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Abstract

Though the performance of belief propagation (BP) decoder for polar codes is comparable with the successive
cancellation (SC) decoder, it has significant performance gap when compared with the improved SC decoders, such
as SC list (SCL) decoding. In this paper, we propose an improved BP decoding for polar codes with good performance
by adapting their parity-check matrices. The decoding process is iterative and consists of two parts. Firstly, the
parity-check matrix of polar codes is adjusted such that one of its submatrices corresponding to less reliable bits is in a
sparse nature. Secondly, the BP decoding is applied to the adjusted parity-check matrix. Simulation results show that
the proposed decoder, when accompanied with the early termination scheme, provides significant performance
gains over the original polar BP decoder under a relatively low decoding complexity and even competes with the
cyclic redundancy check (CRC)-aided SCL (CRC-SCL) decoder only by increasing a tolerate complexity.
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1 Introduction
Polar codes are shown to be capacity-achieving for binary
input discrete memoryless channel (B-DMC) with explicit
construction and decoding methods [1]. In the regime of
finite block lengths with practical considerations, the per-
formance of polar codes is not very appealing. One of the
reasons is that the successive cancellation (SC) decoding
for polar codes is suboptimal and it may cause error prop-
agation due to the serial decoding architecture. Although
there are some improved SC decoders [2, 3], the through-
put of these decoders is low and the decoding latency
is relatively high. Another interesting decoding method
for polar codes is belief propagation (BP) decoding
[4–11]. One advantage of BP decoder is its fully parallel
architecture which is important for possible applications.
However, the performance of BP decoders reported in the
literatures is inferior to the improved SC decoders.
Since the parity-check matrix of polar codes is not

sparse in general [12], running BP decoding directly on
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it does not obtain good frame error rate (FER) perfor-
mances. Thus, the proposed BP decoders in [4, 5] are
based on the factor graph representation of the generator
matrix. In this paper, based on the idea of iterative soft-
input-soft-output decoding of Reed-Solomon (RS) codes
[13], we propose an improved BP decoder for polar codes
by adapting their parity-check matrices. In particular, we
first adapt the parity-check matrix according to the bit
reliability so that the unreliable bits correspond to a sparse
submatrix. Then, the BP decoding algorithm is applied
to the adapted parity-check matrix. The above process
is iteratively performed until the predefined maximum
number of iterations is reached or the stopping criterion
is satisfied.

2 Preliminaries
2.1 Polar codes
Let W denote a B-DMC with input u ∈ {0, 1}, output
y ∈ Y , and transition probabilities W (y|u). By recur-
sively applying channel combining and splitting opera-
tions on N (N = 2n, n ≥ 1) independent copies of W,
we can get a set of N polarized subchannels, denoted by
W (i)

N

(
yN1 ,u

i−1
1 |ui

)
, where i = 1, 2, · · · ,N . The construc-

tion of an (N ,K) polar code is completed by choosing
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the K best polarized subchannels which carry informa-
tion bits and freezing the remaining subchannels to zero
or some fixed values. According to the encoding rule of
polar codes, the encoder can first generate the source
block uN1 . Then, polar coding is performed on the con-
straint xN1 = uN1 GN , whereGN is the generator matrix and
the vector xN1 is the codeword. The matrix GN is obtained
by the formula BNF⊗n, where F⊗n is the nth Kronecker

power of F �
[
1 0
1 1

]
and BN is the bit-reversal permu-

tation matrix. The popular decoding algorithms of polar
codes are SC algorithm and BP algorithm.

2.2 Successive cancellation decoding of polar codes
In [1], SC decoding is proposed as a baseline algorithm
which has a very low complexity N logN, where N is the
codeblock length. Based on the recursive structure of the
polar encoder, the SC decoder performs a series of inter-
laced step-by-step decisions in which a decision in each
step heavily depends on the decisions in the previous steps
and the received sequence yN1 from channel.We define the
log-likelihood ratio (LLR) of the ith bit as

L(i)
N

(
yN1 , û

i−1
1

)
= log

W (i)
N

(
yN1 , û

i−1
1 |0

)

W (i)
N

(
yN1 , û

i−1
1 |1

) . (1)

Decisions are taken according to

ûi =

⎧⎪⎪⎨
⎪⎪⎩

0 if i ∈ I and L(i)
N

(
yN1 , û

i−1
1

)
≥ 0

1 if i ∈ I and L(i)
N

(
yN1 , û

i−1
1

)
< 0

0 if i ∈ Ic,

(2)

where the vector I denotes the index set of information
subchannels and Ic is the complementary of the set I,
and the decision LLR L(i)

N

(
yN1 , û

i−1
1

)
can be straightly

calculated using the following recursive formulas
according to [1, 14]

L(2i−1)
N

(
yN1 , û

2i−2
1

)

= 2tanh−1
(
tanh

(
L(i)
N/2

(
yN/2
1 , û2i−2

1,e ⊕ û2i−2
1,o

)
/2

)

× tanh
(
L(i)
N/2

(
yNN/2+1, û

2i−2
1,o

)
/2

))
, (3)

or

L(2i)
N

(
yN1 , û

2i−1
1

)
= L(i)

N/2

(
yNN/2+1, û

2i−2
1,e

)

+ (−1)û2i−1L(i)
N/2

(
yN/2
1 , û2i−2

1,e ⊕ û2i−2
1,o

)
,

(4)

where û2i−2
1,e and û2i−2

1,o denote the subvectors which con-
sist of elements of ûN1 with even and odd indices, respec-
tively, and the symbol⊕ denotesmodulo-2 addition. From

the above decoding process, we can see that the com-
plexity is determined essentially by the complexity of
computing the LLRs.

2.3 Belief propagation decoding of polar codes
To perform BP decoding of polar codes, the authors in [4]
show that the factor graph of polar codes can be obtained
by adding N check nodes to each column of the first
n (n = logN) columns from left to right in the encod-
ing graph. During the whole BP iteration process, soft
messages are updated and propagated among adjacent
nodes from the rightmost column to the leftmost col-
umn. Then, the decoder reverses the course and updates
schedule toward the rightmost column. This procedure
makes one round of BP iteration. After reaching prede-
fined number of BP iteration MBP, the decision sequence
ûN1 is determined based on the hard decision of messages
from the nodes in the leftmost column. However, the per-
formance gains of BP decoder are not significant over
the binary-input additive white Gaussian noise (BAWGN)
channel [12].

3 Enhanced belief propagation decoding of polar
codes by adapting the parity-checkmatrix

3.1 Enhanced belief propagation decoding of polar codes
Generally, the BP decoder for polar codes is based on
the factor graph representation obtained by the encod-
ing graph of polar codes [4]. In [12], the authors proved
that the parity-check matrix H of polar codes is formed
by the columns of GN with indices in Ic, where Ic is the
index set of frozen channels. However, no one considers
to use H for the polar BP decoder since the density of
H is relatively high. In general, BP decoder is not suit-
able for linear block codes with high-density parity-check
(HDPC) matrix. However, in [13], Jiang and Narayanan
proposed an iterative decoding scheme that performs well
for RS code with HDPC matrix by adapting its parity-
check matrix when BP decoding fails to converge. In this
paper, we investigate whether the idea of parity-check
matrix adaptation also performs well for polar codes or
not.
Suppose a codeword x is transmitted over a B-

DMC and y is received. The LLR of the ith coded
bit is defined as γ (xi) = log

(
Pr(y|xi = 0)
Pr(y|xi = 1)

)
. Let

γ = (γ (x1) , γ (x2) , · · · , γ (xN−K ) , · · · , γ (xN )) denotes
the LLRs ofN coded bits. The improved polar BP decoder
is described as follows.

Stage 1 matrix adaptation. Firstly, all absolute
values |γ (xi)| (i = 1, 2, · · · ,N) for γ are sorted by
ascending order. This yields a permutation sequence(
j1, j2, · · · , jN−K , · · · , jN

)
of (1, 2, · · · ,N-K , · · · ,N) with∣∣γ (

xj1
)∣∣ <

∣∣γ (
xj2

)∣∣ <, · · · ,< ∣∣γ (
xjN

)∣∣. Secondly, we
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introduce a new vector B = (
j1, j2, · · · , jN−K

)
which

denotes the indices of the N − K least reliable bits in γ .
Let HB denotes the columns of H with the indices chosen
from B. Finally, the Gauss elimination (GE) is applied to
HB to reduce this submatrix to be an identity matrix. If
HB is singular, we replace some elements of B with the
indices of less reliable information bits until HB becomes
invertible. Then, a new matrix H ′ of H is obtained. The
process can make HB as sparse as possible. We choose
to use GE to HB based on the fact that the LLR value for
a bit reflects its reliability. Therefore, the columns of H
corresponding to the most unreliable bits are reduced
to a sparse matrix. This will help BP to correct these
unreliable bits.

Stage 2 BP decoding. The BP algorithm is performed
on the new obtained matrix H ′ . During one round of BP
iteration, the LLR value of the ith bit is updated as:

γ
′
(xi) = γ (xi) + ηγext(xi), (5)

where 0 < η ≤ 1 is the damping factor [13]. The extrinsic
information of ith bit γext(xi) is calculated as follows [13]:

γext(xi) =
∑

j=1,H ′
ji=1

2tanh−1
( ∏

p=1,p�=i,H ′
jp=1

tanh
(

γ (xi)
2

) )
.

(6)

According to γ
′
(xi), the hard decision of ith bit can be

made. After a fixed number of BP iterations, say MBP, the
decoder goes to stage 1 and continues to the next round of
outer iteration. It should be noted that the matrix adapta-
tion should use the latest updated LLRs γ

′ obtained by the
inner BP decoder. The advantages ofmatrix adaptation are
as follows: (1) It reduces the density of the original parity-
check matrix H and eliminates part of short cycles. (2) It
takes LLR values of reliable bits into account when updat-
ing unreliable bits. Therefore, the decoding performance
can be improved [13].

3.2 Early termination
It is well-known that the stopping criterion for the BP

decoder is to determine if the constraint x̂
(
H ′)T= 0 is sat-

isfied. However, according to the analysis in [15] and sim-
ulation results, the BP decoder does not provide a good

error-correction performance if we only use x̂
(
H ′)T=

0 as the stopping criterion for polar codes. Hence, we
consider the following simple but efficient stopping cri-
terion for the proposed decoder based on the criterion
described in [15], which also can reduce the number of
matrix adaption.
minLLR-based stopping criterion: Let Min|LLR| denotes

the minimum absolute value of LLRs for γ
′ and β be a

positive real number. If Min|LLR| > β , then the decoder
calculates û according to x̂ and stops decoding. Other-
wise, the decoder continues to perform the next round of
matrix adaptation.
The above criterion is based on the stopping criterion

described in [15], though it is proposed for BP decoder
with factor graph representation of generator matrix.
To illustrate the validity of this criterion, the proposed

decoder only with x̂
(
H ′)T= 0 as the stopping criterion is

used to decode the (256, 128) polar code at SNR = 2.5 dB.
In order to avoid getting trapped for the decoder when
BP iterations could not converge to a valid estimated

sequence (i.e., x̂
(
H ′)T �=0 ), the total number of BP iter-

ations should be limited to a predefined value MBP. We
generate 153 frames, and 50 frames among them cannot
be decoded by the proposed decoder. It means that for 103

frames, the condition x̂
(
H ′)T = 0 is met before the total

number of iterations is achieved and that for 50 frames,
the condition x̂

(
H ′)T = 0 is still not met when the total

number of iterations is achieved. Figure 1 shows the values
of Min|LLR|s for γ

′ which are gathered during the decod-
ing of these 153 frames. In order to examine the results,
Min|LLR|s for the 50 error frames are plotted on the right
side of Fig. 1. We can see that the Min|LLR| of a correct
frame is much larger than zero in general, while that of
incorrect frames approach zero. The parameter β can be
chosen according to simulations which are shown in the
next section.

3.3 Algorithm description
Based on the above analysis, the proposed scheme is
described in Algorithm 1, where MAP denotes the pre-
defined number of matrix adaptation. The function

Fig. 1 Distribution of Min|LLR|s for a (256, 128) polar code at
SNR = 2.5 dB
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AdaptiveMatrix() performs matrix adaptation which
reduces H to H ′ . The function BP() performs BP algo-
rithm based on H ′ and stores its returned value into the
boolean variable BPresult. If BPresult = false, it means the
constraint x̂

(
H ′)T = 0 is still not satisfied when the num-

ber of iterations that BP used is increased to MBP. Thus,
the algorithm goes back to perform the matrix adapta-

tion again. Otherwise, it means the constraint x̂
(
H ′)T =

0 is satisfied. Then, we compare Min|LLR| with β , and
the matrix adaptation will be performed again when
Min|LLR| < β . It should be noted that we can use
the cyclic redundancy check (CRC) to detect the output
sequence of the BP algorithm when Min|LLR| ≥ β to fur-
ther improve the performance of the proposed algorithm.
Accordingly, it needs to set the last r unfrozen bits to hold
the r-bit CRC when encoding, where r is a small constant.
In addition, considering that there are lots of variables
in Section 3, we first provide a variable list as shown in
Table 1 to make the used variables more clearly. Specifi-
cally, the last four variables in Table 1 will be used in the
following subsection.

3.4 Computational complexity
The computational complexity of Algorithm 1 is deter-
mined by three parts: (1) sorting in AdaptiveMartix(),
(2) GE in AdaptiveMartix(), and (3) BP decoding. Since
different parts are involved in different operations, we
analyze the complexity by counting the number of binary
operations (BOs), floating point comparisons (FPCs), and

Table 1 Symbol definition

Symbol Meaning

û The decision source block

x̂ The decision codeword

MBP The predefined number of BP iterations

MAP The predefined number of matrix adaptation

H The parity check matrix

H ′
The adjusted parity-check matrix

B The index set of the N − K least reliable bits in γ

γ The initial LLRs set of N coded bits

γ
′

The new LLRs set of N coded bits

η The damping factor

Min|LLR| The minimum absolute value of LLRs for γ
′

β a positive real number

BPresult The returned value of function BP()

CAP The average number of matrix adaptation

CBP The average number of iterations that BP() used

WR The average row weight

WC The average column weight

Algorithm 1 Enhanced Belief Propagation Decoding
Algorithm of Polar Codes

Input: the original LLR vector γ ,the parity check
matrix H ;
Output: the encoding estimated sequence û;

1: i = 1 ;
2: while i ≤ MAP do
3: AdaptiveMatrix() ;
4: BPresult = BP();
5: if BPresult = false then
6: increment i by one;
7: perform AdaptiveMatrix() on H ;
8: else
9: Min|LLR| = minNk=1|γ

′
(xk)|;

10: ifMin|LLR| < β then
11: increment i by one;
12: perform AdaptiveMatrix() on H;
13: else
14: if CRC(x̂)=Success then
15: compute û according to x̂ and break;
16: else
17: increment i by one;
18: perform AdaptiveMatrix() on H ;
19: end if
20: end if
21: end if
22: end while
23: if i > MAP then
24: declare a decoding failure;
25: end if

Algorithm 2 The function AdaptiveMatrix()
Input: the latest updated LLRs γ , the original check
matrix H ;
Output: the new adapted matrix H ′ ;

1: perform the sorting operation on the latest updated
LLRs γ

′ ;
2: perform matrix adaptation on H ;

floating point operations (FPOs), respectively. For part
(1), the sorting step needs O

(
CAPN logN

)
FPCs, where

CAP denotes the average number of matrix adaptation.
The GE in part (2) needs O

(
CAPN3) BOs. Note that

though the complexity of GE is cubic, it only needs BOs
which are much simpler than FPOs. Moreover, simula-
tions show that AdaptiveMatrix() is performed only a
few times as SNR increases. When analyzing the com-
plexity of BP decoding in part (3), we notice that an LLR
for ith bit with odd index in SC decoding can be com-
puted in the form 2tanh−1(tanh(·) × tanh(·)), which is
the same as that of the BP decoding [14]. For simplic-
ity, we take the tanh() function as a black box and do
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Algorithm 3 The function BP()

Input: the latest adapted matrix H ′ ;
Output: a boolean variable BPresult ;

1: j = 1;
2: BPresult = false;
3: while j ≤ MBP do
4: update the message of the check nodes ;
5: update the message of the variable nodes;
6: if x̂(H ′

)T=0 then
7: BPresult=true ;
8: break ;
9: else

10: increment j by one ;
11: end if
12: end while
13: if j > MBP then
14: BPresult=false ;
15: end if

not count the number of FPOs for tanh() function when
analyzing the complexity of different decoders. This is
reasonable since all the involved decoders need tanh()

function. According to Eq. (2), the N-K check nodes need
O (CAPCBP(N − K) (WR − 2)) multiplication operations,
whereWR is the average rowweight andCBP is the average
number of iterations that BP() used. TheN variable nodes
need O (CAPCBPN (WC − 2)) additive operations, where
WC is the average column weight. Table 2 summarizes
the complexity analysis of Algorithm 1 and SC decoder.
It should be noted that the complexity of the proposed
algorithm decreases rapidly as SNR increases since CAP
and CBP are very small. Actually, from Table 3, we can see
thatWC andWR after AdaptiveMatrix() are much smaller
than K. Hence, the average complexity of BP decoding is
relatively low.

3.5 Variations to the Proposed Algorithms
In this subsection, we give several variations of the pro-
posed algorithm to further improve the performance or
reduce the decoding complexity.

1. Improving the performance
The first variation inspired by [13] can further
improve the performance by running the proposed
algorithm several times each time with the same

initial LLRs from the channel but a different grouping
of the less reliable bits. This is based on the fact that
some bits with their |LLR|s close to those in the
unreliable set B are also of the wrong sign and vice
versa. Each time the proposed algorithm is run, a
different estimate of codeword may be obtained due
to the different parity-check matrix. The decoder
keeps all the returned codewords in a list and chooses
the one that minimizes Euclidean distance from the
received vector of the channel. This variation can
significantly improve the asymptotic performance of
polar codes.

2. Reducing the complexity

(a) Partial reliable bit updating
The complexity of the proposed algorithm
mostly depends on the complexity of the
FPCs. The main FPCs complexity comes from
two ways: the computation of the extrinsic
information in the reliable part and the
adaptation of the parity-check matrix. Since
only some bits in the boundary will be switched
from the reliable part to the unreliable part in
the adaptation of the parity-check matrix, we
can use the rule of partial reliable bit updating
proposed in [13] to reduce the complexity in
the bit reliabilities update part.

(b) Sophisticated update schemes
Using sophisticated update schemes reduces
the complexity of matrix adaptation, such as
the scheme that adapting the parity-check
matrix from the previous ones proposed by
EI-Khamy and McEliece [16], which reduces
the overall complexityby 75%.

4 Simulation results
In this section, we consider three polar codes: a (256, 128)
rate-1/2 polar code C1, a (1024, 512) rate-1/2 polar code
C2, and a (2048, 1536) rate-3/4 polar code C3. We setMAP
= 10 andMBP = 20/50. According to the selection principle
of η in [13], we set first the observed performances of the
proposed decoder when η = 0.5. And a CRC-8 code for C1
with generator polynomial g(D) = D8 +D7 +D6 +D4 +
D2 + 1 is used. While for for C2 and C3, we use a CRC-
24 code with generator polynomial g(D) = D24 + D23 +
D6 + D5 + D + 1. Since the length of CRC sequences is

Table 2 Complexity comparisons with different decoders

BOs FPCs
FPOs

×/÷ +/−
SC / / O(N logN) O(N logN)

proposed O
(
CAPN3

)
O (CAPN logN) O (CAPCBP(N − K) (WR − 2)) O (CAPCBPN (Wc − 2))
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Table 3 The average row and column weight ofH ′
for a (1024,

512) polar code

SNR Avg. weight of column(WC ) Avg. weight of row(WR)

2.0 dB 26.08 52.67

2.5 dB 26.12 52.72

3.0 dB 26.10 52.73

3.5 dB 26.14 52.77

4.0 dB 26.16 52.79

very short when compared to that of information bits in
a polar code, the rate loss caused by using CRC is almost
negligible. All simulations are performed over an additive
white Gaussian noise (AWGN) channel with binary phase
shift keying (BPSK).

4.1 Choice of β
Figure 2 presents the FER performance as a function of
β at different signal-to-noise ratios (SNRs) for C1. It can
be seen that for SNR <3.5 dB, the FER performances
are almost the same as β increases. For SNR ≥3.5 dB,
the FER decreases gradually as β increases. Although
the value of β has little influence on the FER perfor-
mance of the proposed scheme for small SNRs, it is
shown from the simulations that for the larger value of β ,
the decoder needs to perform a larger number of BP
iterations. For example, if the value of β is 0.5, the
average number of BP iterations for C1 is about 49 at
SNR = 2.0 dB. However, if the value of β is 7.5, the
average number of BP iterations for C1 is about 63 at
the same SNR. Therefore, as in [15], to make a trade-
off between the FER performance and decoding com-
plexity, we choose β = 0.5 when SNR <3.5 dB and
β = 7.5 when SNR ≥ 3.5 dB for C1. For C2 and C3,

Fig. 2 Performances of the proposed decoder for C1 with different β

we choose β = 0.5 when SNR <3.5 dB and β = 15.5
when SNR ≥3.5 dB.

4.2 Comparison of the FER performance
Figures 3 and 4 show the FER performances for C1 and
C2 with different polar decoders, respectively. We can see
that the proposed decoder with MBP = 50 performs sig-
nificantly better than the SC decoder and the original BP
decoder. Particularly, for C2, at FER = 10−4, the perfor-
mance gains for the proposed decoder with MBP = 50 is
about 1.2 dB when compared to the original BP decoder
with MBP = 60 and the improved BP decoders pro-
posed in [11] and [15]. And also, compared to the SC list
(SCL) decoder with the list size L = 32, the polar codes
using the proposed decoder can obtain almost 0.7 dB per-
formance gains. Figure 5 presents the FER performances
for C3 using different polar decoders. Although the code
rate becomes large, the proposed decoder still can obtain
about 0.5 dB performance gains at FER = 10−4 compared
to the original polar BP decoder. It shows that the pro-
posed decoder can improve the FER performance of the
original polar BP decoder significantly on the AWGN
channel with short and moderate blocklength at different
code rates. Another side, we notice that the algorithm pro-
posed in [10] which the readers are referred to for more
details also can improve the performance of the original
polar BP decoder with an improvement in SNR of 0.3 dB.
However, both Figs. 4 and 5 show the performance gains
using the proposed decoder can be increased to 0.5 dB
at least, such as 0.5 dB at a rate = 0.75 and 1.2 dB at a
rate = 0.5.
We make a performance comparison between the pro-

posed decoder with variations and CRC-aided SCL (CRC-
SCL) decoder as shown in Fig. 6. Specifically, the notion
proposed(MAP, MBP, q1) refers to the proposed scheme

β

β

Fig. 3 Performance comparisons of different decoders for C1
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β

β

Fig. 4 Performance comparisons of different decoders for C2

with variations which are presented in Section 3.5. The
parameter q1 refers to the number of decoding rounds
with different groupings of the unreliable bits. The
damping factor η is also specified on the plots. From Fig. 6,
we can see that the performance of the proposed decoder
using the different grouping method can be improved sig-
nificantly. Compared with the CRC-SCL (L = 32) [17, 18],
the proposed decoder with the parameters (10, 50, 3) pro-
vides about 0.2 dB performance gains at an FER = 10−4.
Additionally, the damping coefficients of the proposed
algorithm must be carefully chosen to control the updat-
ing step width. In general, if the η is set to be larger, the
performance of the proposed decoder has a flat slope(as
shown in Fig. 6) which is mainly due to the overshooting

Fig. 5 Performance comparisons of different decoders for C3

Fig. 6 Performance comparisons between the proposed decoder
with variations and CRC-SCL for C2

of the update scheduling such that the decoder tends to a
wrong codeword, quickly.

4.3 Average iterative number and decoding complexity
Figure 7 shows the average number of total BP iter-
ations ( = CAPCBP) per frame for C2 using the origi-
nal BP decoder, BP decoder with G-matrix-based early
stopping scheme [15], BP decoder with the freezing of
connected sub-factor-graphs (CSFGs) [19], and the pro-
posed decoder. From simulations, we can see that as SNR
increases, the average number of BP iterations for the pro-
posed decoder decreases faster than other decoders. It
shows that the proposed algorithm can tend to a correct
codewordwith a faster convergence rate. To show the FPO

β

β η

Fig. 7 Comparison of average number of BP iterations for C2 using
the BP decoder and the proposed decoder
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Table 4 The numbers of FPOs of different decoders (×103) for C2

SNR = 2.5dB SNR = 3.0dB SNR = 3.5dB SNR = 4.0dB

M/D A/S M/D A/S M/D A/S M/D A/S

SC 5 5 5 5 5 5 5 5

SCL(L = 32) 328 328 328 328 328 328 328 328

Proposed(MBP = 50) 286 272 182 173 130 124 78 74

Improved SCL(L = 32)[18] 45 45 23 23 10 10 6 6

Proposed(10, 50, 3) 214 204 136 130 98 93 58 55

complexity of the proposed decoder clearly, we use the
complexity of SCL decoder as reference. Table 4 shows
the numbers of FPOs using the original SC decoder, SCL
decoder (L = 32) and the proposed decoder (MBP = 50) for
a (1024, 512) polar code. Since the average number of total
BP iterations CAPCBP becomes smaller as SNR increases,
such as CAPCBP = 5.01 at SNR = 3.5 dB, the average num-
bers of FPOs of the proposed decoder decrease with SNR
increasing.When SNR≥3.5 dB, the proposed decoder has
the lower complexity of FPOs than SCL decoder. It should
be noted that all the numbers in Table 4 are rounding
numbers. From the table, it shows that the FPO com-
plexity of the proposed decoder decreases rapidly as SNR
increases. And also, we can see that the complexity of the
proposed decoder when using the variations mentioned in
Section 3.5 is reduced quickly. However, compared with
the reduced-complexity SCL [18], the proposed decoder
with the variations still has a higher complexity. Consid-
ering the better performance and parallel architecture of
the proposed decoder, if a larger complexity is tolerated,
it will be a promising decoder to reduce the decoding
latency of CRC-SCL decoder for polar codes and provide a
good performance.

5 Conclusions
In this paper, we have proposed an improved BP decoder
for polar codes by adapting their parity-check matri-
ces. Though the idea of the proposed decoder is not
new, it has never been used for polar codes before.
More importantly, simulation results show that the pro-
posed decoder can provide significant performance gains
compared to the polar BP decoder and also can com-
pete with CRC-SCL decoder when using the variations
of the proposed algorithm described in Section 3.5.
Although the proposed decoder still has a little larger
complexity than that of those reduced-complexity CRC-
SCL, the proposed decoder is a promising decoder
as a fully parallel architecture to reduce the decoding
latency of CRC-SCL decoder for polar codes with a
tolerated complexity.
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