Marques and Ricardo EURASIP Journal on Wireless Communications and
Networking (2017) 2017:37
DOI 10.1186/513638-017-0821-7

EURASIP Journal on Wireless
Communications and Networking

RESEARCH Open Access

Synchronization of application-driven

WSN

Bruno Marques'?" ® and Manuel Ricardo?

@ CrossMark

Abstract

The growth of wireless sensor networks (WSN) has resulted in part from requirements for connecting sensors and
advances in radio technologies. WSN nodes may be required to save energy and therefore wake up and sleep in a
synchronized way. In this paper, we propose an application-driven WSN node synchronization mechanism which, by
making use of cross-layer information such as application ID and duty cycle, and by using the exponentially weighted
moving average (EWMA) technique, enables nodes to wake up and sleep without losing synchronization. The results
obtained confirm that this mechanism maintains the nodes in a mesh network synchronized according to the
applications they run, while maintaining a high packet reception ratio.

Keywords: Wireless sensor network (WSN), ContikiRPL, Nodes synchronization, ENVMA

1 Introduction

Recently, there has been an increasing trend towards
the deployment of WSN, where a large number of
tiny devices interacting with their environments may
be inter-networked and accessible through the Inter-
net. For that purpose, several communication protocols
have been defined making use of the IEEE 802.15.4
Physical and MAC layers [1]. The 6LoWPAN Network
Layer adaptation protocol [2] is also used to enable the
interconnection between low-power devices and the IP
network. Since its release, the design of routing protocols
became increasingly important [3] and RPL [4] emerged
as the IETF proposed standard protocol for IPv6-based
multi-hop WSN.

WSNs are constituted by sensor devices equipped with
their own local clock for internal operations [5]. Events
related to them, which include sensing, processing, and
communication, are normally associated to timing infor-
mation. In the particular case of WSNs, there are chal-
lenges and factors related to node synchronization, which
include low-cost clocks, effects of wireless communica-
tion, and node failures. Moreover, WSNs are distributed
and their nodes have multiple hardware and software con-
straints such as low processing power, low memory and

*Correspondence: bmarg@estgv.ipv.pt

' Departamento Engenharia Eletrotécnica, Escola Superior de Tecnologia e
Gestéo, Instituto Superior Politécnico de Viseu, Viseu, Portugal

2INESC TEC, Faculdade de Engenharia, Universidade do Porto, Porto, Portugal

@ Springer Open

storage capabilities, and low-power consumption. These
characteristics make time synchronization an important
part of communication in WSNs, and synchronization
protocols are required.

In [6], we presented a new paradigm, the application-
driven WSN paradigm, as a cross-layer solution aimed
to help reducing the energy consumed by a network of
sensors executing a set of applications. This paradigm
assumes that each application defines its own network and
set of nodes so that the exchange of information can be
confined to the nodes associated to the application. The
nodes share information about the applications they run
and their duty cycles.

In [7], we proposed an extension to the RPL routing
protocol, the RPL-BMARQ, with the purpose of making
the network aware of the traffic generated by applications.
The main objective of this extension was to construct
directed acyclic graphs (DAGs), by using information
shared by the application and network layers, allowing the
nodes to select parents by considering the applications
they run. In that work, we characterized the energy con-
sumption and the energy gain and also end-to-end delay
and fairness. For evaluation purposes, we selected four
scenarios in which all the nodes joined the network at
same time and performed simulations considering reg-
ular RPL and RPL-BMARQ. Later, we started to study
the behavior of RPL-BMARQ considering that the nodes
would not join simultaneously the WSN. At this end,

© The Author(s). 2017 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the

Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13638-017-0821-7&domain=pdf
http://orcid.org/0000-0002-3795-337X
mailto: bmarq@estgv.ipv.pt
http://creativecommons.org/licenses/by/4.0/

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

we presented a draft of a possible node synchronization
mechanism, and estimated the energy gains introduced by
RPL-BMARQ.

In this paper, we consider a more realistic situation in
which the nodes join the WSN at a non-predictable and
different time. At this end, the sensor nodes must share
some kind of time reference which allow them to be syn-
chronized with respect to the life cycle of the applications
they run. Therefore, in this paper, we propose a novel
synchronization mechanism for RPL-BMARQ, which will
help the nodes to wake up and to go asleep in a syn-
chronized manner so that they can successfully send,
receive, and forward packets, maintaining the energy
consumption low.

The major contribution of this paper is then a mecha-
nism for WSN which synchronizes the sensor nodes with
respect to the applications life cycles they run, enabling
these nodes to wake up and to go asleep in synchronism,
while maintaining a packet reception ratio high. The nov-
elty of our contribution comes from (1) the adaptation
of the well-known exponentially weighted moving aver-
age technique to wireless mesh network scenarios and (2)
using this mechanism to control the behavior of sensor
nodes so that they become synchronized in relevant time
instants which are defined by their application duty cycles.

The paper is organized in 6 sections. Section 2 presents
the related work. Section 3 describes the application-
driven WSN concept. Section 4 describes the ratio-
nale of the contribution—the synchronization mechanism.
Section 5 evaluates the proposed mechanism, describes
the methodology adopted for its validation, and discusses
the results obtained. Finally, Section 6 draws the conclu-
sions and presents future work.

2 Related work

In this section, we present and discuss related work in
three main areas: time synchronization, wake-up mecha-
nisms for WSN, and 6LowPAN/IPv6/ RPL evaluations.

2.1 Time synchronization

WSNs are constituted by sensor devices equipped with
their own local clock for internal operations [5]. Events
related to them, which include sensing, processing, and
communication, are normally associated to timing infor-
mation. In the particular case of WSN, there are many
challenges related to time synchronization because these
networks are distributed by nature and because of the con-
straints of the sensor nodes in terms of hardware and of
software.

Akyildiz and Vuran [5] state that in order for the
nodes to synchronize, they must exchange information
about their clocks and use this information to synchro-
nize their local clocks. By using wireless communications,
WSNs create challenges for synchronization that result

Page 2 of 22

from the error-prone communication nature of the wire-
less channel which may cause packet losses due to low
signal-to-noise plus interference ratios, or highly and vari-
ant non-deterministic delays caused by MAC access and
packet retransmissions. These factors affect also the time
synchronization messages. Therefore, some nodes may
be unsynchronized. On the other hand, synchronization
messages sent by nodes may lead other nodes to adapt
to their unsynchronized local clocks. As a consequence,
the network may be partitioned into different areas with
different time that prevents synchronization of the entire
network. Also, the wireless channel may introduce asym-
metric delays between two nodes, which is important for
synchronization because some synchronization solutions
depend on consecutive message exchange and round-trip-
time delays. Therefore, robust synchronization methods
are needed.

We start to identify some factors that influence the
synchronization of the nodes and that should be consid-
ered in the design of time synchronization mechanisms
for WSN. As the Network Time Protocol (NTP) pro-
tocol [8] is a synchronization protocol normally used
in IP networks, we provide an overview of it and also
describe synchronization protocols for WSN related to
our work.

2.1.1 Factors influencing time synchronization

According to [9], some of the factors influencing time
synchronization in large systems constituted for example
by personals computers, also apply to sensor networks,
where temperature, phase noise, frequency noise, asym-
metric delays, clock glitches, and sensors constraints are
examples of these factors. In the case of the tempera-
ture, since sensor nodes are deployed in various places,
temperature variations throughout the day may cause the
clock to speed up or slow down. In the case of the phase
noise factor, some of its causes are due to fluctuations in
the hardware interface, response variation of the operat-
ing system to interrupts, and jitter in the network. The
frequency noise results from the instability of the clock
crystal. In the asymmetric delay factor, the delay of the
path from one node to another node may be different
from the return path which may result in an asymmet-
ric delay and may cause an offset to the clock, which
may go undetected. Clock glitches are abrupt jumps in
time, caused by hardware or software anomalies such as
frequency and time steps. Finally, WSN nodes are con-
strained by nature because of limited resources (e.g., low
in energy consumption, low in processing power, or low in
memory).

The transmission and reception of packets are the fac-
tors that cause more energy consumption in a sensor
node. Therefore, a time synchronization protocol for sen-
sor networks should help overcome the synchronization

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

problems introduced by the factors described above, avoid
frequent message exchanges, and be self-configurable.

2.1.2 Network Time Protocol

The NTP [8] is the synchronization protocol more often
used in the Internet. This protocol includes several syn-
chronization mechanisms that have been also adapted for
developed WSN synchronization protocols. Reference-
broadcast synchronization (RBS) [10], timing-sync pro-
tocol for sensor networks (TPSN) [11], lightweight
tree-based synchronization (LTS) [12], and TSync [13] are
some examples of these protocols. NTP is used to adjust
the clock of each network node. This synchronization is
achieved by using a hierarchical structure of time servers.
The root node is synchronized with the Coordinated Uni-
versal Time (UTC). In each level of this hierarchy, the time
server nodes synchronize the clocks of their subnetwork
peers. NTP uses a two-way handshake between two nodes
to estimate the delay between these nodes and compute
the relative offset accordingly (see Fig. 1, where node s will
synchronize himself with node r). However, NTP assumes
that the transmission delay between two nodes is the same
in both directions. This is reasonable for the Internet, but
some of the characteristics of WSN make this assumption
inadequate. NTP is useful to discipline the oscillators of
the sensor nodes, but using it to connect to time servers
may be impossible because of sensor node failures, which
are frequent in WSN. Using a single clock reference to
synchronize all the nodes could be a problem due to
the variations in network delays. Moreover, NTP requires
intensive computing, requires a precise time server to syn-
chronize the nodes, and does not consider the energy the
nodes may spent to synchronize their clocks. All these
problems may cause NTP to inaccurately measure delays
and inaccurately estimate clock offsets.

2.1.3 Synchronization protocols for WSN

WSN poses unique challenges in the design of synchro-
nization protocols, which calls for specific synchroniza-
tion solutions. An example is the effect of the broadcast
wireless channel. However, wireless communication

O
\
=
E
o

Fig. 1 NTP two-way handshake mechanism

Page 3 of 22

introduce random delays between two nodes. Let us con-
sider Fig. 2, which represents a handshake scheme. The
delay between two nodes is characterized by four com-
ponents: (i) the sending delay (£send), (ii) the access delay
(face), (iii) the propagation time (f,r0p), and (iv) the receiv-
ing delay (£recv)-

The handshake is initiated when node s issues a SYNC
packet with the timestamp £]. Between the time the syn-
chronization protocol issues the synchronization com-
mand and the time during which the SYNC packet is
prepared, there is a delay, fsenq, resulting from the combi-
nation of operating system delays and transceiver delays
on the node’s hardware; £, corresponds to the additional
delay introduced by the wireless channel after the packet
has been prepared and transferred to the transceiver.
This delay depends on the MAC protocol when the node
waits for accessing the channel; as an example, MAC pro-
tocols using CSMA introduce a significant amount of
access delay when the channel is very occupied. fprop is
the amount of time needed to transmit a SYNC packet
to a receiver. Finally, trecy is the time required for the
transceiver of the receiver node r to receive the packet and
process it. The transmission delay, t, is a component of
the receiving delay, which is important and characterized
by the time needed for the SYNC packet to be completely
received (see Fig. 2); it depends on the transmission rate
and on the length of the SYNC packet. These compo-
nents contribute to the overall communication delay, also
referred as critical path. Delays are non-deterministic and
create challenges when estimating clock offsets using the
NTP’s methods. Most of the synchronization protocols
for WSN tend to minimize the effects of these delays,
which are random. In what follows, four related existing
synchronization protocols are described.

Reference-broadcast synchronization: In Fig. 3, a
sender-receiver handshake scheme is shown which intro-
duces a significant amount of non-deterministic delay
[10]. The RBS protocol tries to minimize the overall
communication delay in the synchronization process. It
eliminates the effect of the broadcast node. Instead of syn-
chronizing the receiver with the sender, RBS synchronizes

tS

1
l<—tsend—>i<—tau—>i— ttx—z

Sync

?_:<—trecv—>€

/)

thP

Fig. 2 Synchronization delay between two nodes

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Fig. 3 Reference broadcast. Node 1 broadcasts m messages which
are used by the other nodes for synchronization purposes

a set of receivers that are within the reference transmis-
sion of a sender. Considering that propagation times are
negligible on wireless channels, as soon as a packet is
transmitted, it is received at all sender’s neighbors almost
at the same time. Therefore, the synchronization may be
improved if only the receivers are synchronized. As shown
in Fig. 3, node 1 broadcasts m reference packets and each
one of the receivers, within its broadcast range, records
the time the packets are received. Then, the receiver

Page 4 of 22

nodes communicate with each other to estimate the off-
sets, just like the traditional synchronization. Figure 4a
shows the critical path for traditional synchronization.
Sending delays and the access delays should be accurately
estimated to improve the synchronization. Reference-
broadcast synchronization does not involve node 1 in the
synchronization; only the receivers (nodes 2, 3, 4, 5, 6, and
7) synchronize among themselves based on a reference-
broadcast message from node 1. As shown in Fig. 4b, this
reduces the critical path duration. In fact, the possible
origin of uncertainty in RBS is the time between when
a broadcast packet is received and when it is completely
processed.

A method used to determine with efficiency the clock
offset of each node in relation to its neighbors is the
receiver-receiver synchronization method. By exchanging
messages with each neighbor, a node fills a table consist-
ing of relative offsets. Therefore, the main goal of RBS
is not to correct the clocks of the nodes but, every time
a packet is received, to translate its timestamp to the
node’s clock using the relative offset information. This
synchronization method can only provide synchroniza-
tion in a broadcast area. In order to provide multi-hop
synchronization, RBS uses nodes that receive two or more
different reference-broadcast messages. These nodes are

——t_
send— acc” .

j_'<_t

«——— Critical Path

acc

«—t

\

2 : time

o l tsend

-t

Fig. 4 Critical paths for: a a pair of nodes and b RBS

\

y

3 o " time
recv

Critical

Path

b)

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

called translation nodes, and they are used to translate the
time between different broadcast domains (see Fig. 5). As
it can be observed, nodes A, B, and C are, respectively,
the transmitter, the receiver, and the translation nodes.
The transmitter node broadcasts its timing messages, the
receiver node receives those messages, and then the nodes
synchronize with each other.

Timing-sync protocol for sensor networks [11]: TPSN
uses some of the NTP concepts: it uses a hierarchical
structure to synchronize the entire WSN to a single time
server. TPSN uses the root node to synchronize all or part
of the network, consisting of two phases: (1) the discov-
ery phase, where the structure of TPSN is built, starting
from the root node and (2) the synchronization phase,
where pairwise synchronization is performed across the
network. In (1), the root node is assigned to level 0 and
the other nodes in the network are assigned to levels
according to their distance to the root node (see Fig. 6).

Firstly, the root node starts to construct the TPSN struc-
ture. To this end, it broadcasts a special packet called
level_discovery packet. In this structure, the first level
is assigned to the number 0, which is the level of the
root node. The other nodes that receive this packet are
the nodes that belong to level 1. Afterward, these nodes
broadcast their level_discovery packet. Then, the neigh-
bor nodes receiving those packets are labeled as level 2
nodes, and the process is repeated until all the nodes in
the network are assigned to a level.

In (2), each node in the structure is synchronized with
a node from a higher level. The root node sends another
packet (the time_sync packet) which initializes the time
synchronization process. Afterwards, the nodes in the

Transmitters Receivers

Translation nodes
Fig. 5 RBS multi-hop synchronization scheme

Page 5 of 22

Level 0 - root

Level 1
Level 2 . ‘ . . .

Fig. 6 Synchronization architecture of TPSN

next level start to synchronize with the root node by send-
ing a synchronization_pulse to it, as shown in Fig. 7. In
order to avoid collisions with other nodes, each node in
level 1 waits for a random amount of time before trans-
mitting the time_sync packet. After the reception of this
packet, the root node sends an acknowledgment back
to finish the synchronization process. In this way, nodes
belonging to level 1 of the structure are synchronized with
root node (see Fig. 7). This time_sync packet also serves
as a synchronization_pulse to level 2 nodes. Upon a recep-
tion of this packet from a node in level 1, the nodes in level
2 wait for a random amount of time for the level 1 nodes
to finish their synchronization. Then, they initialize the
synchronization process by transmitting a synchroniza-
tion_pulse. Acting like the root node in level 0, a level 1
node sends back an acknowledgment, the process contin-
ues until all the nodes at different levels are synchronized,
and the entire network becomes synchronized.

In TPSN, the receiver synchronizes with the local clock
of the sender according to the two-way message hand-
shake, as shown in Fig. 7. For this reason, TPSN is based
on a sender-receiver synchronization method. Hierarchical
structures created by TPSN are similar to the structures
created by NTP. Like in NTP, nodes may fail causing
nodes to become unsynchronized. Also, nodes mobility
can make the hierarchy useless, as they may move out of
their levels. Therefore, nodes at level # cannot synchro-
nize with nodes at level n — 1, without requiring additional
and periodical synchronization.

@

sync pulse
-—

\

Ack
<2

Fig. 7 Two-way message handshake

\/

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Lightweight tree-based synchronization [12]: LTS is
similar to TPSN and follows two design approaches: cen-
tralized and distributed. The centralized design is based
on the construction of a tree such that each node is syn-
chronized to the root node. After the tree is constructed,
the root initiates pairwise synchronization with its chil-
dren nodes and the synchronization is propagated along
the tree to the leaf nodes.

In the distributed design, LTS does not rely on the con-
struction of a tree and synchronization can be initiated by
any node in the network. Each node performs synchro-
nization only when it has a packet to send. Therefore, each
node is informed about its distance (in number of hops) to
the reference node for synchronization, the desired accu-
racy, the clock drift, and a record of the time that has
passed since they were synchronized. Then, the nodes
adjust its synchronization rate accordingly. Nodes far-
ther apart from the reference node perform synchroniza-
tion more frequently because synchronization accuracy is
inversely proportional to distance.

In general, LTS is based on message exchanges between
two nodes to estimate the clock drift between their
clocks. This synchronization scheme is named pairwise
synchronization scheme, and it is extended for multi-hop
synchronization.

In contrast to our centralized and asynchronous pro-
posed synchronization mechanism, in [14], a synchronous
protocol is proposed that provides a distributed strat-
egy which guarantees convergence for any undirected
connected communication graph. This strategy tries to
control the nominal clock period and the clock offset
based on the information received from neighbor nodes
in order to achieve synchronization. Moreover, when an
underlying communication graph is known, the authors
purpose an optimal design strategy which can be used to
study the effect of noise and external disturbances on the
steady-state performance.

There are additional works proposing and analyzing
time synchronization mechanisms. In [15], the authors
use factor-graph methods for network clock estimation
and propose two methods for message passing: belief
propagation (BP) and mean field (MF).

In [16], two joint synchronization and localization algo-
rithms in both line of seeing (LOS) and in non-line of
seeing (NLOS) environments are proposed. They applied
Taylor expansions in order to represent factor graphs in
closed Gaussian forms where the means and variances of
beliefs of node estimates can be easily obtained by simple
arithmetic operations.

In [17], the authors propose a global clock synchro-
nization method by adopting a packet-based synchroniza-
tion scheme. The proposed distributed algorithm requires
communications only between neighboring sensors and
computes a set of marginal distributions using the BP

Page 6 of 22

message passing [18]. The authors have observed that the
state of clock offset at any sensor depends directly only on
its neighboring sensors and that the algorithm synchro-
nizes clocks with a consistent reference value instead of
adjusting clocks to an average value.

In [19], WSN time synchronization follows two strate-
gies: (i) maximum time synchronization (MTS) to simul-
taneously synchronize the skew and offset of each node
when the communication delay is negligible and (ii) a
weighted maximum time synchronization (WMTS) when
the communication delay between the nodes is random.
In contrast to our work, in which we synchronize a vir-
tual clock, these authors attempt to synchronize the clock
skew, in order to obtain acceptable synchronization accu-
racies. The main idea of MTS and WMTS is to drive all
clocks to the maximum value among the network. In [19],
random communication delays with normal distribution
are considered, while we validated our solutions against
Gaussian and exponentially distributed delays. This solu-
tion can be classified as distributed and asynchronous
algorithm, whereas ours can be classified as centralized
and asynchronous.

Since synchronization is a widely studied topic, in [20],
a survey of clock synchronization for wireless sensor net-
works is published.

2.2 Wake-up mechanisms for WSN

WSN are energy limited so typically the nodes cannot
keep radios active all the time, having to sleep and to
wake up periodically [21]. Addressing this issue, there
have been proposed several MAC protocols which were
categorized as synchronous or asynchronous MAC proto-
cols. Although asynchronous protocols are simpler, they
tend to consume more energy. But in WSN, where energy
must be saved, a different approach may be used. One pos-
sibility is to use synchronous methods. Using these proto-
cols, some techniques are adopted to increase the nodes
lifetime: (i) duty cycling and (ii) scheduled rendezvous.

Duty cycling: This is one mechanism widely used for
energy-efficient MAC protocols in WSN. A MAC pro-
tocol that implements duty cycling uses appropriate
sleep/wake-up mechanisms to conserve energy, and in
[22], it is demonstrated that when sensor nodes remain
in the sleep mode, they consume less energy than when
in the idle mode. When there is no need for communica-
tion, the radio is put to sleep and, although applying duty
cycling energy is conserved, it has some disadvantages.
Putting sensors into sleep mode makes it difficult to the
all network to function or at least certain part of it. As
showed in [23], a few issues are needed to overcome such
as deciding when to switch a device to low power mode or
deciding “for how long should a device remain in the low
power mode?” To solve these issues, efficient and flexible

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

duty cycling techniques have been proposed. The S-MAC
[24] and the T-MAC [25] protocols are examples of them.
These protocols transmit a SYNC packet to notify neigh-
bors about their schedule and to synchronize the clocks
of all nodes in the network. The method only compen-
sates for clock offset and does not consider clock drift
[21]. Moreover, the knowledgement of traffic patterns can
also help to take decisions about waking up. This method
is known as adaptive duty cycling. S-MAC [24] is one of
the major energy-efficient MAC protocols that efficiently
exploits the idea of adaptive duty cycling. It uses a periodic
sleep-wake-up mechanism in order to lower power con-
sumption. If a node has no packet to receive, it can waste
a large amount of energy by just listening to the chan-
nel. Consequently, a node can save a significant amount
of energy if it simply goes to sleep mode by switching off
its radios [22]. T-MAC is an improvement over S-MAC
duty cycling. In the T-MAC, listening period ends when
no event has occurred for a time threshold TA. Though it
improves on S-MAC, T-MAC has the disadvantage that
it can face an early sleeping problem where a node can
go to sleep even though its neighbor may still have mes-
sages for it. Synchronization is also an issue in duty cycling
MAC protocols. In [26], that synchronous MACs such as
S-MAC have low energy consumption for sending packets
but are complicated due to the need of synchronization
is argued. Conversely, asynchronous MACs, for example
WiseMAC [27], is very simple, but it spends much energy
in finding the neighbor’s wake-up time. Moreover, syn-
chronous methods can be characterized as one-way meth-
ods. Usually, the senders broadcast a reference message
and receivers, upon the reception of the message, record
the arrival time by their own clocks, and exchange this
information among each other to compensate clock offset
between them. In [21], a synchronous method is pro-
posed in which clocks in the all network are not modified.
Instead, the nodes are synchronized with their own clocks.
Since the periodic broadcast event in the network is the
same, although they have different measurement results
for this period by their own clock unit independently, they
are able to interact with each other at the same physical
time. Without complicating the estimation process and
without modifying the clock of a node, this synchroniza-
tion method becomes simpler and more energy-efficient
than the traditional synchronization one-way method.

Scheduled rendezvous: This type of MAC protocol
requires a prescheduled rendezvous time at which neigh-
boring nodes wake up simultaneously. In this method, a
node wakes up periodically and sleeps until the next ren-
dezvous time. A scheduled rendezvous scheme is shown in
Fig. 8 [22].

The advantage of this scheme is that when a node is
awake, it is guaranteed that all its neighbors are awake

Page 7 of 22

Transmitter ... Awake
Asleep Asleep i Asleep

send packets send packets

Receiver Awake Awake

—
Asleep Asleep . Asleep
received packets
Fig. 8 A scheduled rendezvous scheme

as well. Consequently, it is easier to send/receive pack-
ets. Broadcasting a message to all neighbors is also sim-
pler in scheduled rendezvous schemes. RI-MAC [28] is
a receiver-initiated asynchronous duty cycle MAC proto-
col for WSN. It uses a receiver-initiated data transmission
in order to proficiently operate over a wide range of traf-
fic loads. It attempts to minimize the time a sender and
the receiver occupy the medium to find a rendezvous time
for exchanging data, while still decoupling the sender and
receiver’s duty cycle schedules. A disadvantage of such
MAC protocol is the requirement to maintain strict syn-
chronization because clock drifting may deeply affect the
rendezvous time.

2.3 6LowPAN/IPv6/RPL evaluations

In [29], a cross-layering design for RPL which provides
enhanced link estimation and efficient management of
neighbor tables is proposed. They used AMI as a case
study and employed the Cooja emulator to evaluate their
proposal. The authors analyzed RPL together with the
underlying X-MAC and ContikiMAC and Nullrdc proto-
cols from the reliability stand point by considering packet
loss, end-to-end delay, and energy consumption and have
implement a testbed using ContikiOS to validate their
work. In [30], the performance of RPL used for multi-sink
WSNs considering the hop-count and/or ETX, packet loss,
and energy consumption metrics is evaluated. To validate
the results from the performed simulations, the authors
performed on a real-life testbed the same tests.

In both works [29, 30], the authors considered networks
supporting single application where the nodes join the
network at same time. The performance metrics they con-
sidered were packet loss, end-to-end packet delay, and
energy consumption. In our work, the networks deployed
support multiple applications and the sensor nodes join
the network at different times what demands a node syn-
chronization mechanism. In order to characterize the per-
formance of our system, we used a set o metrics including

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

end-to-end packet delay, energy consumption, query suc-
cess ratio, and fairness Index. Query success ratio (QSR)
quantifies the success of a sink node with respect to the
reception of all the expected reply packets upon the trans-
mission of a query packet; this metric allows us to see if
all the nodes receive the query packets and if they reply
back. Therefore, it is easy to verify packet loss. The fair-
ness index metric is used to investigate if the nodes have
the same opportunity to reply back to the sink. We used
ContikiOS/Cooja for the simulations and validated our
work by implementing two testbeds.

3 Application-driven WSN

The application-driven WSN paradigm [6] assumes that
each application defines its own network and set of nodes
so that the exchange of information can be confined to
the nodes associated to the application. The nodes share
information about the applications they run and their duty
cycles, and nodes are put asleep when there is no activ-
ity related to their applications. When nodes receive a
query packet, they know exactly when they must wake
up on the next period. The nodes alternate between
wake and sleep states, and the amount of time spent in
each phase is determined by the application duty cycle.
When the wake-up time expires, the node switches to
the sleep state, waking up again by the time computed by
the synchronization mechanism proposed in Section 4 of
this paper.

We assume that every node can participate in route
discovery and packet forwarding. However, the nodes for-
warding a given type of data will be primarily selected
from the set of nodes running the same application to
which the data is associated. For that purpose, each
query packet includes information about the associated

Page 8 of 22

application (APPID), which is known by the nodes run-
ning that application. Our routing scheme tries to insure
that data of an application is relayed mainly by the nodes
running that application. When the sink node queries the
other nodes running the same application, routing paths
follow the directed acyclic graph (DAG) created. This
DAG is created and maintained by a change to the RPL
protocol scheme which uses mainly the nodes running
that application; the nodes not associated to this applica-
tion will not participate in the routing process, in a first
attempt. In our proposal, the subset of nodes running the
same application forms a “subnetwork” with multi-hop
connectivity and application packets carry out also infor-
mation about the application duty cycle (TcycrLg and ToN)
that is used to create and maintain the DAGs in which
not only the nodes running the same application but also
the nodes having the same application duty cycle can be
“grouped”. Figure 9a shows a network topology support-
ing two different applications. Figure 9b shows the DAG
created with standard RPL, and Fig. 9c shows the DAG
created by our proposed solution. The wake-up mecha-
nism is based on the applications time cycle information
(TcycLe and Ton), carried by every application query sent
by the sink nodes. When a node receives a query packet,
it knows exactly when it must wake up on the next period.

4 Application-driven synchronization mechanism
According to our application-driven concept, synchro-
nization is achieved between the nodes that run the same
applications or between the nodes that have the same
application duty cycle, by considering their duty cycles.
Therefore, the first time a node joins the network, it waits
for an application query packet to adjust its virtual clock to
the time carried by the query packet. We realize that this

a)

b)

Fig. 9 Application-driven WSN concept. a Network topology. b RPL DAG. € BMARQ-RPL DAG

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

corresponds to setting the time’s nodes to a value which
does not consider network delays but, as demonstrated
in the paper, this has no impact on our synchronization
mechanism as the nodes dynamically adjust their sleep-
ing offset (see B - |8, component in Eq. 2) and wake
up and sleep almost at the same time during the network
lifetime. As such, the synchronization algorithm takes
advantage of the application query packets that are sent
by the sink nodes once in every application duty cycle
to maintain the sensor nodes synchronized. A network
may support several applications but only the nodes run-
ning the same application or having the same duty cycle
will synchronize between them. Therefore, a network sup-
porting different applications may have different sets of
nodes with different synchronizations and still be fully
functional. Without having to send or to receive other
type of packets for synchronization purposes, the nodes
will rely only on the queries received to synchronize. In
fact, this algorithm is centralized on a sink node, but its
design is simple and adequate for our purposes. A dis-
tributed design would be more complex and imply the use
of other types of packets for synchronization, often broad-
casted through the network, which would have impact
in energy consumption due to packet transmission and
reception costs.

It is unlikely that all the sensor nodes would join a net-
work at the same time. Having the nodes active all the
time would deplete their batteries, so the nodes have to
go sleep and to wake up periodically. All the nodes have
to be awake almost at the same times in order to receive
sink queries and to forward them to the other nodes. As
a result, the nodes must be synchronized according to
the application cycle they run. In order to synchronize all
the nodes in the network, our proposed synchronization
mechanism uses a synchronous method which includes
two phases: the synchronization setup phase and the syn-
chronization maintenance phase, described below.

4.1 The synchronization setup phase

When a sensor node joins the network, it remains in
the wake state and waits for the reception of its first
query packet sent by the sink node and forwarded by
other nodes. Upon its reception, the node adjusts a vir-
tual clock to the timestamp carried by the query. As it
can be observed from Fig. 10, the query packet sent by a
sensor node n towards a sensor node n + 1 is the same
query packet that node n received from the sink node.
The timestamp carried by the query is extracted from
the query packet. This phase is used to readjust the vir-
tual clock; the periodicity of this readjustment depends on
how often the nodes have to readjust their virtual clock.
It is known that this phase corresponds to setting the
time’s nodes to a value which does not consider network
delays.

Page 9 of 22
Sink Sensor n Sensor n+1
Hne1=tq,
Fig. 10 Synchronization setup phase

In the example shown in Fig. 11a, sink node A issues
a query (Qg;) before sink node B. The query packet is
disseminated through the network as expected using the
RPL-BMARQ routing solution [7]. Sensor nodes C and D,
which run this sink’s application, set their virtual clock to
the timestamp carried out by the packet. Sensor node E,
not running this application, also sets his virtual clock to
the timestamp carried out by the query packet since it is
the first query it receives. The same query packet (Qy)
is then forwarded to the other sensor nodes (nodes G,
H, and K) which will also set their virtual clock to the
same timestamp. Sensor node E will not forward the query
packet Qg since it does not run this application and does
not have neighbors running it. Similarly, node F, upon
the first query packet (Qg ;) reception from sink node B,
and because it runs the same application, adjusts it virtual
clock to the time carried out by the sink B query packet.
As this sink has already adjusted its virtual clock using the
sink A timestamp, sensor node F will have the same time
as the other nodes. Again, the query Qy ; will be forwarded
to the other sensor nodes (nodes I, J, and L) which will per-
form the same virtual clock adjustment. Figure 11b shows
the same virtual clock adjustments, but in this case, it is
sink node B that issues the first query packet and adjusts
all the network node’s virtual clocks.

4.2 The synchronization maintenance phase

Since all the nodes know the characteristics of the appli-
cations they run, after the reception of the first query
packet, they expect to receive the second query packet by
ty = t1 + Ton + Torr. The time the nodes are sleep-
ing (Tore) is defined as Tcyce — Ton Where Tcycle is the
application duty cycle time and Toy is the time the nodes
are awaked during each duty cycle. However, because net-
work delays are variable, the nodes will receive this second
query packet not in £, but in £5, as shown in Fig. 12. There
is a difference between the expected value ¢, and the real
value £, 82 =), — . For example, if a node is expected
to receive a query packet by £, = 100 and receives it
by t, = 102, then § = —2. A negative value means
that a query was received in delay, and a positive value
means that the query was received in advance. Moreover,
delays are the sum of all per-hop delays for each sensor

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

2 e

®> b)

| Sink Sensor

. running App. B running App. B
Sink

running App. A

Sensor
running App. B

-

A Virtual clock Adjustment

Fig. 11 Example of nodes synchronization

query packet reception and characterized by the sum of
the processing and queueing delays in intermediate and
destination sensor nodes, and the transmission delays and
propagation delays in intermediate nodes. An in-depth
characterization of these delays may be found in [31].

Our proposed mechanism estimates &x, by using the
exponentially weighted moving average (EWMA) tech-
nique (see Appendix). According to Fig. 12, the difference
between the expected time to receive the next query and
the time it is really received is computed by Eq. 1:

Page 10 of 22

tew = te—1n+ Ton+ Torr
Skn = (A=) Sg—1ntoa- (t]/(,n = tn)s (1)
O<a<l1

where t]/(’n is the expected packet reception time and
is the real packet reception time. &, is evaluated accord-
ing to EWMA as in Eq. 3 with « reflecting the weight of
the last observation. The & ;, value is dynamically adjusted
every time a node wakes and receives a query packet, and
it is used to control the time the node would sleep in the
next cycle, given by Eq. 2.

TSleepk’n = Topr — B - |8k,n|)

In Eq. 2, the B factor is used to amplify the &, value
to guarantee that the sensor node will wake some time
before the next application cycle. 8 - |8k, is the sleep-
ing offset and represents the time the node will wake
up before the start of the next application duty cycle.
Algorithm 1 shows the pseudo-code of the application-
driven synchronization mechanism with values given to «
and B and to the virtual clock adjustment periodicity time
(adjust_periodicity_time).

Algorithm 1: Pseudocode of the proposed synchro-
nization mechanism

foreach (app.queryy received) do

o = 0.125;

B = 10;

if (first(app.query)) then

set_clock(query— T1x);

adjust_periodicity_time = 3600 - 24 (eg. 24

hours);

adjust_periodicity_time
Tcycie ’

adjust_counter =
else

if (app.query_id == node.app_id) then
txn=ti—1,n + Ton + Torr;

tk,n = node.queryryy;

Skn=010—0a) Sg—1nta- (t]/gn = tn)s
TSleepk,n =app.Torr - B - |5k,n|$
adjust_sleep_timer(Tjeep, ,);
adjust_counter = adjust_counter - 1;
end

if (adjust_counter == 0) then
set_clock(query— T7x);

adjust_periodicity_time |
TcycLe ’

adjust_counter =
end

end

end

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Page 11 of 22

Sink Sensor n
o0
tq = 1
1 T ————s|t,n=ty
w
[T
©
Z - Q
2
©
+
oy t2,n

Fig. 12 Synchronization maintenance phase

ol

+t2,n=",n+Ton+ToFF
32,n1 ’

Sensor n+1

t,ne1=ty

a 17t2,n+1= Y1,n+1+TON+TOFF
Nl
t2,n+1

5 Evaluation

In order to validate this mechanism, first we present a
study on how the nodes can maintain their synchroniza-
tion by estimating and evaluating the parameters pre-
sented in Eqgs. 1 and 2, which corresponds to investigate
in depth the synchronization maintenance phase. We also
present and discuss results from the proposed synchro-
nization mechanism using different values for « and B
parameters, and query success ratio (QSR) results from
simulations, and finally present and discuss some of the
results obtained from two real testbeds. The QSR metric
is defined as the ratio between the number of reply pack-
ets received by a sink node in response to a query packet
and the number of replies the sink expects to receive.

5.1 Basic simulation of the synchronization mechanism
The node synchronization mechanism was evaluated
considering the following probabilistic distribution of net-
work delays: (1) uniform distribution, (2) Gaussian distri-
bution, and (3) exponential distribution.

Figure 13 shows one sink node and three sensor nodes.
The sink node transmits queries regularly. Each query
time reception is affected by those different network
delays, and the sensor nodes upon their reception will
adjust their sleep time in order to try to wake up at same
time on the next application duty cycle. For each node, dif-
ferent mean delays were considered: sensor node 1, 0.5 s;
sensor node 2, 1 s; and sensor node 3, 2 s.

A Python program was written in order to randomly
generate different network delay distributions. The pro-
gram generates 10° queries, uses Eq. 1 to estimate the new
expected query reception time by each node, and uses it
to adjust the time each node must sleep (Eq. 2) in order to
wake up on time for the next application cycle. Finally, the
program computes how many time the nodes are waked

up simultaneously. We consider that nodes are simulta-
neously awaked up if the three sensors are awaked for at
least A = 80%- Ton. Let us also define Tsensorsoy @S a ran-
dom variable which captures the time during which the
three sensors are simultaneously on the ON state, having
values Tsensorsoy €[0S, Tons] (see Fig. 14). An occurrence
of Tsensorsoy 1S computed as the time the first sensor goes
asleep minus the time the last sensor wakes up.

In a first attempt, for « in Eq. 1, the value was set to
0.125, following current IETF recommendations for man-
aging TCP timers [32], and for Eq. 2, the B value was
empirically set to 10. All the sensor nodes wake every
15 min remaining waked for 1 min (Tony = 60 s and
TOFF = 840 S).

Figure 15 shows results for the first situation
evaluated—uniformly distributed network delays, with
delays varying between £20% x 0.5 s, 20% x 1.0 s,
and £20% x 2.0 s. In Fig. 15a, one can see the his-
togram of randomly generated delays; Fig. 15b shows
Tsensorsoy S histogram. Again, we can observe that

Fig. 13 WSN delay model

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Page 12 of 22

t—

TSensors ON t

Fig. 14 Nodes adjustment of Toyn simultaneity

P[Tsensorsoy = Al= 1. In fact, it is verified that
Tsensorson€[57.88,59.66] s, and the mean value of
E[Tsensorson] = 58.7 s. As in the first situation, the nodes
maintain synchronism in all the cycles.

Figure 16 shows results for the second situation
evaluated—Gaussian distributed network delays, with
delays having a standard deviation which is 20% of the
mean values which are 0.5, 1.0, and 2.0s respectively. In

0.50

I Node 3
I Node 2

0.40 |- I Node 1 |4

0.30 |

0.20 |-

Occurrence

0.10

0.00

IS
o

0.50

0.30

Occurrence

0.10

i i i i i
o = =
55 60 65 70 75

b) Turuurson (inS)

0.00 L
45

>
o
S

Fig. 15 Uniformly distributed network delays. a Delay histogram. b
Tsensorsoy 'S histogram

0.50 T T
Il Node 3
I Node 2
0.40 (I Node 1 |4
8 030t
=
[
5
Q
O
(e}

15 2.0
a) Delay (in s)
0.50

0.30 |

Occurrence

0.10 |-

0.00 L i i i
5 A 50 55 60 65 70 75

b) Tsensorsoy (IN'S)

Fig. 16 Gaussian distributed network delays. a Delay histogram.
b Tsensorsoy s histogram

Fig. 16a we can observe the histogram of randomly gen-
erated delays; Fig. 16b shows Tsensorsy s histogram. As
it can be observed, &, factor from Eq. 2 also affects the
time each node must sleep (TSleePk,n)' Similar to the previ-
ous cases, P[Tsensorsoy = Al = 1, and the mean value is
E[Tsensors] = 58.77 s. In this situation the nodes will also
maintain synchronism in every application cycle.

Figure 17 shows results from the last situation
evaluated—exponentially distributed network delays, with
mean delays targeting 0.5, 1.0, and 2.0 s, respectively. In
Fig 17a, the histogram is shown and, as expected, there are
variations; Fig. 17b shows Tsensorsgy s histogram. As can
be observed, there are situations where the success con-
dition is not satisfied. In this case, E[Tsensorson] = 57.52's
and Tsensorsoy €[25.06, 59.99] meaning that the nodes will
maintain synchronism by about 99% of the cycles.

Finally, Fig. 18 shows the box plot for the -5 ,,| compo-
nent, which corresponds to the amount of time the nodes
use to adjust sleep timers in order to wake up in synchro-
nism in the next cycle. The worst value for the mean value
of the 8 - |6k, component is 1.11 s, and it corresponds to
the exponential distribution, what means that a node will
not sleep during Torr s but, in average, will sleep during

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Il Node 3
I Node 2
I Node 1 |4
@
o
c
4
=
Q
j53
o
S 10 12
a) Delay (in's)
0.50 ‘ ‘
E[Tsensorsin) =57.5
Std[Tsensorson) =2.0
A =48.0
Q
o
c
o
=
Q
O
o
; i
65 70 i

b) Tsensorson (iN'S)

Fig. 17 Exponentially distributed network delays. a Delay histogram.
b Tsensorsqy 'S histogram

Torr — 1.11s. Moreover, results showed that the proba-
bility P[Tsensorsoy = Al= 1 is observed in 99% of the
occurrences, which means that all the considered nodes
will be active at same time during at least A = 80% - Ton
in 99% of the application’s duty cycles.

The box plot figures in this paper give the standard
metrics: the 25th percentile, the 75th percentile, and the

red line is the median value. The top and bottom of

3.5,

3.0r

2.5+

2.0r

1.5

B-|6k,n| (in s)

L]1.11
1.0

0.5-

-
00 go.ls

Uniform

0.24 -
<4

n
Gaussian Exponential

Fig. 18 Box plot for B - |8« |, the sleeping offset represented in Eq. 2

Page 13 of 22

the whiskers show the maximum and minimum values,
respectively. Finally, the black dashed line in the box
represents the mean value.

From this analysis, we may conclude that the synchro-
nization mechanism may be adequate for our purposes.
In order to increase the trust in these results, a sensibil-
ity analysis is also carried out, in order to understand how
Tsensorsoy 18 affected by different values of o and .

5.1.1 « and B values estimation
We performed studies using different values for the
synchronization mechanism parameters « and . We con-
sidered four sensor nodes and assumed a uniformly dis-
tributed delays varying in £20% x 0.5 s, £20% x 1.0s,
+20% x 2.0s. Figures 19, 20, 21, 22, 23, 24, 25, 26, and 27
show the results obtained when considering different val-
ues for the o and B parameters. Each of these figures
present: (a) the Tsensorsoy s histogram; (b) the box plot for
Tsensorsoy (in % of Ton); and (c) the box plot for 8 - [8x .
In the sensibility analysis shown below, we select two
discrete set of values for @ and B8, « € {0.125,0,5,0.875}
and B € {1,10,50,100}. We vary one parameter at time
while maintaining the other constant.

a estimation: the weight given to the last sample in the
calculation §. Therefore, we want to investigate how it
affects the synchronization mechanism by giving « differ-
ent values, namely 0.125, 0.50, and 0.875.

B estimation since the &, value from Eq. 1 is small, we
amplify it. The amplifying factor is the g parameter, and
for it, we selected three values, 8 € {10, 50, and 100}.

Figures 19, 20, 21, 22, 23, 24, 25, 26, and 27 show the
results obtained for different combinations of the parame-
ter’s values. Table 1 summarizes it, showing: (a) the « and
B values, (b) the E[Tsensorsoy] (€) average E[Tsensorsoy]’s
time in % of Ton, and (d) E[B - |8k,|] component, the
resulting sleeping offset.

For the selection of the o« and B values, we consid-
ered the values that satisfy at the same time: (i) values of
Tsensorsoy i % of Ton above 80% and (ii) lowest 8 - |64 |
component value. Italicized values correspond to the ones
that better satisfy our purposes.

5.1.2 Results discussion

This analysis of the results showed that not all the values
chosen for o and B parameters satisfy our synchronization
mechanism requirements. In fact, if we consider, respec-
tively, « = 0.50 and 8 € {50;100}, the mechanism will
fail because the probability P[Tsensorsoy = Al < 1 (see,
respectively, Figs. 23 and 24, what means that the sensor
nodes will not be synchronized in all their duty cycles. The
same applies if we consider @« = 0.875 and 8 € {50; 100},
as shown in Figs. 26 and 27. From Figs. 26c¢ and 27c,

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37 Page 14 of 22
a = 0.125; 5 = 10;
0.50 R 98.8 : 0.45 T
E[Tsensirson) =58.7 ‘ !
T A R Y M . 040y j
|
0A0A=480 |1 gg4f b 1 085t 1
982l 4+ 1 o030} | |
@ !
e 0.30+ g :
& %98.0————] %,0.25,,,,,|,, .
3 S g78f o 9782 1 = 020} |
8 0.20 g
97.61 N 0.15} 0.149
otolb . . K | 974t T4 010} ,, :
I
97,21 i] 0.05 |-l -
I]
oooLli . M | 97.0 + 0.00 =
45 50 55 60 65 70 1 1
a)IATScnsomUN (II"I S) b) TSensm's(m (ln % of TON) C) ,8 . ‘61‘-'7,‘ (In S)

Fig. 19 Uniformly distributed network delays with o = 0.125; 8 = 10. @ Tsensorsgy 'S histogram. b Box plot for Tsensorsqy

B - 18knl

(% of Ton). € Box plot for

Occurrence

0.50 - - T T

E[Tscnsirson] =59.0

Stdl 5] =05
0.40 (A -‘48 0 : .
0.30} i .
0.20+ .
0.10+ :
0.00

| I \
45 AE)O 55 60 65 70
a) TSensors(m (ln S)

Ton

a = 0.125; 8 = 50;
100.0 T

99.5}

99.0

98.51

Time

98.01 o] i

97.5}F

97.0}

96.5

b) TSensm's(m (ln % Of TON)

2.50

2.00+

0.00

€) B [0kl (ins)

Fig. 20 Uniformly distributed network delays with a = 0.125; B = 50. & Tsensorsoy ' histogram. b Box plot for Tsensorsgy

B - 18knl

(% of Ton). € Box plot for

Occurrence

B- |8k,n|

0.50 —

1Std| [Tgﬂ; "
A =48:0

0.40

o
w
=)

o
o
o

0.10

0.00

50 55 60 65 70
)ATSensmso\ (ln S

Ton

a = 0.125; = 100;
100.0 T

99.0

98.0

97.0}

Time

4.50

4.00
3.50
3.00+
250+

2.00

96.0

95.0

94.0

b) TSensorsow

Fig. 21 Uniformly distributed network delays with a = 0.125; B = 100. @ Tsensorsgy s histogram. b Box plot for Tsensorsy (% of Ton). € Box plot for

i
(in % of Tow)

1.50

1.00
0.50

0.00

C) B+ |0kl (in's)

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37 Page 15 of 22
a = 0.50; 5 = 10;

0.50 T — 100.0 2.00 -
E[Tsensarson] =59.0 : i
Std[TSerisor i =0.5 99.5F - T - 1 i

0.40 (A =48:0-- - i :

99.0 g | 190F " 1
[0] i
§o.3of 1 ossl o !
2 3 98.26 £ 1.00F joo]
3 = egol| il] F :
8 0.20 . ’
0.648
o751 o i 0.50 N 1
0.10F . !
97.0f oo .
P | ‘
- |
0.00LLi 96.5 ‘ 0.00 T

|
45 A50 55 60 65 70
a Sensorson (m S)

1
b) Tsensorson (in % of Ton)

:
C) B+ |0knl (in's)

Fig. 22 Uniformly distributed network delays with @ = 0.50; 8 = 10.a Tsensorsoy 'S histogram. b Box plot for Tsensorsyy (% of Ton). € Box plot for B+ |8y x|

0.40

o
w
S

Occurrence
o
N
o

0.10

00
35 40 45 R0 55 60 65 70
a) Tgcnsursa!v (In S)

<

a = 0.50; 8 = 50;
100.0 T

98.0}
96.0|
940}
92.0F

90.0}
88.0} E
86.0} :
84.0f i

82.0 -

92.59

Time

1
b) TgCTLSUI‘S()N (In % Of TON)

10.00

8.00

6.00

4.00

2.00

0.00

3.241

C) B+ |0kn| (in's)

Fig. 23 Uniformly distributed network delays with @ = 0.50; 8 = 50.a Tsensorsoy ' histogram. b Box plot for Tsensorsqy (% of Ton). € Box plot for B+ |8y |

0.40

Occurrence
o o
n w
o o

0.10

00
20 30 40 60 70
a) TSensorsow (In S)

Ton

a = 0.50; 5 = 100;
100.0

95.0

90.0

85.0f oo

80.0-

75.0}

70.0

65.0

84.20

Time

60.0 -

1
b) TSmsorsoN (II"I % Of TON)

20.00

15.00

10.00

5.00

0.00

6.479

C) - |0kn| (ins)

Fig. 24 Uniformly distributed network delays with @ = 0.50; 8 = 100. @ Tsensorsy 'S histogram. b Box plot for Tsensorsoy, (% of Ton). € Box plot for

B - 18knl

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Page 16 of 22

B - 18kn]

Occurrence

0.50 — —

0.40 [A-48.0-+

o

w

=)
T

o

)

o
T

0.10}

0.00L—iLs ‘
40 45 50 55 60 65 70
3) Tonsorgn (in'S)

Ton

a = 0.875; 5 = 10;

100.0
99.0+
98.0
97.0p 9012

96.0 -

95.0

94.0

—_—

b) TSen,sarsoy

Time

in % of TON)

4.50
4.00
3.50
3.00
2.50
2.00

1.50

1.00
0.50

0.00

Emmam g

i
et

1.285 |

1

c) B+ |0knl (ins)
Fig. 25 Uniformly distributed network delays with & = 0.875; B = 10. & Tsensorsgy 'S histogram. b Box plot for Tsensorsqy

(% of Ton). € Box plot for

B - 18kl

QOccurrence

0.50 ——

0.40

o
w
=}

I
)
o

0.10

0.00 .
20 30 40 30 60 70

a) TS'E'nsm'SON (In S)

Ton

a = 0.875; 8 = 50;
100.0

95.0

90.0

85.01
80.0
75.0F
70.0}

i

i

i

|

|

|
65.01 }ee
L

60.0

83.87

Time

1
b) TS'E'WL.W)V'S()N (ln % of T()N)

25.00

20.00

15.00

10.00

5.00

0.00

6.428

S i SR

C) B+ |0k (in's)

Fig. 26 Uniformly distributed network delays with & = 0.875; B = 50. & Tsensorsgy ' histogram. b Box plot for Tsensorsoy

(% of Ton). € Box plot for

B - 18knl

Occurrence

0.50

0.40

o
w
=)

o
o
o

0.10

0.00
—100 10 20 30 40 5Q 60 70
a) TScnsm'so,y S)

Ton

a = 0.875; 8 = 100;
100.0

90.0

80.0

B

70.0}

60.0 -

50.0

40.0+

30.0

0
1
1
!
]
i
i

.

66.59 |

20.0

Time

1
b) TScnsm'sUN (ln % of TON)

45.00
40.00
35.00
30.00
25.00

20.00

15.00 -

10.00
5.00
0.00

12.854 |

R

C) 3 N ‘(sk,n
Fig. 27 Uniformly distributed network delays with & = 0.875; 8 = 100. @ Tsensorsoy, 'S histogram. b Box plot for Tsensorsy, (% of Ton). € Box plot for

| (ins)

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Table 1 Summary of synchronization mechanism results as a
function of « and B

Parameter Results

o B ElTsensorson] (in 5C) ElTsensorsop] (in % of Ton) ELB - [8knl]

0.125 10 587 97.82 0.149
50 59.0 9833 0.745
100 582 97.04 1.491
10 59.0 98.26 0.648

050 50 556 92.59 3.241
100 505 84.20 6479
10 583 97.12 1.285

0875 50 503 83.87 6.428
100 400 66.59 12.854

we can observe that there are occurrences for Tsensorsoy
below 80%, the threshold established for success, being in
average equal to 97.82% of Ton. Therefore, those values
do not satisfy our selection criteria. From the other values
evaluated, we may consider that « = 0.125 and 8 = 10
are the values that better satisfy our purposes, for the sce-
narios considered. Comparing to other pair of values for
a and B, these values present at the same time (i) greater
Tsensorsoy Value (58.7), which is almost the same theoret-
ical value of Ton; (i) all the occurrences for Tsensorsgy in
terms of Ton% are above 97%, being in average equal to
97.82%; and (iii) the mean g - |64 ,,| component has, in aver-
age, the lowest value 0.149 what means that the sensor
nodes have to wake up before the next duty cycle less time
than in the other cases. This will have impact in energy
consumption since the sensor nodes do not have to stay
unnecessary time awaked.

5.2 Simulations
In [6] and in [7], two different applications were used
in three different scenarios, being the nodes distributed

Page 17 of 22

as shown in Fig. 28. Simulations ran in Contiki’s Cooja
simulator [33]. All the nodes are within a distance of
25 m for a transmission range of 30 m and support one
of the two applications. Each application is running in
eight nodes, and each node runs a single application. In
scenario 1, the nodes running App. A were selected in
a way that a long path could be obtained; in scenario 2,
both applications have the same node distribution; sce-
nario 3 is used to investigate situations where at least
one node from other application is required to relay
data. Let us, for example, consider Fig. 28c. In this sce-
nario, we can observe that node 9 routes/forwards packets
of an application that it does not run. In the scenarios
simulated, sink nodes are always awake, and sink node
running App. B (node 9) was chosen as the network
DAG root because of its application duty cycle. For the
nodes running application A, Toxn = 60 s, Torr =
3540 s; for the nodes running application B, Ton = 60 s,
Torr = 840 s.

We simulated two situations: (i) a situation where all the
nodes join the network at the same time, so that the pro-
posed synchronization mechanism is not used as, in sim-
ulations with COOJA, clock drifting is the same for all the
sensor nodes and (ii) the nodes will join the network at dif-
ferent times. The later implies the use of the synchroniza-
tion mechanism described in Section 4 in order to keep
the nodes synchronized with respect to the applications
they run. The nodes join the network at different times
which were randomly generated between 317 and 1102 s.

5.2.1 Results and discussion

In [34], the authors noticed timing inaccuracies in com-
parison to experiences made on TelosB motes hardware.
Their simulations showed unexplained delays during
packet transmission (TX) over the radio medium that
were not observed during similar experiences on physical
motes. According to their investigations, they discovered
that the problem is with the emulation of MSP430-

[O

App. A Sink App. B Sink

Fig. 28 Scenarios simulated. a Scenario 1. b Scenario 2. € Scenario 3

App. A Sensor

O O

App. B Sensor

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking

(2017) 2017:37 Page 18 of 22

i
S
T
!
T
!
T

=
N
T

=
=}
T

o
©
T

©

o
T
I
T
I
T

0.49

B-|0k,n| (in sec)

I
>
T
i
T

%0.19 4 +

o
N
T
i
T

0.0

éO.IS 1 T

i i
1 Hop 2 Hops

3 Hops
Fig. 29 Box plot for 8 - |8« |, with @ = 0.125 and B = 10, for each hop in scenario 1

powered, radio-enabled WSN motes by the MSPSim soft-
ware package when loading packet data into the transmis-
sion buffer. The emulating mote performs this TX buffer
loading at a different speed than the actual hardware. This
may result in inexact simulations results. Nevertheless,
the authors argue that, for the WSN application studied,
time precision is not a key issue since the applications
are not designed for real-time critical applications. The
authors have selected the TelosB Hardware platform and
ContikiOS/Cooja because there is no need to write the
code twice since it is the same for physical motes and
emulated motes, and the TelosB platform is the most
used platform in the academia. This time inaccuracy
has no impact in our synchronization mechanism. The
EWMA technique used to control the synchronization
of the sensor nodes also considers the resulting unex-
plained delays during packet transmission to estimate
the arrival of the next query packet, and the simula-
tion and testbed results show that the synchronization
mechanism performs well when having different network
delays.

In our solution, each time a node receives a query, it
computes the time it must wake up before the start of the
next application cycle in order to be able to receive and
forward packets and to successfully reply back to the sink.

The synchronization mechanism was configured with o =
0.125and 8 = 10.

In the simulations, 16 nodes have been used, half of
them running each application. Each scenario was simu-
lated ten times, and information was extracted in order to
estimate delays, QSR, and the E[- 8¢ ,|] component. The
results obtained are the following.

Delays We considered delay as the sum of all per-hop
delays for each sensor query packet reception and charac-
terized by the sum of the processing and queueing delays
in intermediate and destination sensor nodes and the
transmission delays and propagation delays in intermedi-
ate nodes.

Per hop B - [6x,x| component: From the simulations, we
have extracted information about the g - |8« ,,| component
on a per-hop basis. Fig. 29 shows the box plot for this
component in scenario 1. We can observe that, except for
the first hop, this component presents per hop similar val-
ues, and sensor nodes would have to wake with an average
sleeping offset of about 0.232 s. In the first hop, the sleep-
ing offset has a grater value (0.49 s in average) because
in this hop, we can observe some congestion, particularly
between the sink node (node 1) and the sensor node 2.

—mimmim

0.32 |

o
%)
T
T

B-|0k,n| (in sec)

o
N
T
i
T

%0.13

°
i
T
H
T

0.0

T
50.17 1T

T 4
$0.15 |1 Zoa|
L

1 Hop 2 Hops

3 H‘ops
Fig. 30 Box plot for 8 - |8k |, with @ = 0.125 and B = 10, for each hop in scenario 2

i
4 Hops

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Page 19 of 22

o

[=2]

:

i

T
]

[t
wn
T

o
IS
T

0.35

T
1
1
1
I
@o.zr F 1

B-10k,n| (in sec)

o©
N
T

°
-
T
H
T
H
T

0.0

T

éo.m 1r %0'21 1T ﬁo.w 1

1 Hop 2 Hops

3 Hops

4 Hops

Fig. 31 Box plot for 8 - |8k x|, with @ = 0.125 and 8 = 10, for each hop in scenario 3

Figure 30 shows the box plot for the g - |8k, | compo-
nent in scenario 2. As in scenario 1, we can also see that
this component presents similar values per hop, with an
average sleeping offset of about 0.176 s.

Finally, Fig. 31 shows the box plot for the 8 - |6k ,| com-
ponent in scenario 3. As in the other two scenarios, we
observed that this component presents similar values per
hop, in an average of about 0.242 s. In the case of the
sleeping offset for two hop nodes, it has in average a
grater value (0.35 s). Analyzing this scenario’s topology,
and the traffic that may occur, we can observe some con-
gestion around sensor nodes 3 and 13. For sensor node 3,
it needs to forward replies from sensor nodes 4, 7, and 8.
For sensor node 13, it also forwards replies from sensor
nodes 11, 12, 14, 15, and 16. However, this sleeping offset
value can be also considered as negligible as it has a small
additional value.

In Fig. 32, the box plot for the expected sleeping off-
set value for each of the three scenarios studied is shown.
As it can be verified, the nodes would sleep not the Topr
time, but in average Torp—0.716 s. Moreover, we observed
that, independent of the network topology, this compo-
nent has almost the same values, what confirms that the
synchronization mechanism proposed is adequate for our

LOOF oo O PP PPRPP PN B
1 i
—
080 oo L1077 L 210767
0.60f 0612 L i
1
0.40 E T S USSR SUREURRPRPON i
0.20f TR LR LI TR PRI E PP R T PR EPPR TR SEPPRRR PN -
0.00 i i i
1 2 3
Scenarios

Fig. 32 Box plot for 8 - |8, with @ = 0.125 and B8 = 10, for each
scenario (in's)

purposes. Moreover, comparing the results from Figs. 34
and 35, we observe that for scenarios 2 and 3, the max-
imum and minimum B - |8,| values are different. In
scenario 2, the nodes have more neighbors running the
same application, what implies that each of them may
need more time to access the wireless medium to forward
a query. This is also reflected on the network delays and
affects the 8 - |8 ,| component.

QSR: Fig. 33 shows the box plot for QSR. In this figure,(1)
the results using the standard RPL routing protocol, (2)
the results using RPL-BMARQ solution proposed in [7]
without the synchronization mechanism implemented,
and (3) the results using the same RPL-BMARQ solution
fully implemented are showed. As it can be observed, in
average, 98.8% of the queries sent by sinks are replied by
sensor nodes. With this success ratio, we can argue that
the quality of the proposed synchronization mechanism is
confirmed.

5.3 Testbed experiments

In order to confirm the results obtained from theoretical
studies and simulations, we also tested our proposed solu-
tion in a real environment. For that purpose, two of the
scenarios studied were selected (scenarios 1 and 3) and

100.0 9g:56 - 22:83.....| | 99.37..98:99 99.31 | g9 53 99:16
= 98.47

é a] 98.47

99.0---- 4 boa Bl t @ 1
! i
98.0- 1t o b i 1
I il i

97.0} 1t {1 F
96.0-
95.0-
94.0}

i
i
i
i
i
i
i
i
i
i
i

93.01

RPL BMARQBMARQ
(no sync)(sync)
Scenario 3

H + H
RPL BMARQBMARQ
(no sync)(sync)

Scenario 2

RPL BMARQBMARQ
(no sync)(sync)
Scenario 1

Fig. 33 Mean query success ratio—QSR for each scenario (in %)

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Page 20 of 22

Fig. 34 Scenarios deployed. a Deployment 1. b Deployment 2

deployed. Since it was not possible to reproduce them at
the same scale, the scenarios deployed correspond to a
3 x 3 square lattice topology, while keeping all the other
functionalities. In order to obtain reliable terms of com-
parison, we have simulated these deployments using the
same methods as in Section 5.2 and compared the sim-
ulated results with those obtained in testbeds. Figure 34
shows both topologies deployed and simulated, which
were realized using TelosB motes [35], placed at distances
of 5 m, and the radio transmission power was reduced to
—7 dBm in order to reduce the node reception distance.
Application A run in five nodes (1, 2, 3, 4, and 5), and
application B runs in four nodes (9, 10, 11, and 12). Node
9 is, at the same time, the root of the DAGs and a sink.
Node 1 is the other sink. The nodes ran ContikiOS (2.6)
[36] which is an operating system for WSN which incor-
porates an implementation of the IPv6 protocol stack and
uses RPL as the default routing protocol.

5.3.1 Results and discussion

Each testbed experiment was carried out for 4 h. To log
real-time data, two Raspberry Pi platforms were used,
connected to both sink nodes via a serial connection.
Inside each Raspberry Pi [37] platform was a python pro-
gram running, responsible to get timestamp data from
each sink with respect to query packets sent and reply

(11 NSRRI SO RRR I) R B
]
I
I

o
w

e
N

0.0

Deployment 1 Deployment 2

Fig. 36 Box plot for B - |8y |, with @ = 0.125 and B = 10, for each
deployment (in's)

packets received. In order to verify our proposed syn-
chronization mechanism, we considered in this work (i)
synchronization parameter’s values « = 0.125 and 8 =
10; (ii) packet reception time on the sink nodes side to
estimate the expected reception time and to compute the
sleeping offset component (8 - |6, |); and (iii) QSR results.
The main results obtained include the following:

B - 18k,n] component: Figure 35 shows B - |§k,| compo-
nent, the sleeping offset represented in Eq. 2 histogram for
each deployment. As expected, it presents the same uni-
form distribution characteristics as the theoretical evalu-
ation and the simulations performed. Moreover, we can
see in Fig. 36 that this component presents in average a
sleeping offset of 0.185 s.

QSR: Figure 37 shows simulation and real implementa-
tion results. As it can be seen, both present same values
(100%), which means that also in real testbeds, the nodes
reply to all the queries sent by sinks, going to sleep and
waking up while being synchronized.

From the above results, we can conclude that there
are no major differences between what was observed in

Occurrence
o o o o o
5 o b b b
(=2} == o N S

o
o
5

0.02

B-{8k,n] (s)
Deployment 1

0.00 0.05 0.10 0.15 0.20 0.25 0.30

0.00 0.05 0.10 0.15 0.20 0.25

B-|6k,n] ()
Deployment 2

Fig. 35 8 - |8kn|, with @ = 0.125 and B = 10, histogram for each deployment (in %)

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Page 21 of 22

100.00F - .- 100.0% - —
99.50}
99.00}

98.50

98.00

97.50

100.0% - —

Simulation Testbed
Deployment 1

Fig. 37 Query success ratio (QSR) for the scenarios deployed (in %)

Simulation Testbed
Deployment 2

the theoretical studies and in the simulation environment
and what was expected in the testbed environment. This
confirms the usability and the quality of the synchroniza-
tion mechanism proposed, when applied to application-
driven WSNs with the characteristics described in
this work.

6 Conclusions

This paper proposed an application-driven WSN synchro-
nization mechanism using the EWMA technique to main-
tain synchronization of all the nodes in WSNs defined
by the applications they run. The paper presents and
discusses the performance of the synchronization mech-
anism for sensor devices using IEEE 802.15.4 radios. The
work presented reflects our analysis of the mechanism
which assumes that the nodes are affected by different
network delay distributions. The mechanism allows the
nodes to go asleep and to wake up in synchronism. The
mechanism was evaluated by means of simulations using
ContikiOS and Cooja, and confirmed its functionalities.
Finally, real testbed experiments confirmed our simula-
tions results, showing that the mechanism also works in
real applications.

Appendix

Exponentially weighted moving average

The exponentially weighted moving average (EWMA)
[38] is a technique used for calculating a run-time aver-
age characterized by giving less and less weight to data as
they get older and older. EWMA is easily plotted and may
be also viewed as a forecast for the next observation. The
EWMA equals the present predicted value plus lambda
times the present observed error of prediction,

EWMA = j; + A(ye — J1) ()

where) is the predicted value at time ¢ (the old EWMA),
¥ is the observed value at time ¢, y; — J; is the observed

error at time £, and A is a constant (0 < A < 1) that deter-
mines the depth of memory of the EWMA. Equation 3 can
be written as

Y1 = Ay + (1 = MYy (4)

EWMA statistics are currently used, for instance, by
TCP to recover from undelivered segments; the mech-
anism is based on [39] and EWMA is used to esti-
mate the timeout value that depends on the round
trip time.

Acknowledgements

This work was financed by the Project “NORTE-07-0124-FEDER-000056" by the
North Portugal Regional Operational Programme (ON.2 - O Novo Norte), under
the National Strategic Reference Framework (NSRF), through the European
Regional Development Fund (ERDF), and by national funds, through the
Portuguese funding agency, Fundagéo para a Ciéncia e a Tecnologia (FCT)
within the fellowship “SFRH/BD/ 36221/2007". The authors would like to thank
also the support from the Faculty of Engineering, University of Porto, to thank
the support from the INESC TEC, and to thank the support from the School of
Technology and Management of Viseu.

Competing interests
The authors declare that they have no competing interests.

Ethics approval and consent to participate

The authors declare that the work does not contain any studies with human
participants or animals performed by any of the authors; the work has not been
published before (except in the form of an abstract or as part of a published
lecture, review, or thesis); the work is not under consideration elsewhere;
copyright has not been breached in seeking its publication; and that the
publication has been approved by all co-authors and responsible authorities
at the institute or organization where the work has been carried out.

About the authors

Bruno Marques received in 2017 a PhD degree in Electrical and Computers
Engineering from the University of Porto. He is an Adjunct Professor at the
School of Technology and Management of Viseu, where he gives courses in
industrial communications and computer networks. He also is an invited
collaborator at the Centre for Telecommunications and Multimedia of the
INESC TEC research institute.

Manuel Ricardo received in 2000 a PhD degree in Electrical and Computers
Engineering from Porto University. He is an associate professor at the Faculty
of Engineering of the University of Porto, where he gives courses in mobile
communications and computer networks. He also leads the Centre for
Telecommunications and Multimedia of the INESC TEC research institute.

Marques and Ricardo EURASIP Journal on Wireless Communications and Networking (2017) 2017:37

Received: 29 March 2016 Accepted: 2 February 2017
Published online: 21 February 2017

References

1.

18.
19.

20.
21.

|IEEE-Computer-Society, IEEE Std 802.15.4: Wireless Medium Access
Control (MAC) and Physical Layer (PHY) Specifications for Low-Rate
Wireless Personal Area Networks (WPANSs) (2006). Revision of IEEE Std
802.15.4-2003

G Montenegro, N Kushalnagar, D Culler, Transmission of IPv6 Packets over
|IEEE 802.15.4 Networks (2007). IETF

CMTang, Y Zhang, YP Wu, in Instrumentation, Measurement, Computer,
Communication and Control (IMCCC) 2012 Second International Conference
on. The P2P-RPL Routing Protocol Research and Implementation in Contiki
Operating System, (2012), pp. 1472-1475. doi:10.1109/IMCCC.2012.345

T Winter, P Thubert, A Brandt, J Hui, R Kelsey, P Levis, K Pister, R Struik, J
Vasseur, R Alexander, RPL: IPv6 Routing Protocol for Low-Power and Lossy
Networks. RFC 6550 (Proposed Standard) (2012). http://www.ietf.org/rfc/
rfc6550.txt

IF Akyildiz, MC Vuran, Time Synchronization. (John Wiley and Sons, Ltd,
2010), pp. 243-263. http://dx.doi.org/10.1002/9780470515181.ch11

BF Marques, MP Ricardo, in Ad Hoc Networking Workshop (MED-HOC-NET)
2014 13th Annual Mediterranean. Improving the energy efficiency of WSN
by using application-layer topologies to constrain RPL-defined routing
trees, (2014), pp. 126-133. doi:10.1109/MedHocNet.2014.6849114

B Marques, M Ricardo, in Wireless Networks, The Journal of Mobile
Communication, Computation and Information. Energy-efficient node
selection in application-driven WSN, (2016).
doi:10.1007/511276-016-1194-2 http://link.springer.com/article/10.1007
%2Fs11276-016-1194-2

DL Mills. IEEE Trans. Commun. 39, 1482 (1991)

W Su, I Akyildiz, Time-diffusion synchronization protocol for wireless
sensor networks. IEEE/ACM Trans. Networking. 13(2), 384 (2005).
doi:10.1109/TNET.2004.842228

J Elson, L Girod, D Estrin, Fine-grained network time synchronization
using reference broadcasts. SIGOPS Oper. Syst. Rev. 36(SI), 2002.
doi:10.1145/844128.844143. http://doi.acm.org/10.1145/844128.844143

. S Ganeriwal, R Kumar, MB Srivastava, in Proceedings of the 1st International

Conference on Embedded Networked Sensor Systems. SenSys ‘03. Timing-
sync protocol for sensor networks (ACM, New York, 2003), pp. 138-149.
doi:10.1145/958491.958508 http://doi.acm.org/10.1145/958491.958508
Jvan Greunen, J Rabaey, in Proceedings of the 2Nd ACM International
Conference on Wireless Sensor Networks and Applications. WSNA 03.
Information assurance in sensor networks (ACM, New York, 2003),

pp. 11-19. doi:10.1145/941350.941353. http://doi.acm.org/10.1145/
941350.941353

H Dai, R Han, TSync: a lightweight bidirectional time synchronization
service for wireless sensor networks. SIGMOBILE Mob. Comput. Commun.
Rev. 8(1), 125 (2004). doi:10.1145/980159.980173 http://doi.acm.org/10.
1145/980159.980173

R Carli, A Chiuso, L Schenato, S Zampieri, Optimal Synchronization for
Networks of Noisy Double Integrators. IEEE Trans. Autom. Control. 56(5)
(2011). doi:10.1109/TAC.2011.2107051

B Etzlinger, H Wymeersch, A Springer, Cooperative Synchronization in
Wireless Networks. IEEE Trans. Signal. Process. 62(11), 2837 (2014).
doi:10.1109/TSP.2014.2313531

W Yuan, N Wu, B Etzlinger, H Wang, J Kuang, Cooperative Joint
Localization and Clock Synchronization Based on Gaussian Message
Passing in Asynchronous Wireless Networks. IEEE Trans. Veh. Technol.
65(9), 7258 (2016). doi:10.1109/TVT.2016.2518185

M Leng, YC Wu, Distributed Clock Synchronization for Wireless Sensor
Networks Using Belief Propagation. IEEE Trans. Signal Process. 59(11),
5404 (2011). doi:10.1109/TSP.2011.2162832

J Pearl. Artif. Intell. 29(3), 241 (1986)

JHe, P Cheng, L Shi, J Chen, Y Sun, Time Synchronization in WSNs: a
Maximum-Value-Based Consensus Approach. IEEE Trans. Autom. Control.
59(3), 660 (2014). doi:10.1109/TAC.2013.2286893

B Sundararaman, U Buy, AD Kshemkalyani. Ad Hoc Netw. 3(3), 281 (2005)
T Ma, Z Xu, M Hempel, D Peng, H Sharif, Performance Analysis of a Novel
Low-Complexity High-Precision Timing Synchronization Method for
Wireless Sensor Networks. IEEE Trans. Wirel. Commun. 13(9), 4758 (2014).
doi:10.1109/TWC.2014.2331286

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34,

35.

36.

37.

38.
39.

Page 22 of 22

M Al Ameen, SMR Islam, K Kwak. Int. J. Distrib. Sensor Netw. 2010, 16
(2010). http://dx.doi.org/10.1155/2010/163413%]163413

M Miller, N Vaidya, A MAC protocol to reduce sensor network energy
consumption using a wakeup radio. IEEE Trans. Mob. Comput. 4(3), 228
(2005). doi:10.1109/TMC.2005.31

W Ye, J Heidemann, D Estrin, in INFOCOM 2002. Twenty-First Annual Joint
Conference of the IEEE Computer and Communications Societies. Proceedings.
IEEE. An energy-efficient, MAC protocol for wireless sensor networks,

vol. 3, (2002), pp. 1567-1576. doi:10.1109/INFCOM.2002.1019408

Tvan Dam, K Langendoen, in Proceedings of the Tst International
Conference on Embedded Networked Sensor Systems. SenSys 03. An
adaptive energy-efficient, MAC protocol for wireless sensor networks
(ACM, 2003), pp. 171-180. doi:10.1145/958491.958512. http://doi.acm.
0rg/10.1145/958491.958512

W Pak, KT Cho, J Lee, S Bahk, in Global Telecommunications Conference
2008. IEEE GLOBECOM 2008. W-MAC: Supporting Ultra, Low Duty Cycle in
Wireless Sensor Networks (IEEE, 2008), pp. 1-5.
doi:10.1109/GLOCOM.2008.ECP.79

A El-hoiydi, Jd Decotignie, in 9th International Symposium on Computers
and Communications (ISCC ‘04), (2004), pp. 244-251

Y Sun, O Gurewitz, DB Johnson, in Proceedings of the 6th ACM Conference
on Embedded Network Sensor Systems. SenSys ‘08. RI-MAC: a
receiver-initiated asynchronous duty cycle, MAC protocol for dynamic
traffic loads in wireless sensor networks (ACM, New York, 2008), pp. 1-14.
doi:10.1145/1460412.1460414. http://doi.acm.org/10.1145/1460412.
1460414

E Ancillotti, R Bruno, M Conti, Reliable Data Delivery with the IETF Routing
Protocol for Low-Power and Lossy Networks. [EEE Trans. Ind. Inform. 10(3)
(2014). doi:10.1109/T11.2014.2332117

D Carels, N Derdaele, ED Poorter, W Vandenberghe, | Moerman, P
Demeester, Support of multiple sinks via a virtual root for the RPL routing
protocol. EURASIP J. Wirel. Commun. Netw. 2014(1), 91 (2014). http://dx.
doi.org/10.1186/1687-1499-2014-91

P Pinto, A Pinto, M Ricardo, in Wireless Days (WD) 2013 IFIP. End-to-end
delay estimation using RPL metrics in WSN, (2013), pp. 1-6.
doi:10.1109/WD.2013.6686524

V Paxson, M Allman, HJ Chu, M Sargent, Computing TCP's Retransmission
Timer (2011). http://tools.ietf.org/html/rfc6298

F Osterlind, A Dunkels, J Eriksson, N Finne, T Voigt, in Local Computer
Networks, Proceedings 2006 31st IEEE Conference on. Cross-Level Sensor,
Network Simulation with COOJA, (2006), pp. 641-648.
doi:10.1109/LCN.2006.322172

K Roussel, YQ Song, O Zendra, in EWSN 2016 - NextMote workshop, ed. by K
Roemer. ACM EWSN 2016- NextMote workshop (Junction Publishing,
Graz, Austria, 2016), pp. 319-324. https://hal.inria.fr/hal-01240986
Crossbow TelosB. http://www.memsic.com/userfiles/files/Datasheets/
WSN/6020-0094-02_B_TELOSB.pdf

A Dunkels, Contiki OS, open source, highly portable, multi-tasking
operating system for memory-efficient networked embedded systems
and wireless sensor networks (2013). http://www.contiki-os.org

Pi RaspBerry (2014). http://www.raspberrypi.org

JS Hunter. Qual. Technol. 18, 203 (1986)

V Jacobson, Congestion avoidance and control. SIGCOMM Comput.
Commun. Rev. 18(4), 314 (1988). doi:10.1145/52325.52356. http://doi.
acm.org/10.1145/52325.52356

http://dx.doi.org/10.1109/IMCCC.2012.345
http://www.ietf.org/rfc/rfc6550.txt
http://www.ietf.org/rfc/rfc6550.txt
http://dx.doi.org/10.1002/9780470515181.ch11
http://dx.doi.org/10.1109/MedHocNet.2014.6849114
http://dx.doi.org/10.1007/s11276-016-1194-2
http://link.springer.com/article/10.1007%2Fs11276-016-1194-2
http://link.springer.com/article/10.1007%2Fs11276-016-1194-2
http://dx.doi.org/10.1109/TNET.2004.842228
http://dx.doi.org/10.1145/844128.844143
http://doi.acm.org/10.1145/844128.844143
http://dx.doi.org/10.1145/958491.958508
http://doi.acm.org/10.1145/958491.958508
http://dx.doi.org/10.1145/941350.941353
http://doi.acm.org/10.1145/941350.941353
http://doi.acm.org/10.1145/941350.941353
http://dx.doi.org/10.1145/980159.980173
http://doi.acm.org/10.1145/980159.980173
http://doi.acm.org/10.1145/980159.980173
http://dx.doi.org/10.1109/TAC.2011.2107051
http://dx.doi.org/10.1109/TSP.2014.2313531
http://dx.doi.org/10.1109/TVT.2016.2518185
http://dx.doi.org/10.1109/TSP.2011.2162832
http://dx.doi.org/10.1109/TAC.2013.2286893
http://dx.doi.org/10.1109/TWC.2014.2331286
http://dx.doi.org/10.1155/2010/163413%]163413
http://dx.doi.org/10.1109/TMC.2005.31
http://dx.doi.org/10.1109/INFCOM.2002.1019408
http://dx.doi.org/10.1145/958491.958512
http://doi.acm.org/10.1145/958491.958512
http://doi.acm.org/10.1145/958491.958512
http://dx.doi.org/10.1109/GLOCOM.2008.ECP.79
http://dx.doi.org/10.1145/1460412.1460414
http://doi.acm.org/10.1145/1460412.1460414
http://doi.acm.org/10.1145/1460412.1460414
http://dx.doi.org/10.1109/TII.2014.2332117
http://dx.doi.org/10.1186/1687-1499-2014-91
http://dx.doi.org/10.1186/1687-1499-2014-91
http://dx.doi.org/10.1109/WD.2013.6686524
http://tools.ietf.org/html/rfc6298
http://dx.doi.org/10.1109/LCN.2006.322172
https://hal.inria.fr/hal-01240986
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0094-02_B_TELOSB.pdf
http://www.memsic.com/userfiles/files/Datasheets/WSN/6020-0094-02_B_TELOSB.pdf
http://www.contiki-os.org
http://www.raspberrypi.org
http://dx.doi.org/10.1145/52325.52356
http://doi.acm.org/10.1145/52325.52356
http://doi.acm.org/10.1145/52325.52356

	Abstract
	Keywords

	Introduction
	Related work
	Time synchronization
	Factors influencing time synchronization
	Network Time Protocol
	Synchronization protocols for WSN
	Reference-broadcast synchronization:
	Timing-sync protocol for sensor networks Ganeriwal:2003:TPS:958491.958508:
	Lightweight tree-based synchronization vanGreunen:2003:LTS:941350.941353:

	Wake-up mechanisms for WSN
	Duty cycling:
	Scheduled rendezvous:

	6LowPAN/IPv6/RPL evaluations

	Application-driven WSN
	Application-driven synchronization mechanism
	The synchronization setup phase
	The synchronization maintenance phase

	Evaluation
	Basic simulation of the synchronization mechanism
	 and values estimation
	 estimation:
	 estimation

	Results discussion

	Simulations
	Results and discussion
	Delays
	Per hop |k,n| component:
	QSR:

	Testbed experiments
	Results and discussion
	|k,n] component:
	QSR:

	Conclusions
	Appendix
	Exponentially weighted moving average

	Acknowledgements
	Competing interests
	Ethics approval and consent to participate
	About the authors
	References

