environment, parameters (usually
referred to as knobs) and objectives (or criteria defined
from the user’s expectations).
In Figure 4, we represent two sub-spaces referred to as

actual design space and virtual design space. On the one
hand, the virtual design space refers to the upper bound
support of the design space where all three dimensions
are considered independently from each others. Its
volume can be interpreted as the largest space of decision
problems one could define from the three dimensions.
On the other hand, the actual design space is included in
the virtual design space. It results from the reduction of
the design space when taking into account the correla-
tion between the different constraints imposed by every
dimension of the design space. For instance, some con-
straints on the environment such as, “imposed fixed
waveform” might limit some objectives such as “find a
waveform that maximizes the spectral efficiency”.
To define a specific decision making problem, one needs

to introduce a last-possibly implicit- function. This latter
represents a functional relationship between all three
dimensions, more specifically the correlation between the
different constraints as illustrated by the design space.
Thus, it models the interdependence of all three con-
straints. A simple representation of this interdependence
can be expressed through an explicit objective function
which numerical value is computed as a function of the
equipment parameters, the environment’s conditions as
well as the values of other objective functions. Unfortu-
nately such functions are not always available and might
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remain implicit. In such scenarios, optimization might
prove problematic without using appropriate learning
tools.
Finally, based on the here above presented analysis, all

configuration adaptation problems seem to have the
same roots. However, to define a specific problem among
the set of possibilities in the design space, prior knowl-
edge is important. This latter notion is further detailed in
Section 4, where a classification of decision making tools
as a function of prior knowledge is suggested. Neverthe-
less, the general DCA problem can be described as the
most general decision making design space that we can
state as follows [7]:
Within this framework, we assume that the environ-

ment constrains the CR by allowing only K possible config-
urations to use. This condition characterizes the
environment and the equipment. Moreover we assume
that there exist M ≥ 1 objectives that evaluate how well
the equipment performs to meet the users expectations.
To conclude, we usually observe in the literature that

these constrained based characterizations are implicitly
made. Thus, usually the assumptions introduced to
define the decision making framework are, unfortunately,
hardly explained. These assumptions concern what we
refer to as the “a priori model knowledge”. In Section 4,

we introduce and explain the notion of a priori knowl-
edge and we present a brief state of the art on decision
making for CR configuration adaptation using the DCA
design space. We show that although the design space is
the same, depending on the a priori model knowledge,
different approaches are suggested by the community to
tackle the defined decision making problems.
The following section describes an important case of

DCA know as DSA that we briefly describe for the sake
of consistency.

3.2. Spectrum scarcity and dynamic spectrum access
Since the early 90s, the radio community captured the
potential industrial and economic opportunities that
could emerge from a better frequency resource usage as
noticed in 2004 in article [37]: A trend that has the
potential to change the current industrial structure is the
emergence of alternative spectrum management regimes,
such as the introduction of so called “unlicensed bands”,
where new technologies can be introduced if they fulfil
some very simple and relaxed “spectrum etiquette” rules
to avoid excessive interference on existing systems. The
most notable initiative in this area is the one of the fed-
eral communications commission (FCC, the regulator in
USA) in the early 90s driving the development of short

Figure 4 Cognitive radio decision making design space.
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range wireless communication systems and wireless local
area networks (WLANs).
Exploiting portions of the spectrum to unlicensed

usage was a first step to introducing alternative fre-
quency management schemes. Rethinking the main reg-
ulatory frameworks imposed for decades is the next
step. As a matter of fact, during the last century, most
of the meaningful spectrum resources were licensed to
emerging wireless applications, where the static fre-
quency allocation policy combined with a growing num-
ber of spectrum demanding services led to a spectrum
scarcity. However, several measurements conducted in
the United-States first, and then in numerous other
countries [8,23-27], showed a chronic underutilization
of the frequency band resources, revealing substantial
communication opportunities.
With the advent of SDR technology, it became, at least

theoretically, possible to design agile systems capable of
switching from one frequency band to another depending
on given communication constraints. Thus, during the
years 2002 and 2003 several task forces and researches
suggested new frequency management policies and regu-
latory frameworks to enable efficient use of the spectrum
resource [8,38-43]. The consequences of this new frame-
work are that the spectrum management model of today
is abolished for large parts of the spectrum. Instead, “free”
spectrum trading becomes the preferred mechanism and
technical systems that allow for the dynamic use and
re-use of spectrum becomes a necessity [37].
The DSA encompasses all suggested approaches that

emerged from the early definitions of efficient and “free”
spectrum access or trading. In 2007, article [44] sug-
gested one possible and simple taxomonyf to classify the
different suggested spectrum management approaches
as illustrated in Figure 5. Three main approaches can be
discriminated: dynamic exclusive use model, open shar-
ing model (spectrum commons model), and hierarchical
access model:

• Dynamic exclusive use model: the spectrum basi-
cally is allocated exclusively to specific services or
operators. However, the spectrum property rights
framework allows opening a secondary market
where the licensed users can sell and trade portion
of their spectrum, whereas the dynamic spectrum
allocation framework aims at providing a better allo-
cation of the spectrum, to exclusive services, by
adapting the spectrum allocation to space and time
network load information.
• Open sharing model (spectrum commons model):
aims at generalizing the success encountered by
WLAN technologies within the ISM band. In other
words, it mainly suggests opening portions if the
spectrum to unlicensed users.

• Hierarchical access model: this framework intro-
duced a secondary network that aims at exploiting
resources left vacant by the incumbent users [usually
referred to as primary users (PU)]. Secondary users
(SUs) are able to communicate as long as they do
not cause harmful interference to PUs. In this arti-
cle, we do not subdivide this framework. As a matter
of fact, their are as many subsets as the possible
communication opportunities to exploit: power con-
trol, ultra-wide band communication under PUs
noise level, spectrum hole detection and exploitation,
directional communications to name a few [11]. In
general, it is refers to as opportunistic spectrum
access (OSA).

Since the seminal article of Haykin [10] in 2005, OSA
research community has been, to the best of authors’
knowledge the most active in the field of DSA. With
several network models based on game theory [13],
Markov chains or multi-armed Bandit (MAB) (and
machine learning in general) [44-50], to name a few,
and relying on the concept of CR, the community
tackled several challenges encountered when dealing
with OSA such as (non exhaustive): dynamic power allo-
cation, optimal band selection (with or without prior
knowledge on the occupancy pattern of the spectrum
bands by PUs), as well as cooperation among the differ-
ent SUs [12] centralized or decentralized, with or with-
out observation errors.
In Section 5.2 an OSA scenario based on a MAB

model, described in article [48], is summarized and illus-
trates the impact of observation errors on decision mak-
ing for CR. In the following section, however, we
introduce prior knowledge as a classification criteria
among the main learning and decision making tools
suggested in CR articles.

4. Decision making tools for DCA
The a priori knowledge is a set of assumptions made by
the designer on the amount and representation of the
available information to the decision making engine
when it first deals with the environment. As a matter of
fact, “knowledge” is defined by the Oxford english dic-
tionary as: (i) expertise, and skills acquired by a person
through experience or education; the theoretical or practi-
cal understanding of a subject, (ii) what is known in a
particular field or in total; facts and information or (iii)
awareness or familiarity gained by experience of a fact or
situation. Consequently, within the CR framework, we
can define the a priori knowledge as the set of theoretical
or practical assumptions provided by the designer to the
CR decision making engine. These assumptions, if they
are accurate, provide the CR with valuable information
on the problem to deal with. These remarks lead us to
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suggest that the decision making problems the CR has to
deal with are defined by the set {design space, a priori
knowledge}. In other words, depending on the a priori
knowledge on the environment, some decision making
approaches offer a better fit to the decision making fra-
mework than others. Moreover, we assert that a few, if
not many, different cognitive engines could cohabit in a
single CR equipment and will have to coordinate their
actions [51]. Thus, recently (2011), a CR decision making
engine based on prior knowledge has been suggested in
[52]. In the following sections we briefly describe the dif-
ferent approaches provided by the community depending
on the a priori knowledge assumed relevant to tackle the
environment the CR might face during its life time. In
Figure 6 we suggest to classify these techniques depend-
ing on the a priori knowledge provided to the cognitive
decision making engine.

4.1. Expert approach
The expert approach relies on the important amount of
knowledge collected by telecommunication engineers
and researchers. This knowledge is based on theoretical
consideration and practical measures on the environment
and radio communication parameters. It was first sug-
gested by Mitola in his Ph.D. dissertation on CR [6].
Through intensive off-line simulations, expert systems

are provided with a set of inference rules. These rules are
then used on-line to adapt the equipment depending on
the context faced by CR equipments. Thus, the more
available knowledge, the better the equipment can adapt
itself to its surrounding dynamic environment. However,
this knowledge is usefully as long as if the CR can repre-
sent its knowledge in a way that enables to exploit it and
to react to the environment by adequate adaptations of
its operating configuration. For that purpose, Mitola sug-
gested representing the knowledge of CR equipments
using a new dedicated language radio communication:
“radio knowledge representation language” (RKRL)
[6,33]. This representation of knowledge uses web
semantic such as XML (eXtensible Markup Language),
RDF (resource description framework), and OWL (web
ontology language). The expert knowledge based
approach had a large success especially due to the XG
project (neXt Generation) supported by the DARPA (e.g.,
[53] and for spectrum sharing: [54]). As a matter of fact,
if the knowledge is well represented and provided to the
equipment as a set of rules, the decision making process
becomes very simple. However this approach has a few
drawbacks:

• The behavior of the designed system is not tuned
to a particular user but to all users and to a set of

Figure 5 Classification of several dynamic spectrum access approaches as suggested in article [44]. Three main approaches can be
discriminated: dynamic exclusive use model, open sharing model (spectrum commons model), and hierarchical access model.

Figure 6 Suggested decision making techniques depending on the assumed a priori knowledge.
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probable environments. Moreover in order to
acquaint the CR decision making engine with valu-
able and large knowledge, an important amount of
effort is needed from the designer.
• Expert knowledge is mainly based on models. Thus
the system might behave in a poor way when it is
facing unexpected dynamics in the environment.

The techniques based on expert systems can, however
be supported by several other tools (some are discussed
later) to help them acquire new knowledge on the envir-
onment or help them avoid conflicts between different
configuration adaptation rules. A similar approach, based
on an ontology to model the knowledge of the decision
making engine was recently suggested [55-58]. Where a
common language to radio devices is suggested based on
an ontology, expressed in OWL and implemented on the
USRP card [59] using GNU radio [60].

4.2. Exploration based decision making
In some contexts, one can consider that there is a priori
knowledge available on the complex relationships existing
between, the metrics observed, the parameters to adapt
and the criteria to satisfy as described in Figure 7. In this
case the problem appears to be a multi-criteria optimiza-
tion problem. Within this framework, the CR decision
making engine aims at finding the best parameters to
meet the users expectations by solving a set of equations
as shown in Table Two of article [61] from which is
extracted Figure 7). This problem is known to be complex
for several reasons:

• there exists no universal definition of optimality in
this case. Thus the solution of this problem are
satisfactory (or not) with respect to a certain func-
tion, usually named fitness that evaluates how well
the criteria were satisfied.
• Thus usually a large space of possible “good” con-
figurations can be available.
• The criteria are correlated and can be in conflict
(e.g., Figure 7).

If we assume that the previously mentioned off-line
expert rule extraction phase has not been (or partially)

accomplished an exploration of the space of possible
configurations is needed.
There exists various possible algorithm to explore a

large set of potential candidates. The most obvious one
is probably “exhaustive search”, where all possible candi-
dates are computed and evaluated in order to find the
best solution. However, when the number of candidates
grows large, such approaches can become computation-
ally burdensome and miss the imposed decision making
deadlines. Usually in such contexts, heuristics are pre-
ferred. In the context of CR, finding the best solution
might not be necessary. Instead, the cognitive engine
would rather find, within the imposed limited amount
of time, a satisfactory solution.
Consequently, if the following criteria are met:

• Available a priori knowledge on the complex rela-
tionships existing between, the metrics observed, the
parameters to adapt and the criteria to satisfy.
• Possible heavy parallel computing.

Then a large set of decision making tools are possible
such as: simulated annealing, GAs, and swarm algo-
rithms to name a few [62]. Notice that such approaches
did not wait for CR to be used on radio technologies. In
1993, article [63] already suggested simulated annealing
as a possible solution to deal with channel assignment
for cellular networks.g

Genetic algorithms [14,34,61], Swarm Algorithms
[64,65] and insect colony inspired algorithms [66]h tech-
niques are usually referred to as bio-inspired or evolu-
tionary techniques.
This defined CR decision making framework was first

analyzed by Rieser and Rondeau. They suggested the
use of GAs to tackle this framework [14,34,61]. GAs
were first designed to mimic Darwin’s evolutionary the-
ory and are well known for their capacity to adapt
themselves to a changing environment. Without using
our formalism, their study showed that under what we
define as design space and with the described a priori
knowledge, the GAs provide cognitive radios with an
efficient and flexible decision making engine. But we
cannot consider their model as a generality for all CR
use cases, so that other solutions have to be considered

Figure 7 Multi-criteria optimization problem [61].
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additionally. Further details on the different versions
suggested and implemented by Virginia Tech can be
found in the following recent survey [67].i

Notice, that once again, prior knowledge can substan-
tially enhance the behavior of these algorithms. An
interesting illustration can be found in article [52] in the
case of GAs based decision making engines.

4.3. Learning approaches: exploration and exploitation
As we argued in the previous sections and as several
other authors [36,68] noticed, “Many CR proposals, such
as [61,69,70], rely on a priori characterization of these
performance metrics which are often derived from analy-
tical models. Unfortunately, [...], this approach is not
always practical due to e.g., limiting modeling assump-
tion, non-ideal behaviors in real-life scenarios, and poor
scalability“ [68]. To avoid these limitations and in order
to tackle more realistic scenarios, many methods based
on learning techniques were suggested: artificial neuro-
nal networks (ANN), evolving connectionist systems
(ECS) [71,72], statistical learning [73], regression models
and so on. All of these approaches have their cons and
pros, however they all have in common that they mainly
rely on trials conducted within a real environment to try
and infer from it decision making rules for CR equip-
ments. Since this learning tools aim at representing the
functional relationship between the environment
(through the sensed metrics), the systems parameters
and the criteria to satisfy, they need a direct interaction
with the environment in order to build a posteriori
knowledge on their environment. In this study we sub-
classify these methods depending on the way they learn
and exploit their rules. On the one hand (i), we find a
set of techniques that separates exploration and exploi-
tation phases. On the other hand (ii), we find other
techniques more flexible that combine both processes.
In the first mentioned case (i) we find several tools

such as ANN or statistical learning already used and
exploited in other domain requiring some cognitive abil-
ities (robotics, video games, etc.). These methods have
two phases: a phase of pure “exploration” where the CR
decision making engine learns and infers to find (expli-
citly or implicitly) decision making rules, then uses in a
second phase this a posteriori knowledge to make deci-
sion. Since these learning techniques rely on a first
learning phase, a large amount of data and computa-
tional power is needed in order to extract reliable
knowledge. This difficulty is already known concerning
ANN for instance. It is still true for statistical learning.
As noticed by Weingart in article [73], the provided
techniques are still computationally prohibitive, and not
ready yet to be used in a real equipment. However if the
first phase is well achieved the second phase is usually
very simple and does not require much time or energy

[68]. In the second case (ii), we find promising techni-
ques recently introduced to the community and still
need to be further investigated [17,36] in the case of
configuration adaptation.j These techniques try to pro-
vide the CR with a flexible and incremental learning
decision making engine. In the case of ECS based deci-
sion making engine, Colson suggested the use of an
evolving neural network [71,72]. Unlike the usual ANN,
the ECS-NN can change its structure without “forget-
ting” already learned knowledge. Thus new rules can be
learned by adding new neurons to the neural structure.
In order to be efficient the architecture proposed in [36]
needs some expert advice (a priori knowledge) on the
several available configurations. These added informa-
tion ranks the different configurations based on some
criteria (robustness, spectral efficiency, etc.) but without
knowing a priori which one is more adequate when
facing a certain environment.
More recently, article [17] however assumes that no a

priori knowledge is provided and that the performance
of the equipment can only be estimated when trying a
specific configuration. The associated tools are based on
the so-called MAB framework. One advantage here is to
provide learning solutions while operating, even if the
cognitive engine is facing a completely new environ-
ment. Of course, performance increase while the learn-
ing process progresses. Note that this approach is also
proving its accuracy in the OSA context [47].
To conclude this section, we would like to emphasize

the fact that the proposed classification in this article
shows that a CR equipment cannot depend on only one
core decision making tool but on a pool of techniques.
Every time it faces an environment, the equipment
needs to have an estimation of its a priori knowledge
and on its reliability. To tackle a particular context, the
general process can be summarized through three ques-
tions: What can’t I do (design space)? What do I already
know (a priori knowledge)? And what technique should
I select to solve the decision making problem?
In the following section we extend the analysis to the

specific and practical context of imperfect sensing. As a
matter of fact the impact of sensing errors can be signif-
icant on decision making techniques. However, unfortu-
nately, very few studies seem to tackle this specific
problem within CR contexts. Hence, we further discuss
this matter hereafter.

5. Decision making in the context of sensing
errors
As illustrated through the notion of basic cognitive cycle,
decision making, and learning rely on prior observations
of the environment. Consequently, the performance of
the implemented decision making tools highly depends
on the quality of the observations. Unfortunately, we
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could not find substantial quantitative material evaluating
the impact of sensing errors on decision making and
learning tools. Thus, we suggest to qualitativelyk discuss,
in this section, the impact of sensing errors on the pre-
viously discussed decision making tools for CR. For that
purpose we rely on a specific problem borrowed from the
OSAl community to illustrate this discussion where the
problem of decision making in the context of sensing
errors is clearly formalized and the impact of such errors
on the considered learning algorithm’s performance is
quantified.

5.1. An example of learning approach
Opportunistic spectrum access is a particularly interest-
ing framework that illustrates the challenge faced when
learning under uncertainty. When tackling the general
DCA problem, described hereabove, while considering K
channels to probe, the problem that consists in maxi-
mizing the cumulated throughput of the user over the
number of transmission trials appears to be consistent
with a MAB paradigm [74,75]. In a nutshell, based on
the analogy with the one-armed bandit (also known as
slot machine), it models a gambler sequentially pulling
one of the several levers (MAB) on the gambling
machine. Every time a leverm is pulled, it provides the
gambler with a random income usually referred to as
reward. Although we assume that the gambler has no a
priori information on the rewards’ stochastic distribu-
tions, he aims at maximizing his cumulated income
through iterative pulls. In the OSA framework, the SU
is modeled as the gambler while the frequency bands
represent the levers. The gambler faces at each trial a
trade-off between pulling the lever with the highest esti-
mated payoff (known as exploitation phase) and pulling
another lever to acquire information about its expected
payoff (known as exploration phase). We usually refer to
this trade-off as the exploration-exploitation dilemma. If
the problem is assumed modeled as a MAB framework
an interesting way to tackle the problem is to use the
class of so-called upper confidence bound algorithmsn

(UCB) [17,47,48,50,76]. The main advantage of UCB
methods for CR is to offer a balance between explora-
tion and exploitation phases without interrupting the
communication process, i.e., while providing a certain
service to the user [17]. Namely, a CR based on UCB
can jointly communicate and learn. Thus it avoids the
instantiation of two steps: a learning step during which
the user has to wait. And a communication step that
depends on how well the first step performed. It is
worth noticing that the suggested illustration, in the
article, is based on the so-called UCB1. This latter has
been selected for its rather low computational complex-
ity compared to other techniques in the literature.

For illustration purpose, we use the following decision
model for OSA of a SU having the choice between ten
frequency bands, each one used by PUs with a different
probability, usually unknown to the CR decision making
engine. A complete model is provided in [48]. Only one
band can be sensed and tried at each iteration in order
to keep the system’s complexity reasonable. Conse-
quently, the cognitive engine only has a partial informa-
tion on the environment at each iteration and should
derive the probability of availability of the bands based
on its previous trials. It provides a confidence bound on
every band and selects, for the next iteration, the band
most likely to be free. Communication can be per-
formed if the band is detected as free; otherwise the SU
backs off. However, the SU can make errors due to the
non perfect accuracy of its sensing detector. More speci-
fically, the detector might detect the presence of a PU
while the band is in fact free and vice-versa. The conse-
quence is that the SU does not transmit during this
iteration whereas he could, or transmits when he should
not causing interference to the incumbent users. We
usually speak of false alarm in the former case and
miss-detection in the latter case.
We see in Figure 8 the impact of false alarms on the

proportion of time a cognitive engine, relying on the
UCB1 [77,78] algorithm, choses the most available chan-
nel (considered as optimal in this case). This proportion
increases as the number of trials grow large, thus as the
SU learns more on the availability of the bands. We can
see that with a probability of false alarm equal to zero,
the decision making engine needs 1,000 trials to obtain
a selection rate of 72% of the most available channel.
This ratio falls to 50% after 1,000 trials for a probability
of false alarm of 0.4, which is quite decent considering
the scenario and the heavy deterioration of sensing
accuracy. In fact, in this case, a little bit more than
twice the number of iterations has been necessary com-
pared to a perfect sensing scenario. But after 10,000
trials, the ratio grows to achieve 96 and 92%, respec-
tively. Consequently, the cognitive engine is able to
communicate and to converge towards the most avail-
able band in spite of the sensing errors it is suffering.

5.2. The impact of observation error and uncertainty on
decision making
Analyzing the impact of uncertainty and sensing errors
on the performance of a CR decision making engine is
very difficult. However due to the importance of this
problem to the community, we suggest as a closing
point of this article, an intuitive and brief insight view
on this matter. Within this framework we consider that
the sensing information we capture from the environ-
ment may contain errors. Then we describe the
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potential consequence of such errors on the perfor-
mance of class of algorithms previously classified.
Due to their lack of flexibility, expert decision making

techniques seem to be the most vulnerable to uncer-
tainty. As a matter of fact, their decision making pro-
cess, based on either rules or predefined policies, leads
the CR to consider all observations as being correct.
Hence a sensing errors provokes a behavioral error. GA
based decision making engines rely on explicit relation-
ships between parameters, observations and criteria.
Consequently, sensing errors can highly impact the
selection process as it introduces biases in the perfor-
mance evaluation of the different candidates. Moreover,
generation after generation, these errors would probably
propagate leading to an inefficient selection process.
Such decision making engines would probably need to
interact with environment to test the candidates and
confirm their performance. In such scenarios, the CA
might be able to mitigate the impact of sensing errors at
the cost however of a burdensome process. ANN are
usually depicted, when they fulfill given requirements, as
universal approximators. In other words, if the neural
network is correctly designed to fit the decision making
problem, it can efficiently learn the implicit relationship
that exists between parameters, observations and cri-
teria. Consequently even when sensing errors are

present, the learning process can lead to capture average
patterns and thus appropriately mitigate their impact.
Thus, the more learning abilities and flexibility a deci-
sion making shows the more robust it become to uncer-
tainty and sensing errors. This analysis is further
depicted in Figure 6. Thus, we can summarize this intui-
tive insight view as follows: the more the decision mak-
ing technique is at the right of Figure 6, the more
robust to observation flaws it seems to be. Notice that
the learning process enable the CA to acquire knowl-
edge on its environment. Consequently a learning pro-
cess fully achieved should lead to an expert decision.
Figure 9 illustrates moreover a vertical axis that sug-
gests, when possible, that collaboration helps CR users
to acquire through diversity a better information on
their environment. And thus, it enables them to improve
the performance of their decision making engine consid-
ering a given uncertainty level.
Taking into account the uncertainty on the environ-

ment sensing, we may assert that learning-oriented tech-
niques are more efficient. This is emphasized by the
proposed classification based on the a priori knowledge
criteria on the environment. Hence, we believe that
such approaches should be particularly addressed by the
CR community in the second decade of CR decision
making era.

Figure 8 Percentage of time the UCB1-based CA selects the optimal channel under various sensing errors frameworks (over ten
available channels): impact of sensing errors on the learning performance of the algorithm UCB1.
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We tackled in this article decision making in the sense
of a mono-equipment problem. In a multi-equipment
context, a higher level of decision (rule, policy, etc.)
should specify how equipments cooperate or not. This is
out of the scope of this article. However, at the level of
each equipment, decision goes back to what has been
stated in this article.

6. Conclusions
In this article, we presented a brief yet original retro-
spective view on the first 10 years of CR. More specifi-
cally of the different challenges faced by the CR decision
making community and the suggested solution to
answer them. We state that most of these decision mak-
ing models have the same design space however they
differ by the a priori knowledge they assume available.
Consequently, we suggested the “a priori knowledge” as
a classification criteria to discriminate the main pro-
posed techniques in the literature to solve configuration
adaptation decision making problems. Moreover as a
qualitative and prospective analysis, we depicted through
an toy example the impact of observation errors and
uncertainty on CR decision making engine.
We believe that this analysis made on the first 10

years of exploration of decision making for CR may help
gaining perspective on the topic and thus help addres-
sing this research domain for the next coming 10 years.

Endnotes
aBoth US and European military have been working on
such flexible and inter-operable defense systems since
the late 1970s. bIt is called full CR to oppose it to other
simplified versions suggested in the literature [4]. cA
specific example of such paradox can be illustrated by
the following sentence: ‘This sentence is false!’ [79] as
suggested by Mitola during a recent seminar at Supélec,
http://www.rennes.supelec.fr/ren/rd/scee/seminaire.html.

dNotice that this assumption introduces the notion of
satisfactory behavior. We oppose it to rational thinking
where the decision making engine always aims at the
most rewarding option. Thus when the decision making
engine needs to learn in an uncertain environment,
satisfaction based reasoning can be introduced to accel-
erate the convergence rate of learning algorithms for
instance. e[...] “Trade, lease, and rent of licenses were
possible without incurring excessive administrative pro-
cedures and overhead costs” [37]. fA different, more
detailed and more exhaustive, DSA taxomony can be
found in article [80]. gIt is indeed a very restrictive case
of DCA and DSA where a centralized entity, seen as the
cognitive agent (CA) assigns frequency channels to its
users depending on the channel conditions. hTo the best
of authors’ knowledge Swarm algorithms have only been
exploited in case of resource allocation. No complex
configuration adaptation decision making engine was
found in the literature based on such techniques. iThis
document is presented as a survey of the various sug-
gested decision making architectures for CR. We notice
however, that except the one designed by Mitola, during
the DARPA xG Program, and those designed and imple-
mented by Virginia Tech, the community around this
topic seems thin and advances slowly toward efficient
architectures. Other suggested architectures relying
mostly on bio-inspired techniques tackle spectrum
resource allocation related problems. jThese same tech-
niques, based on a MAB model, prove to be efficient to
tackle some DSA related problems as already discussed
in Section 3.2. kTo the best of authors’ knowledge such
studies have only been conducted when dealing with
OSA problems. Consequently, the presented results are
exploratory and need further investigations to fully con-
firm them. We find however the overall discussion
interesting to capture CR related decision making chal-
lenges. lAs mentioned earlier, we consider in this article

Figure 9 Decision-making techniques classification based on a priori knowledge in the context of noisy sensing.
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that OSA problems are but specific instantiations of
DCA problems. mFrom a DCA problems perspective, a
lever is a specific configuration to be tested. Thus in
OSA, it refers to a band to probe for instance. nUCB
algorithms are given here as an example of learning-
oriented approach. But the philosophy and conclusions
of this section would match other learning techniques.
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