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Two-dimensional DOA estimation of
coherent sources using two parallel
uniform linear arrays
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Abstract

A novel two-dimensional (2-D) direction-of-arrival (DOA) estimation approach based on matrix reconstruction is
proposed for coherent signals impinging on two parallel uniform linear arrays (ULAs). In the proposed algorithm,
the coherency of incident signals is decorrelated through two equivalent covariance matrices, which are constructed
by utilizing cross-correlation information of received data between the two parallel ULAs and the changing
reference element. Then, the 2-D DOA estimation can be estimated by using eigenvalue decomposition (EVD)
of the new constructed matrix. Compared with the previous works, the proposed algorithm can offer remarkably good
estimation performance. In addition, the proposed algorithm can achieve automatic parameter pair-matching without
additional computation. Simulation results demonstrate the effectiveness and efficiency of the proposed algorithm.

Keywords: Matrices reconstruction, 2-D DOA estimation, Coherent signals, Decoupled estimation, Uniform linear array
(ULA)

1 Background
2-D direction-of-arrival (DOA) estimation of incident
coherent source signals has received increasing atten-
tion in radar, sonar, and seismic exploration [1–5].
Many high-resolution techniques, such as MUSIC [6]
and ESPRIT [7], have achieved exciting estimation per-
formance. However, the aforementioned methods
assume the incident signals are independent, which
would encounter performance degradation due to the
rank deficiency when coherent signals exist. To decorr-
elate coherent signals, the spatial smoothing (SS) [8]
or forward-backward spatial smoothing (FBSS) [9] are
especially noteworthy. However, this technique gener-
ally reduces the effective array aperture, and the
maximum number of resolvable signals cannot exceed
the number of array sensors. In [10], an effective
matrix decomposition method utilizing cross-correlation
matrix is proposed to decorrelate coherent signals. Chen
et al. [11] have proposed a 2-D ESPRIT-like method that

realizes decorrelation by reconstructing a Toeplitz
matrix. With the help of three correlation matrices,
Wang et al. [12] have presented a 2-D DOA estimation
method. Recently, Nie et al. [13] have introduced an
efficient subspace algorithm for 2-D DOA estimation.
In [14], a novel 2-D DOA estimation method using a
sparse L-shaped array is proposed to obtain high per-
formance and less complexity. Xia et al. [15] have
proposed a polynomial root-finding-based method for
2-D DOA estimation by using two parallel uniform
linear arrays (ULAs), which has less computational
burden. Some decorrelation algorithms are proposed
in [16–18] to achieve 2-D DOA estimation by utilizing
two parallel ULAs. However, the limitation of the
abovementioned algorithms is that the estimation per-
formance cannot be satisfactory due to the fact that
the structure of the array is not being fully exploited.
For the purpose of description, the following nota-

tions are used. Boldface italic lower/uppercase letters
denote vectors/matrices. (·)*, (·)T, (·)†, and (·)H stand for
the conjugation, transpose, Moore-Penrose pseudo-
inverse, and conjugate transpose of a vector/matrix,
respectively. The notation E(x) and diag (·) separately
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denote the expectation operator and the diagonal matrix,
respectively.

2 Date model
As illustrated in Fig. 1, the antenna array consists of
two parallel ULAs (Xa and Ya) in the x − y plane.
Each ULA has N omnidirectional sensors with spa-
cing dx, and the interelement spacing between the
two ULAs is dy. Suppose that M far-field narrowband
coherent signals impinge on the two parallel ULAs
from 2-D distinct directions (αi, βi)(1 ≤ i ≤M), where
αi and βi are measured relatively to the x axis and to
the y axis, respectively.
Let the kth element of the subarray Xa be the phase

reference and then the observed signals xkm tð Þ at the
mth element can be expressed as

xkm tð Þ ¼
XM
i¼1

e−j 2π=λð Þ m−kð Þdx cosαi si tð Þ þ nx;m tð Þ ð1Þ

where si(t) denotes the complex envelope of the ith
coherent signal, λ is the signal wavelength, and dx
represents the spacing between two adjacent sensors.
The superscript k(k = 1, 2,⋯, N) of the xkm tð Þ stands
for the number of the reference element in subarray
Xa, and the subscript m(m = 1, 2,⋯,N) of the xkm tð Þ
denotes the number of the element along the x posi-
tive axis in subarray Xa. nx,m(t) is the additive
Gaussian white noise (AGWN) of the mth element
in subarray Xa.
Note that when m = k, the observed signals at the kth

element can be expressed as

xkk tð Þ ¼
XM
i¼1

e−j 2π=λð Þ k−kð Þdx cosαi si tð Þ þ nx;k tð Þ

¼
XM
i¼1

si tð Þ þ nx;k tð Þ

ð2Þ

With a similar processing, employing the kth element
of the subarray Ya as the phase reference and then the
observed signals ykm tð Þ at the mth element can be
expressed as

ykm tð Þ ¼
XM
i¼1

e−j 2π=λð Þ m−kð Þdy cosαi e j 2π=λð Þdy cosβi si tð Þþny;m tð Þ

ð3Þ
Similarly as in (1), the superscript k(k = 1, 2,⋯,N) of

the ykm tð Þ stands for the number of the reference element
in subarray Ya, and the subscript m(m = 1, 2,⋯,N) of
the ykm tð Þ denotes the number of the element along the x
positive axis in subarray Ya. ny,m(t) is the AGWN of the
mth element in subarray Ya.
The observed vectors Xk(t) and Yk(t) can be written as

Xk tð Þ ¼ xk1 tð Þ; xk2 tð Þ;⋯; xkN tð Þ� �T ð4Þ

Yk tð Þ ¼ yk1 tð Þ; yk2 tð Þ;⋯; ykN tð Þ� �T ð5Þ

3 The proposed algorithm
For the subarray Xa, the auto-correlation calculation is
defined as follows:

Fig. 1 Parallel array configuration for 2-D DOA estimation
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rk
xkm xkkð Þ� ¼ E½xkm tð Þðxkk tÞð Þ��

¼
XM
i¼1

gi tð Þe−j 2π=λð Þ m−kð Þdx cosαi þ σ2δ m; kð Þ

ð6Þ
where

gi tð Þ ¼
XM
j¼1

si tð Þs�j tð Þ ð7Þ

δ m; kð Þ ¼ 1; m ¼ k
0; m≠k

�
ð8Þ

Assume that the kth element of the subarray Xa is the
phase reference. Thus, the auto-correlation vectors
rk
Xk xkkð Þ� between Xk(t) and the corresponding reference

element xkk tð Þ can be defined as follows:

rk
Xk xkkð Þ� ¼ E½Xk tð Þðxkk tÞð Þ��

¼ ½rk
xk1 xkkð Þ� ; r

k
xk2 xkkð Þ� ;⋯; rk

xkN xkkð Þ� �
T

ð9Þ
It is obvious that N column vectors will be achieved as

the superscript k of the rk
Xk xkkð Þ� is changed from 1 to N.

Therefore, we construct an equivalent auto-covariance
matrix Rxx as follows:

Rxx ¼ r1
X1 x11ð Þ� ; r

2
X2 x22ð Þ� ;⋯; rN

XN xNNð Þ�
� �

¼

r1
x11 x11ð Þ�r

2
x21 x22ð Þ�⋯ rN

xN1 xNNð Þ�
r1
x12 x11ð Þ�r

2
x22 x22ð Þ�⋯ rN

xN2 xNNð Þ�
⋮ ⋮ ⋱ ⋮

r1
x1N x11ð Þ�r

2
x2N x22ð Þ�⋯ rN

xNN xNNð Þ�

2
666664

3
777775

ð10Þ
Similarly as in (6), for the subarray Ya, the cross-

correlation calculation ~rk
ykm xkkð Þ� can be written as

~rk
ykm xkkð Þ� ¼ E½ykm tð Þðxkk tÞð Þ��

¼
XM
i¼1

gi tð Þe−j 2π=λð Þ m−kð Þdx cosαi ej 2π=λð Þdy cosβi

ð11Þ

Then, the cross-correlation vectors ~rk
Yk xkkð Þ� between

Yk(t) and the reference element xkk tð Þ in subarray Xa can
be expressed as

~rk
Yk xkkð Þ� ¼ E½Yk tð Þðxkk tÞð Þ��

¼ ~rk
yk1 xkkð Þ� ; ~r

k
yk2 xkkð Þ� ;⋯; ~rk

ykN xkkð Þ�
� �T

ð12Þ

Obviously, we can obtain another N column vectors
when the superscript k of the ~rk

Yk xkkð Þ� is varied from 1 to

N. Based on the N column vectors, an equivalent cross-
covariance matrix Ryx can be given by

Ryx ¼ ~r1
Y1 x11ð Þ� ;~r

2
Y2 x22ð Þ� ;⋯;~rN

YN xNNð Þ�
� �

¼

~r1
y11 x11ð Þ�~r

2
y21 x22ð Þ�⋯ ~rN

y1N xNNð Þ�
~r1
y12 x11ð Þ�~r

2
y22 x22ð Þ�⋯ ~rN

yN2 xNNð Þ�
⋮ ⋮ ⋱ ⋮

~r1
y1N x11ð Þ�~r

2
y2N x22ð Þ�⋯~rN

yNN xNNð Þ�

2
666664

3
777775

ð13Þ

In order to obtain the final matrix form of the equiva-
lent auto-covariance matrix Rxx as in (10), we need to
further investigate the auto-correlation calculation
rk
xkm xkkð Þ� in (6).

rk
xkm xkkð Þ� ¼ E xkm tð Þ xkk tÞð Þ�

� ih

¼
XM
i¼1

XM
j¼1

si tð Þs�j tð Þe−j 2π=λð Þ m−kð Þdx cosαi þ σ2δ m; kð Þ

¼
XM
i¼1

XM
j¼1

si tð Þs�j tð Þe−j 2π=λð Þ m−1ð Þ− k−1ð Þ½ �dx cosαi þ σ2δ m; kð Þ

¼
XM
i¼1

XM
j¼1

si tð Þs�j tð Þe−j 2π=λð Þ m−1ð Þdx cosαi �ej 2π=λð Þ k−1ð Þdx cosαi

þσ2δ m; kð Þ

¼ � e−j 2π=λð Þ m−1ð Þdx cosα1 e−j 2π=λð Þ m−1ð Þdx cosα2

⋯ e−j 2π=λð Þ m−1ð Þdx cosαM
�
�

g1 tð Þ 0 ⋯ 0
0 g2 tð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ gM tð Þ

2
664

3
775�

ej 2π=λð Þ k−1ð Þdx cosα1
ej 2π=λð Þ k−1ð Þdx cosα2

⋮

ej 2π=λð Þ k−1ð Þdx cosαM

2
664

3
775

þσ2δ m; kð Þ

¼ am αð ÞGaH
k αð Þ þ σ2δ m; kð Þ

ð14Þ

where

G ¼ diag g1 tð Þ g2 tð Þ ⋯ gM tð Þ½ � ð15Þ
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am αð Þ ¼ e−j 2π=λð Þ m−1ð Þdx cosα1 ⋯e−j 2π=λð Þ m−1ð Þdx cosαM
h i

ð16Þ
It can be seen from (16) that am αð Þ is the mth row of

the steering matrix in covariance matrix with the sce-
nario when the first element of the subarray Xa is set to
be the reference element. According to (14), (15), and
(16), Eq. (9) can be rewritten as

rk
Xk xkkð Þ� ¼ rk

xk1 xkkð Þ� ; r
k
xk2 xkkð Þ� ;⋯; rk

xkN xkkð Þ�
� �T

¼ A αð ÞGaH
k αð Þ þ σ2δ m; kð Þ

ð17Þ
where A αð Þ ¼ a α1ð Þ a α2ð Þ ⋯ a αMð Þ½ � is the steer-
ing matrix of the covariance matrix along the subarray Xa,
and a αið Þ ¼ 1 e−j 2π=λð Þdx cosαi ⋯e−j 2π=λð Þ N−1ð Þdx cosαi� �T

.
Based on (17), the matrix Rxx in (10) can be rewritten

as

Rxx ¼ r1
X1 x11ð Þ� ; r

2
X2 x22ð Þ� ;⋯; rN

XN xNNð Þ�
� �

¼ A αð ÞGAH αð Þ þ diag σ21; σ
2
2;⋯; σ2N

� � ð18Þ
where σ2i is the noise power on the ith element of the
subarray Xa.
Similar to the equivalent auto-covariance matrix Rxx

in (18), the equivalent cross-covariance matrix Ryx in
(13) can be rewritten as

Ryx ¼ ~r1
Y1 x11ð Þ� ;~r

2
Y2 x22ð Þ� ;⋯;~rN

YN xNNð Þ�
� �

¼ A αð ÞΨ βð ÞGAH αð Þ ð19Þ
where

Ψ βð Þ ¼
υ β1ð Þ 0 ⋯ 0
0 υ β2ð Þ ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ υ βMð Þ

2
664

3
775

ð20Þ
G ¼ diag g1 tð Þ g2 tð Þ ⋯ gM tð Þ½ � ð21Þ

From (18) and (19), it is easy to see that since αi ≠
αj, (i ≠ j), A(α) is a full column rank matrix with
rank (A(α)) =M. Similarly, since βi ≠ βj, (i ≠ j), Ψ(β) is a
full-rank diagonal matrix with rank (Ψ(β)) =M. Ac-
cording to (7) and (15), note that the incident signals
si(t) ≠ 0, (i = 1, 2⋯M), so gi(t) ≠ 0. As a result, G is a
full-rank diagonal matrix, namely, rank(G) =M. That
is, if the narrowband far-field signals are statistically
independent, the diagonal element gi(t) of the matrix
G represents the power of the ith incident signal. If the
narrowband far-field signals are fully coherent, the di-
agonal element gi(t) of the matrix G denotes the sum

of the powers of the M incident signals. Notice that if
the narrowband far-field signals are the coexistence of
the uncorrelated and coherent signals, which means
there are K coherent signals, the remaining are M − K
statistically independent signals. Then, the diagonal
element gi(t) of the matrix G stands for the sum of the
powers of the K coherent signals when the subscript of
the diagonal element gi(t) in matrix G corresponding
to the source signal belongs to one of the K coherent
signals. If the subscript of the diagonal element gi(t) in
matrix G corresponding to the source signal belongs to
one of the remaining M −K mutually independent signals,
the diagonal element gi(t) of the matrix G denotes the
power of the ith independent signal.
From the above theoretical analysis, the coherency of

incident signals is decorrelated through matrices con-
structing no matter whether the signals are uncorrelated,
coherent, or partially correlated.
From (18), we can obtain the noiseless auto-covariance

matrix R̂xx

R̂xx ¼ A αð ÞGAH αð Þ ð22Þ

The eigenvalue decomposition (EVD) of R̂xx can be
written

R̂xx ¼
XM
i¼1

λiUiUH
i ð23Þ

where {λ1 ≥ λ2 ≥⋯ ≥ λM} and {U1,U2,⋯,UM} are the
non-zero eigenvalues and eigenvector of the noiseless
auto-covariance matrix R̂xx , respectively. Then, the
pseudo-inverse of R̂xx is

R†
xx ¼

XM
i¼1

λi−1UiUH
i ð24Þ

Since A(α) is a column full-rank matrix, the Eq. (22)
can be expressed as

GAH αð Þ ¼ A−1 αð ÞR̂xx

¼ AH αð ÞA αð Þ� 	−1
AH αð ÞR̂xx ð25Þ

According to (19) and (25), the matrix Ryx can be
rewritten as

Ryx ¼ A αð ÞΨ βð ÞGAH αð Þ
¼ A αð ÞΨ βð Þ AH αð ÞA αð Þ� 	−1

AH αð ÞR̂xx ð26Þ

Right-multiplying both sides of (26) by R†
xxA αð Þ
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Ryx R†
xxA αð Þ ¼ A αð ÞΨ βð Þ AH αð ÞA αð Þ� 	−1

AH αð Þ
R̂xxR

†
xxA αð Þ

ð27Þ
Substituting (23) and (24) into (27) yields

Ryx R†
xxA αð Þ ¼ A αð ÞΨ βð Þ AH αð ÞA αð Þ� 	−1

AH αð Þ
XM
i¼1

λiUiUH
i

 ! XM
i¼1

λ−1i UiUH
i

 !
A αð Þ

¼ A αð ÞΨ βð Þ AH αð ÞA αð Þ� 	−1
AH αð Þ

XM
i¼1

UiUH
i

 !
A αð Þ

¼ A αð ÞΨ βð Þ AH αð ÞA αð Þ� 	−1
AH αð ÞA αð Þ� 	

¼ A αð ÞΨ βð Þ
ð28Þ

Notice that
XM
i¼1

UiU
H
i is an identity matrix, that is,

XM
i¼1

UiUH
i ¼ I . Based on (24) and (26), a new matrix R

can be defined as follows:

R ¼ RyxR
†
xx ð29Þ

From (29), the (28) can be further rewritten as

RA αð Þ ¼ A αð ÞΨ βð Þ ð30Þ

Obviously, the columns of A(α) are the eigenvectors
corresponding to the major diagonal elements of diag-
onal matrix Ψ(β). Therefore, by performing the EVD of
R, the A(α) and Ψ(β) can be achieved. Then, the DOA
estimation of the coherent signals can be achieved ac-

cording to υ βi
� 	 ¼ ej 2π=λð Þdy cosβi and a αið Þ ¼

1; e−j 2π=λð Þdx cosαi ;⋯; e−j 2π=λð Þ N−1ð Þdx cosαi� �T
without add-

itional computations for parameter pair-matching and 2-
D peak searching.
Up to now, the steps of the proposed matrix recon-

struction method with the finite sampling data are sum-
marized as follows:

(1)Calculate the column vectors rk
Xk xkkð Þ� of the

equivalent auto-covariance matrix Rxx by (6) and
(9). Similarly, compute the column vectors ~rk

Yk xkkð Þ�
of the equivalent cross-covariance matrix Ryx ac-
cording to (11) and (12)

(2)Achieve the matrix Rxx and the matrix Ryx by (10)
and (13)

(3)Obtain the noiseless auto-covariance matrix R̂xx by
(22). Then, perform EVD to obtain pseudo-inverse
matrix R†

xx
(4)Construct the new matrix R by (29) and then get

the A(α) and Ψ(β) by performing EVD of the new
matrix R

(5)Estimate the 2-D DOAs θi = (αi, βi) of incident
coherent source signals via υ βi

� 	 ¼ ej 2π=λð Þdy cosβi and
a αið Þ ¼ 1; e−j 2π=λð Þdx cosαi ;⋯; e−j 2π=λð Þ N−1ð Þdx cosαi� �T

.
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Fig. 2 The RMSE of the DOA estimates versus input SNR
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4 Simulation result
In this section, computer simulations are performed
to ascertain the performance of the proposed algo-
rithm. The proposed method is compared with an-
other efficient algorithm (DMR-DOAM) in [17]. The
number of sensors in each subarray is N = 7 with
sensor displacement dx = dy = λ/2. Consider M = 4
coherent signals with carrier frequency f = 900MHz

coming from α = (75o, 100o, 120o, 60o) and β = (65o,
75o, 90o, 50o). The phases of coherent signals are [π/
5, π/3, π/3, π/3]. Results on each of the simulation
are analyzed by 1000 Monte Carlo trials. Two per-
formance indices, called the root-mean-square-error
(RMSE) and normalized probability of success (NPS),
are defined to evaluate the performance of the pro-
posed algorithm and DMR-DOAM algorithm.
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50 100 150 200 250
10

-2

10
-1

10
0

10
1

Snapshots 

R
M

S
E

(d
eg

re
e)

--DMR-DOAM method
--Proposed method
--DMR-DOAM method
--Proposed method
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RMSE αð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1000K

X1000
i¼1

XM
n¼1

α̂n ið Þ−αnð Þ
2

vuut

RMSE βð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1000K

X1000
i¼1

XM
n¼1

β̂n ið Þ−βn
� �2vuut

ð31Þ
where α̂n ið Þ and β̂n ið Þ are the estimates of αn and βn for

the ith Monte Carlo trial respectively, and K is the
source number.

NPS ¼ ϒ suc

Τ total
ð32Þ

where ϒsuc and Τtotal denote the times of success and
Monte Carlo trial, respectively. Furthermore, a successful
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experiment is that satisfies maxðjθ̂n−θnjÞ < ε , and ε
equals 0.5 for estimation of the coherent signals.
In the first simulation, we evaluate the performance of

the two algorithms with respect to the input signal-to-
noise ratio (SNR). The number of snapshots is fixed at
1000, and the SNR varies from −10 to 10 dB. The RMSE
of the DOAs versus the SNR is shown in Fig. 2. It can
be seen from Fig. 2 that the proposed algorithm can
provide better DOA estimation than the DMR-DOAM
algorithm no matter whether the RMSE curve of the α
or the RMSE curve of the β. Fig. 3 shows the NPS of
the DOAs versus SNR, which illustrates that the per-
formance of the proposed algorithm is better than that
of the DMR-DOAM algorithm. Furthermore, even at
low SNR, the proposed algorithm can still achieve
better estimation performance. The reason is that the
proposed algorithm takes full advantage of all the
received data of the two parallel ULAs to construct
the equivalent auto-covariance matrix Rxx and cross-
covariance matrix Ryx, which can improve the estima-
tion precision. On the contrary, the DMR-DOAM
algorithm obtains the DOAs of signals at the cost of
reduction in array aperture, which often leads to poorer
DOA estimation.
In the second simulation, we investigate the perform-

ance of the two algorithms versus the number of snap-
shots. The simulation conditions are similar to those in
the first simulation, except that the SNR is set at 5 dB,
and the number of snapshots is varied from to 10 to
250. The RMSE of the DOAs versus the number of
snapshots is depicted in Fig. 4. As shown in Fig. 4, the
proposed algorithm behaves better performance than the
DMR-DOAM algorithm.
The result in Fig. 5 shows the NPS of the DOAs

versus the number of snapshots. From Fig. 5, it can
be observed that the proposed algorithm has much
higher estimation performance than the DMR-DOAM
algorithm as the number of snapshots increases. More-
over, the superiority of the proposed algorithm is much
more obvious than the DMR-DOAM algorithm no
matter whether the number of snapshots is small or
large. This indicates that the proposed algorithm is
more useful especially when the low-computational
cost and highly real-time data process are inquired.
In the last simulation, we assess the performance

of the proposed algorithm as the correlation factor ρ
is varied from 0 to 1 between s1(t) and s2(t). The
SNR is set at 5 dB, and the number of snapshots is
800. Note that the ε in (32) is set to be 0.6 in this
simulation. The performance curves of the DOA
estimation against correlation factor are shown in
Figs. 6 and 7. From Figs. 6 and 7, we can see that
the proposed algorithm outperforms the DMR-
DOAM algorithm.

5 Conclusions
A novel decoupling algorithm for 2-D DOA estimation
with two parallel ULAs has been presented. In the pro-
posed algorithm, two equivalent covariance matrices
are reconstructed to achieve the decorrelation of the
coherent signals and the estimated angle parameters
are pair-matched automatically. It has been shown that
the proposed algorithm yields remarkably better esti-
mation performance than the DMR-DOAM algorithm.
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